ON THE DISTRIBUTION OF FIRST SIGNIFICANT DIGITS!

By RoGer S. PINKHAM

Rutgers—The State University

Introduction. It has been noticed by astute observers that well used tables of
logarithms are invariably dirtier at the front than at the back. Upon reflection
one is led to inquire whether there are more physical constants with low order
first significant digits than high. Actual counts by Benford [2] show that not only
is this the case but that it seems to be an empirical truth that whenever one has
a large body of physical data, Farmer’s Almanac, Census Reports, Chemical
Rubber Handbook, etc., the proportion of these data with first significant digit
n or less is approximately logio(n + 1). Any reader formerly unaware of this
“peculiarity” will find an actual sampling experiment wondrously tantalizing.
Thus, for example, approximately 0.7 of the physical constants in the Chemical
Rubber Handbook begin with 4 or less (logio(4 + 1) = 0.699). This is to be
contrasted with the widespread intuitive evaluation $ths.

At least two books call attention to this peculiarity, Furlan [6] and Walhs
[18], but to my knowledge there are only five published papers on the subject,
Benford [2], Furry et al [7], [9], Gini [8], and Herzel [11]. The first consists of
excellent empirical verifications and a discussion of the implied distribution of
2nd, 3rd, - - - significant digits. The second and third put forth the thesis that
the distribution of significant digits should not depend markedly on the under-
lying distribution, and the authors present numerical evaluations for a range
of underlying distributions in support of their contention. The fourth maintains
that explanation is to be sought in empiric considerations. The fifth considers
three different urn models; each yields a distribution of initial digits which the
author compares with log,(n + 1).

This paper is a theoretical discussion of why and to what extent this so called
“abnormal law’’ must hold. The flavor of the results is, I think, conveyed in the
following remarks.

(i) The only distribution for first significant digits which is invariant under
scale change of the underlying distribution is logie(n + 1). Contrary to suspicion
this is a non-trivial mathematical resuit, for the variable n is discrete.

(ii) Suppose one has a horizontal circular disc of unit circumference which is
pivoted at the center. Let the disc be given a random angular displacement
6 where — o < 0 < . If the final position of the disc mod one is called ¢, i.e.,

¢ = 6 mod(1), 0=<¢e<1,
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then ¢ is a random variable whose probability structure is determined entirely
by that of 6. In fact if

Pr(z 20 <z+de) = g(z) de,
and

Pr(yse<y—+dy) = f(y) dy,
then

fly) = Z‘Oﬁ g(y + m).

m=—0o0

Now it is intuitively obvious that for a wide range of possible distributions
of 0 the distribution of ¢ should be approximately uniform i.e.,

fly) =~ 1, 0<y=1.

This and related properties of distributions wrapped around a circle have been
known for some time, Dvoretsky [4], Lévy [14], Robbins [15], and put to various
uses, Aitchison [1], Brown [3], Horton and Smith [12], Tocher [17].

The logarithmic law of left-most significant digits is a consequence of the
above property of random variables mod one. One can see this as follows. Let
F(z) be the cumulative distribution function for the population of physical con-
stants (taken non-negative for convenience). Define D(x) by

00

D(z) = Y. [F(z10™) — F(10™)], z > 0.
D(n) forn = 2,3, -- -, 10 gives the proportion of the population with first sig-

nificant digit n — 1 or less. The logarithmic “law” states that D(n) should be
approximately logio(n). Thus one suspects that

logp () ~ i [F(x10™) — F(10™)].

A change of variables will make clear the connexion with the spinning disc. Let
y = logw(z) and G(y) = F(10%).

One then has
YR m;_w [G(y + m) — G(m)],

or, taking derivatives,

00

1~ 2 g(y + m).

InA
m=—0
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This latter approximate equality is the one mentioned before in connexion with
random variables mod one.

Section 1 gives the mathematical support for contention (i) while Section 2
provides a mathematical basis for the approximation alluded to in (ii).

After the mathematical work of Section 2 had been completed I discovered
the basic mathematical idea without the detail in a discussion by I. J. Good of a
paper by Tocher [17].

1. An invariance principle. The population of known physical constants
changes daily, but the collection of such constants can be regarded as a large
sample from an unknown underlying distribution of all physical constants. It is
this underlying distribution in which interest will center.

