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1. Summary. In this paper, Markov Renewal processes having a finite number
of states are studied. Explicit expressions are derived for the distribution func-
tions of first passage times, as well as for the marginal distribution function of
the corresponding Semi-Markov process. Double generating functions are ob-
tained for the distribution functions of the Nj-processes. The limiting behavior
of a Markov Renewal process is discussed, the stationary probabilities being
derived completely. General Markov Renewal processes are introduced, and
a related stationary process is determined. Several examples are given.

2. Introduction. In [1], a class of stochastic processes, called Markov Re-
newal processes (M.R.P.), are defined and a preliminary investigation is made
of their structure, and of the related Semi-Markov processes (S.-M.P.) intro-
duced by Lévy [2], Smith [3] and Takécs [4] independently in 1954. The reader
is referred to [1] for the necessary definitions and notation. Roughly speaking,
M.R.P.’s are generalizations both of continuous and discrete parameter Markov
Chains which permit arbitrary distribution functions (d.f.), possibly depending
both on the last state entered and on the next state to be entered, for the times
between successive transitions.

In the present paper we restrict our attention to those M.R.P.’s determined by
(m, A, @) with m < . Recall, that because of Lemma 1.4.1,3 all such M.R.P.’s
are regular, i.e., almost all sample functions are finite-valued step functions over
(— ,»). In Section 3, systems of integral equations are given for the functions
P;;(¢) and Gy;(t), respectively, the d.f. of Z, and the d.f. of the time until the
first transition into state 7, both given Z, = ¢. Equations relating these two
functions are also given. Lemma 3.2 is due to Takécs (equations (10) and (11)
of [4]),* while (3.2), summed over 7 with respect to the initial probabilities, is
essentially equation (8) in a paper by Weiss [5], who derived this and other
integral relationships for the purpose of studying the asymptotic behavior of
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1 This research was supported by the Office of Naval Research under Contract Number
Nonr-266(59), Project Number 042-205. Reproduction in whole or in part is permitted for
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2 This work was completed while the author was at Columbia University. The contents
of the first 6 sections comprised an Invited paper given at the Annual meeting of the I.M.S.,
Sept. 1958, Cambridge, Massachusetts.

# All numbers which are prefixed by I, refer to the correspondingly numbered part of [1].

¢ In assumption 4 of {4], which postulates that the X-process is a sequence of independent
random variables, the word independent should be interpreted as conditional independence
given the successive states of the system.
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1244 RONALD PYKE

the “Renewal functions” M ;;(t), defined in (5.10). The relationships of Section
3 are solved in Section 4, with explicit expressions being given, respectively, in
Theorems 4.1 and 4.2 for the matrix-valued functions @ and G defined therein.
In Section 5, the marginal d.f.’s for the N;-processes are studied, explicit ex-
pressions being given for their double generating functions. As a consequence,
the matrix-valued Renewal function 9 is derived. The three most common
subclasses of M.R.P.’s are briefly discussed in the following section; they are
Markov Chains, continuous parameter Markov processes, and Renewal processes.

In Section 7, the problem of characterizing the limiting behavior of an
M.R.P. is solved. The stationary distribution of the process is derived, thus
extending a result of Smith [3]. The concept of a general Markov Renewal
process (G.M.R.P.) is introduced, in which a different matrix of transition
distributions may be used to determine the initial transition of the process then
is used for all remaining transitions. By using the stationary probabilities ob-
tained for a given M.R.P. it is possible to construct a related G.M.R.P. which is
“stationary’’ in a sense made explicit in Theorem 7.2. Following this, some addi-
tional examples are briefly stated in the final section.

3. The probabilities P;; and @;; and related quantities. Of considerable im-
portance in studying the behavior of M.R,P.’s are the times between successive
occurrences of a given state. It is the purpose of this section to study the d.f.’s
of these times as well as the marginal d.f.’s of the corresponding S.-M.P., the
Z-process, which is to say, the probability of the process being in a given state
at any instant of time. Several identities and relationships between these quan-
tities will be given for them in terms of the basic Q-matrix.

Let us assume that A > 0 coordinate-wise for every M.R.P. under considera-
tion, in order that all conditional probabilities will be well defined. The quantities
in question are then defined for all ¢, j (cf., Section 1.5) by

(8.1) @Gi(t) = PIN;(t) > 0| Zy = 1], Pi(t) = PlZ, = j| Zo = 1

for t = 0, and denote their respective L.-S. transforms (when they exist) by
g:; and ;. Let by, us; and 7; be the first moments (possibly infinite) of the
mass.functions F;; , G+; and H, respectively. Notice that for ¢ = j, G'; becomes
the mass function (possibly of total variation less than one) representing the
probabilistic behavior of the first passage time of the process from state ¢ into
state ¢, but that the process need not have left state ¢ during this recurrence
time.

