THE TRANSIENT BEHAVIOR OF A SINGLE SERVER QUEUING PROCESS
WITH RECURRENT INPUT AND GAMMA SERVICE TIME!

By Lajos TaxAcs
Columbia University

1. Introduction. Let us consider the following queuing process: Customers ar-
rive at a counter at the instants 7o, 71, -+, 7n, - -+ where the interarrival
times 0, = Toy1 — 7o (n = 0,1, - -+ ; 7o = 0) are identically distributed, mu-
tually independent, positive random variables with distribution function
P{0, = 2} = F(z). We say that {r.} is a recurrent process. The customers will
be served by a single server. The server is idle if and only if there is no customer
waiting at the counter, otherwise the order of the services is irrelevant. The
service times are identically distributed, mutually independent random variables
with the distribution function

—1 i
= e ()’ .
— (53
(1) H,(z) = 1 J;O e —_j! ifz =0,
0 ‘ ifz <0,

and independent of {7,}.

We are interested in the investigation of the stochastic behavior of the queue
size and the busy period of this process. We shall see, however, that if we know
the stochastic behavior of the process defined below, then that of the above
process can be deduced immediately.

To define the second process let us suppose that customers arrive at a counter
in batches of size m at the instants 7o, 71, +++, 74, - - , where {,} is the recur-
rent process defined above. There is a single server. The server is idle if and
only if there is no customer waiting at the counter, otherwise the order of the
services is irrelevant. The service times are identically distributed, mutually
independent random variables with the distribution function

1 —e™ ifx =0,
2) H(z) = {o ifz <0,

and independent of {7,}.

Denote by £(¢) the queue size at the instant ¢, i.e., £(¢) is the number of cus-
tomers waiting or being served at the instant {. We say that the system is in
state Ey at the instant ¢ if £(¢) = k. Further define £, = £(7, — 0), i.e., &, is
the queue size immediately before the arrival of the nth bateh (n = 0, 1, ---).
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If we identify the arrivals of the batches of size m with the arrivals of indi-
vidual customers and the total service time of a batch with the service time of
an individual customer then the second process reduces to the first one. For, the
distribution function of the total service time of a batch in the second process is
equal to H,,(x), the mth iterated convolution of H(z) with itself.

If we consider the first process then the busy period follows the same probabil-
ity law as in the second process, but the queue size will change to
[(£() +m — 1)/m].

ReMARK. If we suppose in particular that the batches will be served in the
order of their arrival and if 5(¢) denotes the virtual waiting time at the instant ¢,
i.e., the time which the first customer in a batch would wait if the batch joined
the queue at the instant ¢, then we have

HO)

®) TOEDS

where {x} is a sequence of identically distributed, independent random variables
with distribution function H(z) and independent of £(¢). In this case the waiting
time in the first process follows the same probability law as in the second process.

In what follows we shall consider only the second process and determine the
stochastic behavior of the queue size and that of the busy period.

The asymptotic behavior of the queue size and that of the waiting time have
been investigated already by F. Pollaczek [4], Chapter 7, D. M. G. Wishart [6],
and F. G. Foster [2]. The stochastic law of the busy period has been given by
B. W. Conolly [1] and it can be deduced from a general theorem of F. Pollaczek
[3].

2. An auxiliary theorem. Denote by
— —~8% dF
o(s) = [ ()
the Laplace-Stieltjes transform of F(z) and let

o= fo” 2 dF ().

Throughout this paper we use
Lemma 1. If (a) R(s) = 0, |jw| < Lor (b) R(s) > 0, |w] = Lor (c) pa > m
and R(s) = 0, |w| = 1 then the equation

@) 2" = (s + a1 — 2))
has exactly m roots 2 = v,(s, w), r = 1,2, -+, m, in the unit circle 2| < 1. We
have

s w) = 5 oo (£l W)

= 7! dsi—1

where ¢, = ¢®™P/™ r = 1,2, .-, m, are the mth roots of unity.