Such mental constructs are familiar in the natural sciences. Thus most physical
objects are regarded as having a density even though they are ‘“known’’ to have
a granular structure at the atomic level. Such entities are of course outside the
compass of mathematics per se.

Consider the population of all physical constants and the derived distribution
of first significant digits. Suppose all the physical constants were multiplied by
some fixed number. What would happen to the distribution of first significant
digits? One feels, I think, that it would be the same as before. This invariance
property is enough, as is shown below, to characterize the distribution com-
pletely. Logio(n + 1) emerges as the necessary cumulative. The basic mathe-
matical fact is that a certain derived functional equation has one and only one
solution.

Suppose F(z) is the cumulative distribution function for the population of all
physical constants (assumed non-negative) in accordance with their size. Then

00

(1) D(z) = 2. [F(z10™) — F(10™)], x>0,
is a well defined function for positive z; D(n) forn = 2, --- | 9, 10 gives the

proportion with first significant digit # — 1 or less, since all numbers between
10™ and nX10™ begin with n — 1 or less.

If all the physical constants are multiplied by a positive constant ¢, then the
resulting cumulative is F(z/c). The postulated invariance yields

o - £ [ (20) - ()]

(2) D(n) = D(n/c) — D(1/c), c>0n=2---,10.

If the relation (2) held for arbitrary positive real n rather thann = 2, --- ;10
one could, assuming continuity, immediately deduce D(n) = login. We now
show this conclusion to be justified under even weaker conditions than are im-
plicit in Equation (2).
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TueorREM 1. If

1. D(2) + D(xz) = D(2x), z > 0;
2. D(10) 4+ D(z) = D(10z), x> 0;
3. D(x) s continuous;

4. D(10) = 1;

then D(x) = logw(z), z > 0.
Proor. Let H(z) = D(10%). Then conditions 1 and 2 become
(3) H(logn) + H(y) = H(logn +y), —o <y < o,n = 2,10.

Thus H(N log n) = NH(logn) if N integral, and one has H(N) = N since
H(1) = 1. From the theory of continued fractions one knows, Hardy and
Wright [10],

log 2 = (pm/qm) + 0(1/qm) (m— )
‘with P , ¢» integers. Le.,
gmlog2 = pn + o(1) (m— ).
Hence by hypothesis 2 ‘
gn H(log 2) = pm + o(1) (m — ).

Therefore H(log 2) = log 2. Suppose a irrational, and let [z] denote the largest
integer not exceeding x. Then it is well known, Kac([13], p. 41), that the se-
quence

a, = na — [nal, n=12 -,

is uniformly distributed on [0, 1]. Thus there exists a subsequence a.’ converging
to any fixed h(0 = h < 1). Take a to be log 2.

H(a.) = n'H(log 2) — [nlog 2] = an .

Letting n’ tend to infinity yields, by the assumed continuity, H(h) = h. Since
y=Ml+y—lHy) =y (—» <y < «),and D(z) = loguz.

It is reasonable to consider F(z) continuous from which it follows that the
D(z) of (1) is continuous and thence by the Theorem 1 that D(x) = log(x).

2. An approximation. Drop from consideration any invariance postulate. Con-
sider to what degree logi,x provides an approximation to

0

> [F(210™) — F(10™)], 1<z =10

m=—c0

(F(-) has the same significance as before.) Let G(y) = F(10*). Then one may
as well consider how z approximates

(4) J@) = 3 6+ m) — Gm)], 0<z<1.

m=--ca
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It is reasonable to take some canonical representation of G(z) and hope that
the sum J(z) can be evaluated explicitly. A statistician immediately thinks of
Fourier transforms since characteristic functions always exist for distributions.