The two quantities defined by (3.1) are closely related both to each other
and to the elements of the basic @-matrix of the M.R.P. being studied. In the
next three lemmas these relationships are explicitly stated. First of all, the
relationship between the P;;’s and the @;;’s is given in

Lemma 3.1. Forallt = 0,s > 0

(3.2) Pi;(t) = 65 — g; [6:; — Pri(t)]*Qu(2),
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(3.3) mii(8) = 8ij — k;ml [6:5 — mi(8)]qa(s).

[Throughout this paper, §;; is used to indicate both the Kronecker delta and the
function 8;;U,(-), where U, is the d.f. with unit jump at ¢, whose domain (pos-
sibly restricted, as it is in (3.3)) is determined by the context. A similar remark
applies to any real constant.]

Proor. Define forallt = 0,n = 0,

(3.4) Pi(t;n) = PlZc = §,N(t) = n| Zo = 4.

By Lemma I.4.1., N(t) <  a.s.since m < oo, and so P;;j(¢) = D 2o Ps;(t;n).
The quantities P;;(¢; n) are straightforwardly shown to satisfy P;;(¢; 0)
= 6”[1 — H,(t)] and, forn > 0, :

(3.5) Piltin) = 3 Pus(ts n — 1) * Qo).

Upon summing over n in these last two equations, (3.2) is obtained immediately.
(3.3) then follows upon taking L.-S. transforms of the former.

The analogous relationship between the G.;’s and the Q.;’s is given without
proof in

LemmA 3.2. Fort = 0,s > 0,

(3.6) Gi(t) = 3 Gus(t) » Qul®) + 11 = Gy (1)) » Qs(0)
BD gl = 2 ou(s)an(s) + 1 = g5s(5)lau(s).

Between the G;;’s and the P;;’s, there is a particularly tractable relationship,
as given in

Tareorem 3.1. Fort = 0,s > 0,
(3.8) Pii(t) = P;j(t) » Gi(t) + d(1 — H(1)],

1 — hy(s)

(3.9) mii(8) = mii(8)gi(s),  (E5£7);  my(s) = Ok

Proor. It suffices to remark roughly that for ¢ = j, P,;(¢) is the probability
of reaching state 7 for the first time before ¢ (according to G;;) and then, in the
remaining time, ending up in state j (according to P;;). In case ¢ = 7, one must
add to the above the probability that no transition occurs in (0, £], namely,
1 — H;(¢). (3.9) is 'an immediate consequence of (3.8).

Define

(3.10) Di(t) =1—PlZ, =10 =u<t|Z =1

Then D; is a mass function representing the duration of time that the Z-process
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remains in state ¢. It is clear that D; = H;in case p;; = 0. In particular, D; = H;
for an S.-M.P. One may easily prove
Lemma 3.3. Fort = 0,8 > 0,

Di(8) = [Ht) — Qu(t)#1 — Qu()1™®
di(s) = [hi(s) — Qii(s)][l - q“(s)]—l-

Notice that D; must have total variation equal to either zero or one, and that
it equals zero if and only if p;; = 1. In this case one would say that state ¢ is
an absorbing state.

The explicit evaluation of P;; in terms of H; and G;; determined by (3.9)
may be used to characterize a recurrent state in terms of the integrability of
P;; . The reader is referred to Section 1.5 for the definition of a recurrent state
in an M.R.P.

TaeoreM 3.2. If n; < o, then state j ts recurrent if and only if

(3.11)

(312) f Py(t) dt = oo.
0
Proor. By its definition in (3.1) one has
(3.13) lim s (s) = lim [ &*P;(2) di = f P;i(2) dt
8->0 80 Jo 0

as a consequence of the Lebesgue Monotone Convergence Theorem, whether
or not the limit is finite. From Theorem 3.1, one obtains, when 5; < «,

o . 1 —h; — —
(314) tim 57my(o) = lim LB [y g (o1 = g1 — @)1
Therefore (3.13) and (3.14) together imply that state j is recurrent (i.e., Gj;( )
= 1) if and only if (3.12) halds, as required.

Note that because of Theorem I1.5.1(a), it follows from the above theorem,
that if 9; < «, then

f P;jj(t) dt < o ifandonlyif D piP < «
o nm=0

where P* = (p{?). It should also be emphasized that in the proof of Theorem
3.2, the following stronger result is obtained, namely, that if 9; <

Gii(w) =1 — m{_[ Pii(t) dt}— .