(5)
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Proor. In cases (a) and (b) we have |wp(s + u(l — 2))| < (1 — &)™ if
|zl = 1 — e and e is a sufficiently small positive number. In case (¢) we have
o(pe) < (1 — €)™ if eis a sufficiently small positive number. For, if 0 < e = 1
then ¢(ue) and (1 — €)™ are monotone decreasing functions of ¢, they agree at
¢ = 0 and their right-hand derivatives at ¢ = 0 are —ua and —m respectively.
Hence |wo(s + p(1 — 2))| < o(ne) < (1 — €)™ if |¢| = 1 — ¢ and e is small
enough. That is in each of the three cases |wp(s + u(1 — 2))| < (L — &)™ if
|zl = 1 — ¢ and € > 0 is small enough. Thus it follows by Rouché’s theorem
that (4) has exactly m roots z = v,(s,w), r = 1,2, ---, m, in the circle
|2l <1 — eor

2 = efwe(s + p(1 — 2", r=1,2--,m,

has exactly one root z = v,(s, w) in the circle 2] < 1 — e. The explicit form
(5) of v,(s, w) can be obtained by Lagrange’s expansion. (Cf. e.g., E. T. Whit-
taker and G. N. Watson [5] p. 132.) This completes the proof of the lemma.

We note that the roots z = v,(s, w), r = 1,2, - -+, m, of the equation (4)
are regular functions of s and w and by analytical continuation they can be de-
fined also in case ua < m for R(s) = 0 and |w| < 1 without changing (5). We
have always |y.(s, w)] < 1, r = 1,2, --- ,m, if R(s) = 0 and |w| = 1. Note
also that (4) has at most one root (possibly multiple) on the unit circle |z| = 1,
namely z = 1 is a root if we(s) = 1. Furthermore v.(s, w) = 0 if and only if
w = 0. If w % 0 then the roots v,(s, w),r = 1,2, - - , m, are distinct.

We remark further that by forming the Lagrange expansion of [v.(s, w),
r=12 ---,m, we can prove that

7 mi—k

3 ko__ W © —(p+s)z_mi—k .
(6) ;1 [v:(s, w)]* = k& jgzk/mj_—_—(mj — Ic)!fo 12 2" dFi(z),

where F;(z) denotes the jth iterated convolution of F(x) with itself. By using
(6) we can obtain explicit formulas for the probabilities considered in this paper.

Finally, we introduce the following abbreviations: v.(s) = v:(s, 1), g-(w) =
v+(0, w) and w, = v,(0, 1). They are the roots in z in the unit circle of the
equations 2™ = o(s + p(1 — 2)), 2" = we(u(1 — 2)) and 2" = o(u(1l — 2))
respectively.

3. The transient behavior of {£,}. Define a* = max (a, 0). It is easy to see that
(7) Eupr = [ + m — wl",

where {,} is a sequence of identically distributed, mutually independent random
variables with the distribution '

(8) P =4} = [ e""“(Lj?‘!)—de(xx i=01,.--.

Accordingly the sequence of random variables {£,} forms a homogeneous Markov
chain. We say that the system is in state E; at the nth step if £ = k.
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The higher transition probabilities
P = Plta = k|4 = 1)

can be obtained by the following
TaEOREM 1. If |2| £ 1, |w| < 1, and |y| < 1 then we have

(1= —w E 55 sy = T (1240

=1\l — 2g.(w)

(9)
_ y(1 —2)(1 — w) < (y - gr(w))
1 — 2yly™ — we — y)] =1 \1 — 2g,(w)
where g.(w),r = 1,2, --- , m are the m roots in z of the equation
(10) 2" = we(u(l — 2))

in the unit circle |2| < 1.

Instead of proving this theorem we shall prove the more general Theorem 2
from which Theorem 1 can be deduced as a particular case. Theorem 2 deter-
mines the joint distribution of 7, and £, which we need at the investigation of
the stochastic law of the busy period. Theorem 2 can be proved in exactly the
same way as the more special Theorem 1.

The joint distribution of the random variables 7, and &, is determined by the

probabilities
PP (z) = Plra S @, 80 = k| &0 = 1)

and these probabilities can be uniquely determined by the Laplace-Stieltjes
transforms

P (s) = [ ~ 4P ().

These Laplace-Stieltjes transforms are given by

TaEOREM 2. If R(s) = 0, |2| £ 1, |w| < 1, and |y| < 1 then we have
(1=l - w@) 5 5 3 e = ] (Fo o))
(11) =0 k=0 n=0 =1 \1 —Z'Yr(s’w)
_ y(1 — 2)[1 — we(s)] . (y — 7.(s, w))
1 — zy)ly™ — wels + p1 — Y)] =1 \1 — 2v,(s, )/’
where v,(s, w), r = 1,2, --- , m, are the m roots in z of the equation
(12) 2" = we(s + u(l — 2))

in the unit circle |z| < 1.