A trouble immediately appears. In trying to evaluate the sum

J@) = 3 (6 +m) - 6m),

one immediately stubs against sums of the form
E e’imu,
m=0

which of course do not converge. To overcome this difﬁculty one may introduce
a “convergence factor’” and subsequently sneak it out again at the end.
Thus, define J(z |t) by

(5) Izt = 3 6 +m) — Gm)™, 0<t<l,

and W(u) by W) = [2e €™ d@(t). Then W(u) exists forall —o < u < o,
and '
1 [°1—¢&™

T J—co
Suppose
W(u) = 0(u™), k>0, (lu| — )

Then, by merely summing geometric series after switching the order of summa-
tion and integration, one has

1 [°1—e™

J(z|t) = — — W (u)P(u, t) du;

21 o U

P(u, t) is the Poisson kernel given by
1 -
142 —2tcosu’
The interchange of limits is justified by the assumed order condition.
The Poisson kernel when properly normalized is a frequency function un-

common in statistical circles. Thus

if P(u,t)du =1 and P(—u,t) = P(u,?).
2w Jr

Furthermore, the variance of the distribution goes to zero as ¢ tends to one.
Hence

1imzl1r f_:P(u, )Q(u) du = Q(0),

t->1

if @ is continuous at the origin.
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Now to return to J(x | t). Splitting the integral up into integrals over con-
tiguous intervals of 1ength 2w, and utilizing the periodicity of P(u, t) yields
-—zx(u+21rlc)

1 —
Jel) = 2 o [ bt Wlu+ 26)P(u, ) du

A second appeal to the assumed order conditions on W(u) allows one to take
limits as ¢ — 1 term by term. Thus, since W is continuous,

—-z21rka:

Jz|l=) =2+, L=¢  wom).
= 12wk
But by Abel’s theorem, Titchmarch [16], J(z) = J(z |1 —). Hence finally
1 — —i2wka
(7) J(z) —x =Y, —— W(2rk).
k=0 127k
In the case G(z) is symmetric about zero, viz. G(z) = 1 — G(— x), one has
(8) @) — = 3 Wark) 2D

It is now clear that the quality of the,a,pprommatlbn is in general high and
does not depend on the fine structure of G and hence of F. For only W in the
neighborhood of the origin is liable to inflate the sum appreciably and this de-
pends primarily on the nature of G at infinity.

If, for example, G(y) is Gaussian with mean zero and variance ¢’, then
W(u) = exp (—4c’’), and it is very clear that as o increases and the tails lift
the approximation improves markedly. This is in excellent accord with one’s
intuition.

An explicit bound on J(x) — 2 may be obtained by noticing that [1 — e
< 2, and hence

—i2wkx l

1
(@) — o < 2, — W (2mh)|.
k520
If @ has a density g, then

1 ® ks
W(2xk) = 57 Loe dg.
Thus
1 ]
< _—
w(eab)| < g [ ol = 5 Vi)

where V(g] is the variation of g on (— ®, ). Whence

—

= Vlgl.

??'l'—‘
cn

|J(x) — 2| é—%g

We summarize in the following
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TaEOREM 2. If
1. W(u) = f " e d6(e);
2. W(u) = 0(ju|™), h>0,u — «;
then
00 ) _ —32rkx
> (G +m) — Gm)l = > L8 w(enk).
Mm=—0c0 k=—o0 7;21!']‘)

CoRroLLARY. If

1. W(u) = f_:e""’g(w) dw;

2. Vigl < =;

3. J(z) = i [G(z + m) — G(m)];
then o

|/ () — o < ¥Vgl.

3. Remarks. In inventory problems one is often concerned with non-negative

random variables X,;, ¢ = 1, 2, --- which are independent, identically dis-
tributed, and possess a mean much smaller than some number K. One is inter-
ested in the first time S, = X; 4+ +-- + X,,n = 1,2, .-+ | exceeds K. Let

this time be a random variable 7. If the time axis is split up into contiguous
intervals (periods) of length P, much smaller than the mean and variance of T,
then it is often assumed that the time during the period at which the first ex-
ceedance occurs has an approximately uniform distribution. Time is here being
measured from the beginning of the period. This is intuitively very appealing.
Suppose T has cumulative G(¢) and that the problem is scaled such that P = 1.
Then intuition says J(x) — z is “small”’, where

J(z) = g[G(x + n) — G(n)].

Previous results make it clear why this is in fact so.