4. The matrices ® and G. In this section, the relationships given in Lemmas
3.1 and 3.2 will be solved, with explicit expressions for the P;; and the G;; in
terms of the Q;; being given in matrix notation. Theoretically, therefore, for
any M.R.P., the G;; and the P;; may be uniquely determined from the Q;;.
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Consider the matrix-valued functions defined by

@ = (Pij), = = (mi)

g = (G:y), g = (gi;)

3 = (6:;;H:), &= (ihij).
Define a convolution operation on matrix-valued functions (whenever the defini-
tion is valid) by % * £ = (D1 Ku * Ly;) which is formally the same as
regular matrix multiplication except that the usual numerical product is re-
placed with convolution. Let I denote either the identity matrix- (§;;) or the
unit-step matrix-valued function (8;;Uo(:)). The domains of the various func-
tions will be clear from their contexts. For an arbitrary matrix-valued function &,
set ¥ = I and define ®™ = %" P s« % forn >0and I — x)V = D 2, %™
whenever the series converges. An explicit expression for ®(=) in terms of @ and
3¢(4 and £) is given in

THEOREM 4.1.

(4.1) P=I—- *xT—-15), ==T—9)7T=14),

the latter equation being defined over (0, ), while =(0) = 0.

Proor. It suffices to show that (Pi;(+;n) = @™ * (I — 5¢) where Py;(-; n)
is as defined by (3.4), since then in view of the fact that N(t) < « a.s., (4.1)
follows immediately upon summation over n. It is easily checked recursively
that Pi;(-3n) * Qu = Qu * Pyj(-; n). It therefore follows that (P;;(+;0)) =
I — 3¢and (Pij(-;n) = Q% (Pi(-;n — 1)), (n > 0). Consequently, one
obtains

(4.2) ® = i)Q(”) * (I — 30),
which immediately yields
(43) =(s) = 2 1)L - &)

for s > 0. To verify (4.1), let s be a fixed positive number and define ¢, =
max;,; q:;(s). Since by (i) of Definition I.3.1. each mass function Q;; satisfies
Q:;(0) = 0, and since m < «, one has ¢, < 1. Therefore 0 < 4"(s) = c¢;1 where
the inequality is termwise and where 1 denotes the m X m matrix in which
each term equals 1. Consequently the series in (4.3) converges. Moreover
I — %(s)] 22 4"(s) = I, and hence the inverse (I — 4)™" = > 4" is well
defined for all s > 0. That =(0) = I follows directly from the definition, (3.1).

It should be remarked here that equation (3.3) of Lemma 3.1 may be re-
written in matrix notation as = = I — £ + 9=x. Equation (4.1) of the above
theorem may then be considered as an immediate consequence of Lemma 3.1,
once the non-singularity of I — ¢ is demonstrated.

For any m X m matrix (or matrix-valued function) A = (a;;), define the
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diagonal and off-diagonal parts of A by
A = (8:;0i;), A=A — A

With this notation one may rewrite (3.7) of Lemma 3.2 and (3.9) of Theorem
3.1, respectively, as

(44) 3 =11+ o3)
and
(4.5) m= (14 )T —a3)7(I—4).

Equivalently, because of (3.9), (4.5) may be rewritten as =(sz) ™" = I + ¢¢ since
for s > 0, m;;(s) > 0 for all . Consequently, substitution of this in (4.4) leads,
as a result of Theorem 4.1, to the proof of

TuroreEM 4.2. As defined on (0, «©)

(4.6) g =dm(am)” = W(I— NI - N7

An immediate consequence of Theorem 4.2 is that a formula can be given for
the mean recurrence times u;; as defined after (3.1). Set w = (uq;). Clearly
w = lim,os'(1 — ), and so from (4.6) it can be shown that

(4.7) aw = lim,o {afs(I — ‘*)_1]}_1
where one must interpret 1/0 = .

6. The probability distribution of N,(f). It is possible to obtain a system
of integral equations for the probability distributions of the r.v.’s N;(¢)(1 £ j
=< m). Explicit solutions of these equations are derived in terms of double gen-
erating functions of these probabilities. Theoretically, therefore, the probabilities
are determined and, in particular, the moments of N;(¢) may then be obtained
in the usual way.

Define foralll < 4,7 <m, k=2 0,s,t = 0,and |2]| = 1,

vij(k; ) = PIN;(t) = k|Zo=1), ¢i(z0) = ,;;z"v,-j(k; t),
(5.1) . B
¥ii(2; s) =f e dy ¢ii(25 1),
0—

and Vi = (vi;(k; -)), W = (ii(2; +)).

It is immediately seen that the v;; can be expressed either in terms of the @;;’s
or in terms of the G;; by means of the following integro-difference equations.
These expressions are self explanatory and require no proofs. For ¢ = 0

vii(k; t) = ;vn‘(k; t) * Qur(t) + vji(k — 1;¢) »Qui(t), (k> 0),

5.2
( ) l)ij(O; t) = ;U”’(O; t) *Qir(t) + 1 — H,(t)
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and

(5.3) vii(k; t) = vii(k — 1, 8) % Gi;(8), vi;(0;¢) = 1 — Gi(t), (k> 0).
The solutions to (5.3) are easily seen to be

vi(k; ) = Gus(t) * G550(8) * [1 — Gy5(1)], (k> 0),
vi;(0; 1) = 1 — Gis(2).