Proor. If w = 0 then the theorem is obviously true, therefore we suppose
that w # 0. We shall use only the following theorem of the theory of functions
of a complex variable: If f(z) is regular for all finite values of z and

lim .0 [f(2)/12]"]) =
then f(z) is a polynomial of degree < k. If k¥ = 1 then f(z) is constant.
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Let us introduce the generating function
I (s, 2) = 2 76 ()’
j=0

which is convergent if || < 1-and R(s) = 0. We shall show that if |z| = 1 then
m{(s,z),n = 0,1, - -- , satisfies the following recurrence formula
o (s,2) = 2" (’s +p (1 1 )) ™ (s, 2)
(13) ’ ;
+ 5 oo (1- 1),
7=0 2

where for every ¢ and n Y 70 |C{P(s)] < 1.

We have
0™ (s, 2) = Efe™™! | & = 1)
and further
(14) Tasr = Tn + Oa |
and '
(15) boit = [Ea + m — w]*

where {6, , v,} is a sequence of independent vector random variables with dis-
tributions P{6, < z} = F(z) and

Plo, = j|6n = 2} = ¢*[(u)/jl], j=0,1,---.

By (14) and (15) we obtain (13). The first term on the right hand side of (13)
is E{e™ 12+ | £ = 4}. To obtain E{e™+12'"+! | & = 4} we have to omit
from this the terms corresponding to the values &, + m — v, = —1, —2, -+
and take into consideration that £,4; = 0 if and only if & + m — », < 0.
Thus we obtain the second term on the right hand side of (13), where

CiF™ (@) = Pléatm — vn = —j [fo = 4Bl [fatm — v = —j, o= i}
To obtain (13) we also used the relation
E{e™" ™" = o(s + u(1 — (1/2)))

if |2] = 1.
Now let R(s) = 0, 2] = 1, |w| < 1, |y| < 1 and define

A,‘(Z, 8, w) = Z HS'")(S, z)wn
n=0

and

A(Z, s, w, Z/) = Z A,‘(Z, $, w)y .
=0
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Clearly
(16) Az, s, w, y) = 2% ; Eowﬁi‘)(s)y"z"w”

and by definition A (z, s, w, y) is a regular function of z if |¢| < 1, R(s) = 0,
|w| < 1,and |y| < 1.If |¢| = 1 then by (13) we have

£+ 3 D 0P (w1 — (1/2))

n=1 j=0

1 — wemo(s + p(1l — (1/2)))

Az, s, w) =
and hence if |2| = 1

(L—m)™ + g Cys,w,9) (1 — (1/2))
1 — weme(s + p(l — (1/2))) ’

(1&7) A(Z) $, W, ?/) =

where the coefficients
Cj(si w, y) = Z Z:‘)ngl)(s)w"yi) .7 = 0) 1, ]

n=1 i=

satisfy the following condition
j;)lcj(s,w,y)l <|wl/@ = |wD@ = |yD.

Now let us define 4(z, s, w, ¥) also for |z| > 1 by (17) if R(s) = O, lwl < 1,
and |y| < 1. Thus, A(z, s, w, y) has singularities only at z = 1/y and at the
zeros of the denominator of (17) outside the unit circle. These zeros evidently
agree with the reciprocal values of the roots of (4) inside the unit circle. If we
define

(18) B(z, s, w,y) = A(z,s,w,y)(1 — 2y) ﬁ <z - _‘,yr(:’ w))

then B(z, s, w, y) will be a regular function of z in the whole complex plane.
Since obviously

lilnlzl-wo [B(Z, $, w, y)/lzlzl =0
therefore B(z, s, w, y) is a linear function of z, that is,
(19) B(z’ 8, w, Z/) = Bo(s, w, y) + zBl(s, w, y)

Bo(s, w, y) and Bi(s, w, y) can be determined as follows: We have clearly
0 00 1

AL, sw,y) =2 2. [¢§s)]"y‘w" T A=y — we®)]

=0 n=
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and hence by (18)
1 d 1
20 B(1,s,w,y) = —————— — -—_—)
(20) Lo wy) = g —pm (l 76w
Further by (17)
lim,.iy, (1 — 2y)A(z, 8, w,y) = y"/ly" — we(s + (1l — y))]
and hence by (18)

(21) B(}/,s, w, y) = = weG ir w0 = )] ﬁl (1 - 'ﬁ)

Thus (19) is determined by (20) and (21). Finally A (z, s, w, ¥) can be obtained
by (18). So we get (11) which was to be proved. It is to be remarked that in
the above proof we did not exploit the fact that the roots v.(s, w),
r=12 ..., m,are distinct.