A close connexion exists between J(x) — x being small and Poincaré’s ob-
servation on finely divided roulette wheels. Suppose the disec mentioned in the
introduction is divided up into 2n contiguous intervals alternately of length p
and 8. Let p/(p + B) and 8/(p + B) be independent of n. The segments of length
p are called red, the others black. Fréchet [5] shows, for arbitrary distributions
of 6, that the probability of obtaining red approaches p/(p + B8) as n tends to
infinity and thus similarly for black. Here the quality of the approximation is
improved by shrinking the fundamental unit relative to the variance of the
underlying distribution rather than increasing the variance relative to the funda-
mental unit.
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These considerations have an obvious import for the generation of pseudo-
random numbers both by electronic computers and by special purpose machines.

The foregoing results bear on questions of round-off in computing machines.
Since d(uwv) = wudv + v du the error resulting from multiplying two rounded
numbers will be governed primarily by the first significant digits of the two ntum-
bers being multiplied. Now the distribution of first significant digits, favoring as
it does low order digits, tends to produce less error than would be the case if first
significant digits were uniform as has sometimes been assumed.

Acknowledgments. F. Mosteller and W. Kruskal provided the references to
previously published material, and I am most grateful. R. Hamming was first
to call my attention to the logarithmic law. He also was first to suggest that
only the logarithm would satisfy the invariance principle. To one who invariably
provides delightful ideas I am thankful indeed.

REFERENCES

[1] J. AricHisoN, “A statistical theory of remnants,” J. Roy. Stat. Soc., Vol. 21 (1959),
pp. 158-168.
[2] FraNE BENFoRD, “The law of anomalous numbers,” Proc. Amer. Philos. Soc., Vol. 78,
No. 4 (1938), pp. 551-572.
[3] G. W. Brown, “History of RAND’s random digits,”” Nat. Bur. Stds., App. Math.
Series, Vol. 12 (1951), pp. 31-32.
[4] A. DvoreTskY aND J. WoLrowiTz, “Sums of random integers reduced modulo m,”
Duke Math. J., Vol. 18 (1951), pp. 501-507.
[5] MaUrice FrficuET, Calcul dés Probabilitiés, Vol. 2, Gauthier-Villars, Paris, 1950.
[6] L. V. FurLaN, Das Harmoniegesetz der Statistik, Basel, 1946.
[71 W. H. Furry anp H. Hurwitz, “Distribution of numbers and distribution of signifi-
cant figures,’’ Nature, Vol. 155 (1945), pp. 52-53.
[8] Corrapo Gint, “Sulla frequenza delle cifre iniziali dei numeri osservati,” Bull. Inst.
Internat. Stat., 29th session, Vol. 35, 2& me Livraison, Rio De Janeiro (1957),
pp. 57-76.
[9] S. A. GoupsmiT aND W. H, Furry, “‘Significant figures of numbers in statistical tables,”
Nature, Vol. 154-(1944), pp. 800-801.
[10] G. H. Harpy axp E. M. WriaHT, An Introduction to the Theory of Numbers, Oxford
Press, Oxford, 1954. )
[11] AMaTo HERzEL, “Sulla distribuzione delle cifre iniziali dei numeri statistici,” Atti
della XV e XVI Riunione, Societa Italiana di Statistica, Rome, 1957.
[12] H. Burke HorTon anD R. TynEs Smrth III, “A direct method for producing random
digits in any number system,” Ann. Math. Stat., Vol. 20 (1949), pp. 82-90.
[13] M. Kac, Independence in Probability: Analysis and Theory of Numbers, John Wiley
and Sons, New York, 1959.
[14] P. Lévy, “L’addition des variables aléatoires definies sur une circonférence,” Bull.
Soc. Math. France, Vol. 67 (1939), pp. 1-41.
[15] HeErBERT ROBBINS, “On the equidistribution of sums of independent random vari-
ables,” Proc. Amer. Math. Soc., Vol. 4 (1953), pp. 786-799.
[16] E. C. TrrcamarsH, The Theory of Functions, Oxford University Press, Oxford, 1932.
[17] K. D. TocHER, “The application of automatic computers to sampling experiments,”’
J. Roy. Stat. Soc., Ser. B, Vol. 16 (1954), pp. 39-61.
[18] W. ALLEN WaLLis aNp HarrY V. ROBERTS, Statistics: A New Approach, The Free
Press, Glencoe, Illinois, 1957.