Actually (5.4) may be viewed as a known result in Renewal Theory. By (5.4),
the v;; are explicitly expressed in terms of the G,; , which in turn have been ex-
pressed in Theorem 4.2 in terms of the basic @;;’s. This relationship may be

more simply expressed by means of generating functions. Thus from (5.4), one
obtains for | z| = 1,

$ii(z; 1) = 1 — Gi(t) + 2G4(t) * [1 — 2G;(1)] 7" * [1 — G(1)],
and so fors = 0
Yis(z; 8) = 1 — gii(s) + 2gi5(s)[1 — g;i()I[1 — 2g55(s)] ™.
From the last expression, one obtains )
TuEOREM 5.1. As defined over (0, ) for |z | £ 1, one has
(5.5) w,=1—(1—2)3I—z4)""

Substitution for ¢ in terms of ¢ may be made in (5.5) by Theorem 4.2, thus
giving an explicit expression for W in terms of ¢ (cf., Corollary 5.1 below).
Notice that Wy = 1 — ¢ and W; = 1, as required.

An alternative derivation of (5.5) is to bypass the explicit expression (5.4)
and to derive the analogus equations to (5.3) for the generating functions. By
so doing, one would obtain directly the matrix equation

(5.6) W, — 23, =1—9.

Now for any square matrices B, C, D for which ¢;; # 1 for every ¢, the solution
for B in the equation B — C 4B = D is easily checked to be

(5.7) B=D+ CI — )",

since the given equation implies that (I — 4C) ;B = 4D, and the assumption
permits the taking of the inverse of I — 4C. Theorem 5.1 may then be obtained
by applying (5.7) to (5.6).

In terms of generating functions the equation (5.2) becomes

(5.4)

Ve ) = 3 anlses(as 8) — (1= D)o)Wz 9) + 1 = (o),

or in matrix notation

(5.8) I—-—Nw, + (1 —2)9.%, = (I — 9L
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As in the proof of Theorem 4.1, (I — ¢) is non-singular. Therefore, (5.8) may
be rewritten as

v, 4+ (1 —2)I— 9 "9.¥, =1,

whose solution, following (5.7), is given in
CoROLLARY 5.1. As defined over (0, ) for |z| < 1, one has

(59) W, =1—(1—-2)T—N I+ 1 —2)J— 9™

This is indeed a corollary of Theorem 5.1, since, as mentioned earlier, it can be
obtained from (5.5) by a substitution of (4.6). However, the above more direct
approach is of interest in its own right.

Although the explicit result given in (5.9) is somewhat complex in appearance,
it should be observed that it implies that when computing ¥, from g, only one
major computation must be made, namely the inversion of (I — 4). This remark
applies also to the results of the preceding section. The reader should also note
that Theorem 4.2 may be viewed as a corollary to (5.9), since by definition
1—v, =4

Clearly the moments of N;(t), or more precisely, the L.-S. transforms of
these moments, may be obtained by successive differentiations of ¥, . In particu-
lar, the L.-S. transform of the expectation of N;(¢) is readily obtained from
(5.9) because of the special form of W, . Define for¢ = 0, s > 0

(510)  My() = BV, | Zo= i, malo) = [ ¢ a0,
and set M = (My;(-)), ™ = (mi(+)). We shall call 9 the Renewal function
of the process. Clearly
m= (2= 1)7(W: = D)o
From (5.5) and (5.9), one then obtains, respectively,
= 31— ) = 8 — )7,

thus proving
TueoreM 5.2. For a M.R.P. with m < o, the (conditional) expectations of

N(¢) satisfy

(5.11) M=Q*x(I-Q " =1-9 -1 on [0, «)
and
(5.12) m=q(I—N"=I—9" -1 on (0, »).

This s, in several respects, a very important result, if not at first sight amazing.
First of all, it implies that a knowledge of 9N is equivalent to a knowledge of @.
That is, an M.R.P. is equally as well determined by (m, A, 9) as by (m, A, Q).
Because of known results in Renewal theory, the moments of the G;; may be
determined by a knowledge of the asymptotic behavior of the M ;; . In the next
section we shall briefly consider some special cases of M.R.P.’s, one of which is
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the case of a Renewal process (the case of m = 1). The striking similarity be-
tween (5.11) and (5.12) and the corresponding known results for Renewal
processes will then become apparent. It seems to this author that the suitability
of the name Markov Renewal processes for the stochastic processes being studied
in these papers, is best supported by this similarity, together with the ease with
which Renewal theory yields limiting results for these processes, as is demon-
strated in Section 7.
Theorem 3.2 together with (5.12) shows that one may write

(5.13) M=gE@M+I), ¢=om@m+I
which implies M,',' = G,-,- * ij + Gij .