REMARK. If we restrict ourselves to the case y = 0 in proving (11) then we
have

limlzl-'w [B(Z, s, w, 0)/|z|] = 07

ie., B(z, s, w, 0) is independent of z and-thus it is determined by (20). In this
case we obtain by (18) that

@) [ - w3 3 Pt = I (1_—19&)

=i \1l — 2v,(s, w)

where y.(s, w),r = 1,2, --- , m are defined in Theorem 2.
To prove Theorem 1 let us note that p{’ = ={7’(0) and thus if s = 0 in
(11) then we get (9). In particular if s = 0 in (22) then we get

— ) Y gk = 1] 1_—M)
(23) (1 —w I«.Z(:) nZ=:0 Pox 2% rI—Il (1 — 2g-(w)
where g,(w),r = 1,2, --- , m are defined in Theorem 1.

4. The limiting distribution of {£,}. Using Theorem 1 we shall prove
TueoREM 3. If pa > m then the limiting probability distribution

IMnaooP{En:k}:Pk; k:O,l,-..’

exists irrespective of the initial distribution. We have

(24) isz"=ImI(1_‘°')

k=0 =i \l - — 2w,

where w, , v = 1,2, -+, m, are the m roots in z of the equation
(25) 2" = o(u(l — 2))
in the unit circle |2| < 1.
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Proor. Since {£,} is an irreducible and aperiodic Markov chain, the limit
lim,., p{’ = P always exists irrespective of 7 and either every P, > 0 and
{Py} is a probability distribution or every P, = 0. Let ¢ = 0. Using (23) by
Abel’s theorem we get

ZPkZ = hm 1 —w) ZZ p(l?)zkwn =ImI<]_ — wr).

k=0 k=0 n=0 r=1 1 — 2wy

If wa > m then {P;} is a proper probability distribution, because |w,| < 1,
r=12,--,m.If uo £ mthen w, = 1 and therefore P, = 0 for every k.
. Another consequence of Theorem 1 is
TaEOREM 4. Denote by f§i” the probability that in the Markov chain {£,} starting
from state Eq the first return occurs ot the nth step. If |w| < 1 then

(26) Zl R e
H1 [t — g:(w)]

where g.(w), r = 1,2, -+, m, are the m roots in z of the equation

(27) 2" = we(s + u(l — 2))

tn the unit circle |z| < 1.
Proor. By the theory of Markov chains it follows that

0

(n) w"
Z f(n) no_ nz—l p
n=1 Z p(") n

n=0
and (26) can be obtained from (23) with z = 0.
5. The determination of F{;’(z). Let
Fi'(@) = Plra S @b = b 601 > 0, oo, 6> 0] o = ),

The Laplace-Stieltjes transform
(n)(s) - f e—sz de;',‘)(x)

is given by
TueoreM 5. If R(s) = 0 and |w| < 1 then we have

- (= wgs’(s)w")(i o)
(28) Z ()" = D 7P (s)w" — A=t "N\
- L+ 3 P (o

where the expressions on the right hand side are defined by (11).
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Proor. By the theorem of total probability we get

n—1

PR = FP@) + 5 [ P — ) ar)
and forming Laplace-Stieltjes transforms we have
7 (s) = B8 (s) + Evr(”_”(S)q’(’)(S)-
Hence
@) 3P = 3 o + (i) s 0.
{)f Ic(2=9)0 in (29) then we get (28) for £ = 0, whence (28) follows for every &
y .

By (28) and (11) we conclude
TueorEM 6. If R(s) = 0 and |w| < 1 then we have

6 EF s =T (i) —

1- z’Yr'(s: w) III [1 — 7:(s, w)]

where v,(s, w), r = 1,2, - -+, m, are defined in Lemma 1.
In particular if z = 0 in (30) then we have

(31) S e (gt =1 — L
= I;I [1 - 'Yr(s: w)]

Remark. If Fyp(z) denotes the probability that the distance between two
consecutive transitions Ey — E,, is < z, then we have

Fu(z) = Z F (),

and if ®yp(s) denotes its Laplace-Stielt]es transform then by (31) we get
—¢(s)
H [1 - 'Yr(s)

r=1

(32) @00(8) =1

where v,(s) = 1,(s,1),7r = 1,2, -, m.

6. The probability law of the busy period. Denote by G.(z) the probability
that a busy period consists in serving n batches and its length is < z. Write

I.(s) = ]: e dG.(z)

if R(s) = 0. We shall prove
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TreoreM 7. If R(s) = 0 and |w| < 1 then we have

~ - o(2)
(33) > Ta(s)w =1 —— pT S
nfl _ M
g(l T 8*r.(s,w))
where v,(s, w), r = 1,2, --+ , m, are the m roots in z of (4) in the unit circle
l2| < 1.