Because of the basic nature of Theorem 5.2, it is desirable to consider the fol-
lowing more direct proof which affords a much clearer insight into this relation-

ship between 91 and @, making it intuitive and natural, rather than “amazing”.
From the definition of an M.R.P. (in particular, I1.(3.6)) it follows that

n—1
(5.14) Pln=j, 8 St|Zo=1]= 2 *Querna(t):
IXIY]
Hence, either by induction or by recalling the interpretation of elements of
P" in Markov Chain theory, one obtains

(5.15) (PlJn = j, Sa S t| Zo = 1]) = @™ = (Q).
1} by U,,; = 1if J, = jand

%1 Un,;j. Therefore, since

Furthermore, define for each j, r.v.’s {U,,; ; n
S, < t, and = 0 otherwise. Clearly N;(¢)
(B[U..; | Zo = i]) = @™, one obtains

v

(516) W= (EN,O|Z= i) = 2 = - — 1

as desired.

6. Special cases of Markov Renewal processes.
(a) Markov Chains. As has been mentioned earlier, an M.R.P. becomes a
Markov Chain whenever F;; = U,(-) for all ¢, j. Hence for a Markov Chain,

fii(8) = €7, qii(8) = pije",  hi(s) =€,
f=¢"1, ¢ =¢"P, f=¢"'L
Consider first of all the relationship (3.12) which becomes
1 - hj(S) _ 1—¢"
I =g 1—gu(s)°
Set z = ¢~°. For purposes of this paragraph alone, introduce the notation

00

Fj(z) = gji(—logz) = lenfj(n)

(6.1) mi(s) =

ne=

Ui2) = (1= 2w —log2) = 3 2"Pys(n)
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where f;(n) = G;j(n) — G;;(n — 1) is the probability that state j is reentered
for the first time at time n. Upon rewriting (6.1) with this notation, one obtains
Uj(2) = [1 — F;(2)]”, which is a very well known relationship for Markov
Chains (for example, see Feller [6] pp. 285, 352).

Consider now equation (4.1). For a Markov Chain it becomes

® = SUIP I = ()l =) = (T— B (L — o).
=0
In particular, one obtains the known result that
®(n) = kz_o[Uk(n) — Upp(n)|P* = P,

Moreover, equation (4.6) of Theorem 4.2 becomes

3(s) = ¢P(L — ¢P) al(I — ¢P) )
while (4.7) becomes
(6.2) aw = lime o {afs(I — ¢'P) 7]}

By a straightforward generalization of well known Abelian and Tauberian
theorems for series, one obtains for matriees that

k=0

Jim (1 — 2)(I — 2P)™" = lim -

z->1 z->1 Z 2

k=0

=L

ﬁ 2P

if and only if

(6.3) limpon ‘(I + P+ --- 4+ P") = L.

Since 4u obviously exists (possibly with some infinite entries) one deduces from
(6.2) -the well known ergodic result that su = (JL)™

From Theorem 5.2 one obtains for a Markov Chain, that for n > 0, 9(n) =
> &y P* while, quite obviously, 9 is constant over every interval of the form
n,n 4+ 1).

(b) Continuous parameter Markov processes with finitely many states. Such a
process is a special case of an M.R.P. for which p;; = 0 and F,;(t) = 1 — ¢
for appropriate finite \; > 0. Clearly F; = H, . Setting 5 = (6:;7:) = (8:;077),
one may write

4 = (I 4+ sp)'P,
and hence from (4.1) and (5.12) one obtains
m(s) = [I — (I+ s9) Pl — (I + sp)7]
aM(s) +I=[I— (I+ sp)P]™".

The corresponding expression for ® may also be written down, and from it,
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one would expect to be able to derive the semigroup property of @. This does
not seem to be, however, a very simple deduction.
(¢) Renewal processes. A Renewal process (R.P.) is defined as a sequence of
“independent and identically distributed r.v.’s, say {X.:n = 1}. [The reader is
referred to the survey paper by Smith [7] for details of Renewal theory, as well
as for complete references to the proofs of the theorem stated below.] Equiva-
lently, either the sequence of partial sums {S.:n = 1}, or the process { N (¢) :t = 0}
defined as before by N(¢) = sup {k:S: =< #}, can be termed a Renewal process.
With emphasis upon the latter description, it is easily seen that the family of all
R.P.’s and the family of all M.R.P.’s having m = 1 are identical. Most of the
above results become either vacuously true (e.g., the results of Sections 3 and
4), or obvious (e.g., the results of Section 5) for R.P.’s. Note that for a R.P.,
Qu = Fyu . The analogues of Theorems 5.1, 5.2, for example, become, dropping
all redundant subscripts,

o(k; ) =F® — F* () =1 —NH1 - 2)7,
M=0-FPN""—=1 and m=f51-/7,

all of which can be derived directly with very little effort. It is the similarity
between (5.12) and (6.4) that is referred to at the end of Section 5.

As may be seen in [7], Renewal theory goes very much deeper than these
finite results, the basic emphasis being on the study of the limiting behavior
of M(t). In the following section, the limiting stationarity of an M.R.P. will be
discussed as an application of the main limit theorem of Renewal theory, due to
Blackwell and Smith, which states that if £ is any non-negative, non-increasing,
Lebesgue-integrable function defined on [0, «), then

(6.4)

[;fl k(z) dz  if F is non-lattice
(6.5) k(8)=M (¢) —>l

0

hut Y k(nh) if F is lattice with span ,
n=0

where for the lattice case, t — » over multiples of h.

7. Stationary probabilities. In this section we derive the limiting form of a
certain d.f. pertaining to an M.R.P., and use this to select the appropriate initial
distribution for making the corresponding S.-M.P. stationary. The method of
derivation is to compute the pertinent d.f., a useful formula in itself, and to apply
the Blackwell-Smith theorem (6.5) to it to obtain its limiting form.® In [3],
Smith derived the asymptotic form of the probabilities P;;(t) of an M.R.P.
For discrete or continuous parameter Markov processes it is known that such
is sufficient for ascertaining the initial distribution which makes the process

5 As was pointed out by the referee, it is also possible to apply the more general Renewal
theorem of Smith (Corollary 2.1 of [3]) upon making a suitable redefinition of the state
space.
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stationary. However, the problem of obtaining the stationary probabilities of
an M.R.P. is not solved by deriving the limits of the P;;(¢). One must instead
consider the problem of finding the limit, as { — o, of the probability of being
in state j at time ¢, of making the next transition sometime before ¢ + = and
of this next transition being into state k.

First of all, define formally the probability just referred to, as

R¥ (z;t) = PlZ: = j, Inwyr = K, Sviyr S t + 2| Zo = ).
Now by (5.14) and (5.15) one may straightforwardly show that

R (z;t) = X;P[J,L =G =k 8 2t < Sun S t+ x| Zo = 1)

0

nzgo[ij(t + @) — Qa(t)] * Q7 (1)~

Hence by Theorem 5.2 and (5.13) one may write
R (x5 t) = [Qa(t + ) — Qa(t)] * [Mi;(t) + 8:Uo(t)]
(7.1) = [Qu(t + =) — Qu(8)] % G:;(2) » [M;5(t) + Uo(¢)]
+ 8:Qa(t + x) — Qa(?)]-

Upon applying the Renewal theorem, (6.5), to (7.1) with M;; = M and k(¢)
equal first to pjx — Qjx(¢) and then to pj — Qu(t + x),* one obtains that if
G;; is a non-lattice d.f. (which may be seen to be equivalent to assuming that
j is recurrent and that not every non-zero Q.. for ¢, r ¢ C; is a lattice mass func-
tion) and if bjk < ®

lim R (25 0) = Gyl [ 1Qnt + 2) = Qu(o)] dt

(72) .
= G )P 52 [o [1 — Fa(y)) dy

If G;; is a lattice d.f. of span h, (that is, j is recurrent and all non-zero ;. for
1, r ¢ C; are lattice mass functions) and if b;; < o, then

[z/h]+1
(7.3) lim RS (x; k) = Gij( 0 )hus; Zo [l — Fj(nh)]
where [y] is the largest integer less than y.

Suppose G;; has variation less than one, and so is not a d.f. Then, as seen,
for example, from (5.13), lim; M,;(t) = [1 — Gj;(»©)]™ < « and hence it
follows directly from (7.1) that lim, .., R$Y (z; ¢) = 0 for all 4, k and all z = 0.
The above results are summarized in

TuEOREM 7.1.

(1) If state j is recurrent and by, < o, then

6 It may easily be demonstrated that the function G;; causes no difficulty in applying

(6.5), for which the family of k£ functions has been unnecessarily restricted.
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(7.4) lim RS (23 0) = G )pywis] f (1 — Fu(y)] dy,

where it s understood that if G;; is a lattice d.f. then both t and x may take on as
values only multiples of its span.

(ii) If state j s transient, then lim,_., R%Y (z;t) = 0 for all ¢, k and all z = 0.

Since Pi;(t) = Y ma RS (w;¢) and m < «, one obtains as a consequence
of this theorem, the following result of Smith ([3], Theorem 5).

CoroLLARY 7.1. For an M.R.P. for which 9; < «,

(7.5) lim . Pij(t) = Gii( ©)ni/uii,

with the understanding that t takes on only multiples of the span if Gi; is a lattice
d.f.
Actually, in [3] the right hand side of (7.5) is given as

Gu(=) [ wiDi(z) / [ @K@

where D; is as defined in (3.10) and where
Kij(t) = P[Z, # i,Z, =j forsome u <wv =t|Z = 1.