Proor. If w = 0 then (33) is evidently true. Thus we suppose that w # 0.
By the theorem of total probability we can write that

6 = [ 1L =Pl B ay,

and ifn = 2,3, ---, then

_ S AT —- _ —ky (uy)"*”"l
Gu(z) = u;f; FG™ (@ —y)[L — F(y)]e Grm=D%
Hence
_ ® —(u+8)z (Fw)m_l _
Tu(s) = u [ O pEE s [ — Fla)] da
and
T, Zq) —1)( ) —(u+e)n: (W)Hm_l [1 F( )] de
R =k Z e [ gy - Fe
if n = 2,38, - . Forming the generating function of {T'x(s)} we get
© 0 @ k
(30 3 raow = w3 Culaw) [ oo L[ Fo)]
=1 =0 o k!
where Ci(s, w) = 0ifk = 0,1, -+ ,m — 2; Cna(s,w) =1 and

Cryma(s, w) = Zfb"‘)(s)w k=12 ---.
Thus by (30) we have

(85) Z Ci(s, w)d* = = H (——_—;m)

2 r=1

For fixed s and w write

(36) @ =11 (1—_—~"'——)

Pl 27:(s, w)

Then

1
Ck(saw).:z_qn‘flllﬁlgfz) 2y k=0>1"">
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G D)

COND YR NOTE 7§ TE LS [ Pmr PR

We can integrate term by term because the series is uniformly convergent on
the circle || = 1. Now the integral on the right hand side of (37) can be evalu-
ated as —2x7 times the sum of the residues of the integrand at the poles
2= 1/y.(s,w), r=1,2, --- , m, outside the unit circle. The residue at
z = 1/v,(s, w) depends on the value ¢(s + u(l — (1/2))) at z = 1/v.(s, w),
but if z = 1/v.(s, w) then

o(s + u(l — (1/2))) = 1/we™
Accordingly (37) remains unchanged by the substitution
o(s + u(l — (1/2))) = 1/we™.

and by (34) we get

Hence

< " _ - (/M)
(38) nz=:l Ta(s)w 2m %m 1 O (P F— (u + 8z — yl de.

On the other hand this integral can be evaluated as 2x% times the sum of the
residues of the integrand at the poles z = 0 and z = p/(p + s) inside the unit
circle. Proceeding in this way, we get

Zrow == [(57) -+ Js(55)

where f(z) is defined by (36). This completes the proof of the theorem.

We remark that the above proof would be also valid in the case of multiple
roots v.(s,w), r = 1,2, --- , m. For, if z = v,(s, w) is a root of order » then
the residue of the integrand in (37) at 2 = 1/v.,(s, w) depends on the values

d'o(s + u(l — (1/2))) _ d'[1/w"] =01, -
dz dt a

')V_]-’

at z = 1/v.(s, w).

ReMArK. Denote by G(z) the distribution function of the length of the busy
period and let T'(s) be its Laplace-Stieltjes transform. Evidently I‘(s)
>°_, T(s) and therefore if w — 1 in (33) we get

— “ "
! (#+8)

(39) () =1— 4 (1 B is%(s)>,

II

r=1

where v,(s) = v,(s,1),r = 1,2, --- , m.
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The probability that a busy period consists in serving n batchesis £’ = T.,.(0)
and therefore by (33)

S R )

2 fiwt =1
40 n=1 i
o 10— gw)

in agreement with (26).
TuEOREM 8. Denote by Pow(t) the probability that the server is idle at the instant
t given that he was idle at t = 0. If R(s) > 0 then

(41) fo " M Pult) dt = : -~ [1 _ (n T s)m] 0l —Lt==

S[]. - qa(s)] r=1 " ’
1=
P Fs ¥-(s)
where v,(s), r = 1,2, --- , m, are the m roots in z of the equation (4) in the unit

circle.

Proor. Clearly Py(t) = P{£(¢) = 0| £(0) = 0}. Denote by Mw(t) the ex-
pectation of the number of transitions Ey — E,, occurring in the time interval
[0, £], given that £(0) = 0. Then we can write that

(42) Pu(t) =1 — fot [1 — G(t — z)] dMw(x),

where
My(t) = I(t) + Fo(t) + Foo(t) * Foo(t) + - -+
and I(t) = 1if ¢t = 0, I(t) = 0if ¢ < 0. Since

o —st _ 1
[t ameto = =g

we get by (42) that

[ erioa[1-1220)]

where ®g(s) is defined by (32) and T'(s) by (39).
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