That is, K;; is the first passage time d.f. of state ¢ in the corresponding S.M.P.
determined by (m, A, @*), (cf., Section 3 of [1]), in which a transition into state
% from itself is not observed. The equivalence of the two limits follows from (3.11)
and the relationships for ¢ = j;

(76) Pij=Kiyx(1—K;) P x (1 —Dy), miy=ki(1—d;)(1— ki)™,
(77) Pjj= (1 —K;)™x(1 —Dy), my=(1—d)(1—Fk)7,
(78) Kjij= (1 — Qi) x(Gs; — Qi),  ksi = (g5 — i) (1 — @in) ™,
which are obtained using the methods and results of Section 3.

For a Renewal process (m = 1). Theorem 7.1. reduces to a result due es-
sentially to Doob [8] (cf., also Smith [9]). Actually if there were to exist only

one recurrent state (and hence one for which p;; = 1) then Theorem 7.1 is
essentially this result.

Assume throughout the remainder of this section that the M.R.P. under
consideration has only one recurrent class, C say, and that it is a positive class.
By Theorem I.5.1.(¢) this means that n; < <« for all j & C. Assume also, for
simplicity of notation, that each (;; is non-lattice for every recurrent state j.
Under these assumptions it follows that for every state ¢, Gi;() = 1 and
r;; < « whenever j ¢ C. Consequently,

D 7 f [1 — Fu(y)] dy it jeC
0 if jeC

(7.9) lim R (z; t) =

>0

which limits are independent of 2.
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Define now a slightly more general process than an M.R.P., namely one in
which the first transition time and state, (X;, J1), has a d.f. determined by an
auxillary matrix § of transition distributions. That is, it may be considered as
an M.R.P. with a random origin determined by &. In keeping with exist-
ing terminology in Renewal theory, define a general Markov Renewal proc-
ess (G.M. RP) determined by (m, A, §, Q) as a functional of the process
{(J., X.):n = 0} in exactly the same way as is an M.R.P. (cf., Section 1.3.),
with the followmg different probabilistic structure on the (J, X)-process. Let

Xo=0as., PlJo=k] = a
(7.10) P[J: =k, X1 < x| Jo*® Qsyi(z)
P[Jn = k, Xn =S I jo y ..71 5 X1 y Tty Jn-—l y Xn_l]g. QJ,,_l,k(x)

for n > 1. Compare this description particularly with that of Definition 1.3.3.
A similar :ieﬁnition may be made for a G.S.-M.P.
Define A = (dl y Ty dm) with a; = 11,'[.&;]'1 N and Q = (Qij) with

(7.11) Gult) = pni® [ 11 = Pyl do

We wish to show that the G.S.-M.P. determined by (m, &, 8, @), which shall
be denoted as the Z-process, is a stationary process.

From the definition of the functions RS} (x; ¢) it may easily be seen that they
satisfy the following recursion relationship for all ¢, s = 0.

RS (z;t+s) = f R (z;8 —y) d, RS (yst)

(7.12)

+ R (s+ ;1) — RY (s5¢).
Upon defining
(7.13) Ri(z) = limeo R (23 t) = 8;Qu(z)

by (7.9) and (7.11), and letting ¢ — « in (7.12) one obtains

(714)  Ra(@) = 3 [ R (@55 = ) dRaly) + Rals + 2) = Ras)

1‘1‘—

forallz,s 2 0and 1 < j,k < m. Forallz,t = 0,1 = 4, j, k £ m, define
R (z5t) = PZ: = j, T = b, Sz S t + 2| 2o = 4],

which is to say that RS (z; t) is the counterpart of RS (x; t) as defined for a

G.S.-M.P. For a G.S.-M.P. it may be seen that

(7.15) (1)(x t) = Z/ R(u)(x; t —y) dQu(y) + 65 [Qu(t + ) — Qu(2)].

In words this equation states that in order to be in state j at time ¢ and make the
next transition into state k& before time ¢ + x, when the process starts in state
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%, one must either make a first transition at some time y < ¢ into some arbitrary
state w in accordance with §;, and then in the remaining time ¢ — y end up in
state 7 and make the next transition into state k before time ¢ + «, or, in case
i = j, make the first transition during the time interval (¢, ¢ 4+ z], and make
it into state k. The integrands in (7.15) are without ~’s because after the initial
transition has occurred the process behaves like an ordinary S.-M.P. From
(7.15) it follows that

m m t '
S aRP (@) = O /0 R$ (25t — v) daiu(y)

(7.16) i=1 2,u=1
+ a; @i(t + 2) — a; Q).

For the particular G.S.-M.P. determined by (m, &, &, Q) with X, & as de-
fined in the paragraph containing (7.11), (7.16) ‘states, in view of (7.13),
that

m m t
Z; @ R (z;1) = .EIfO R (x5t — y) dRu(y) + Ru(t + z) — Ran(2).
As a consequence of (7.14‘)‘, as well as of the definition of RS (z; t), it therefore

follows that
PlZ, = j, Isw+1 = k, By S t + 2] = Ru(x)

= pix 7} f [1 — Fiu(y)] dy

which is independent of ¢ In particular P[Z, = j] = nuj; = @; .

For each ¢, define the three-dimensional r.v. W, = (J5¢) , J#@+1 , Svwr — £)
whose coordinates respectively record for a G.S.-M.P. the state it is in at time
t, the state into which the next transition will be made, and the remaining time
until the next transition will occur. It should be clear that the W-process is
essentially equivalent to the Z-process in that almost all sample functions of
the one can be determined from the other and vice versa. We now summarize
the results of the preceding paragraphs in

TuEoREM 7.2. Consider a given S.-M.P. determined by (m, A, Q) for which there
is only one positive class. Define K = (dy, -+, Gm) with @ = niis and Q =
(Qij) with

Qis(t) = pijmi® f [1 — Fiy(y)] dy,

the limiting transition distribution given in Theorem 7.1. Then the W-process which
corresponds to the G.S.-M.P. determined by (m, K, 8, Q) is a stationary process
whose marginal d.f. 7s given by

PV, S Gl o)) = 5 psi! [ "I = Fa(y)] dy.

k<r
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It should be clear that a result corresponding to that given in Theorem 7.2
is possible for a G.M.R.P. Indeed, if one represents the M.R.P. by the associa-
ted S.-M.P. as defined in Section 1.3, then the result for the G.M.R.P. could be
viewed as a special case of Theorem 7.2, generalized to cover the case of infinite
m. Since this paper has dealt only with the case of m < «, we shall leave the
analogue of Theorem 7.2 for M.R.P.’s until later.

8. Examples. In conclusion, we list briefly some specific examples of M.R.P.’s
to indicate the broad scope of applications for this family of stochastic processes.
First of all, the special case in which Q;; = p.F; for each 7 and 7, the p’s being
real numbers and the F;’s being d.f.’s, arises in electronic counter theory and is
studied in detail in [10]. This special case, by a slight reinterpretation of the
sample functions, is seen to be essentially equivalent to the “zero order” M.R.P.
in which Q;; = @; for each 7 and j.

A second very important special case of an M.R. P although in one sense
somewhat degenerate, is a zero-one process. That is, m = 2 and pi; = pa = 0.
For example, in a queueing model, the server is éither in a busy state or in an
idle state, and these states are entered alternately. In a counter problem, the
counter is either dead or free, and it alternates between these two states. The
only “parameters’ of such zero-one processes are the two d.f.’s of the duration
times of the two states. Of course, one still assumes independence between the
successive time periods. For such a process it is clear that Q2 = Fip = G2 =
Hl = -Dl, Qzl = F21 = Gg1 = H2 = D2,and Gn = Flz*Fm = Gzz. Set F12 =
F,, and Fy = F,. It therefore follows straightforwardly from Theorem 4.1
that, for7 = 1, 2,

Piu(t) = [I — Fu®)Il — Fi(t) * Fa()]
Ps_ii(t) = [1 — Fi(t)] * Fa_i(t) x [1 — Fi(t) » Fa(£)]

which checks with Theorem 1 of [11]. Zero-one processes arise in many problems,
and hence have been studied by various authors with various emphases. Let
it suffice here to mention the several papers by Takdcs (cf. [12] and references
contained therein) in which the total time spent in one of the states during a
given interval of time is particularly studied. The limiting normality of these
“sojourn’ times, under general conditions, derived by Takécs, will be a corol-
lary of a general Central limit theorem given in [13].

In an ML.R.P., the probability distribution of the next state depends only on
the present state of the process. An important generalization of an M.R.P.
arises if one allows this distribution to depend also upon the time it took for the
last transition. A special class of such processes is seen to be the class of 2-de-
pendent stationary processes with non-negative r.v.’s, which fact indicates the
different approach which would have to be used in studying the more general
processes. The following example of an M.R.P. arises as a “first approximation”
to this generalization. Let F; and F: be d.f.’s. Define, for ¢ > 0, G.(z, y) =
Fi(z) if y < ¢ and = Fu(x) if y = ¢. For the process {X,; n = 1}, set
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PX, 22| Xpa, -+, Xi] = Go(@, Xo1).

This process is clearly equivalent to an M.R.P. with two states, where the state
indicates the subscript of the d.f., F; or F; , which was used last. Therefore, for
i=1,2.

Qa(z) = Fi(minfz, c]),  Qu(z) = Fi(max(z, c]) — Fi(c).

Such a model and its analogue for arbitrary m may be applicable in life-testing
or behavioural problems. One particular application to an inventory problem
is the following. Suppose that state 2 indicates that a new efficient water pump-
ing station is in use while state 1 indicates that an old inefficient auxillary station
is also in use. Suppose that the transition times represent the successive times
that it takes for the capacity of a reservoir to fall below a fixed level. We assume
here that the reservoir is instantly refilled at these times. For such a model,
the above example of an M.R.P. could be used in studying the cost of the pump-
ing system as well as the proportion of times the auxillary pumping station is
used.
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