BAYES RULES FOR A COMMON MULTIPLE COMPARISONS PROBLEM
AND RELATED STUDENT-t PROBLEMS!

By Davip B. Duncan

University of North Carolina?

0. Summary. The paper is mainly concerned with the following multiple com-
parisons problem in the analysis of variance setting. In a balanced experiment n
treatments are to be compared. Each of the $n(n — 1) pairwise comparisons is
to be made, adjudging each difference as ‘‘positive”’, ‘“negative’”, or “not sig-
nificant”; overall decisions involving intransitivities are barred. The loss for
each difference is proportional to the ergor; if a difference is asserted incorrectly
the loss has proportionality constant ¢, , if “not-significant’ is the incorrect con-
clusion the proportionality constant is co ; where ¢; = ki + ko, co = ko and
ky > ko > 0. Total loss for the experiment is taken as the sum of the in(n — 1)
component losses. The Bayes rule for any prior distribution is shown as a result
to consist in the simultaneous application of Bayes rules to the in(n — 1)
component, problems. Each of these in turn is shown similarly to consist in the
simultaneous application of Bayes rules to two subcomponent problems. The
subcomponent Bayes rule for a normal prior density of treatment means is ex-
plicitly derived. The dependencies of the solution on the variance of the prior
density, the degrees of freedom and the loss ratio k;/ko are discussed. A principal
finding is that the Bayes solution for the multiple comparisons problem corre-
sponds to a tolerated error probability ““of the first kind” for each single differ-
ence, that is independent of the number of treatments being compared.

1. Introduction. Many procedures have been proposed for the multiple com-
parisons problem herein considered. These include, for example, a ‘least-signifi-
cant-difference’” rule due to Fisher [5], an ‘“honest-significant-difference” rule
due to Tukey [17], [18] and multiple range testing procedures due to Newman
[10], and the author [3]. Some of these have also been described in recent texts
such as Federer [4], Li [9], Snedecor [13], Scheffé [12] and Steel and Torrie [14].
With much help from the recent more general work of Lehmann [7] it has now
been possible to solve a Jeffrey’s-like Bayes formulation of the problem. This is
more complete than any of the previous formulations and leads to a simple solu-
tion with properties that are better defined and that appear to be appropriate
to an appreciable class of practical situations. In the process, similar Jeffrey’s-like
Bayes formulations and their solutions are presented and obtained for two com-
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1014 DAVID B. DUNCAN

mon types of Student-# problems. These are developed first as problems of sepa-
rate interest in Sections 2 and 3. The main problem is then fully developed in
Section 4. A discussion of the more applied aspects, together with further illus-
trations is planned for a paper to be submitted to Biometrics.

2. A two-decision Student-¢ problem. Given a random observation ¢ from a
non-central ¢ distribution with non-centrality parameter = and » degrees of
freedom, a common problem is that of choosing between the two decisions

(2.1) do:decide 7 £ A and dj:decide 7 > A,

where A is some unspecified positive boundary value. In the language of the ex-
perimenter, do is the decision that 7 is not significantly greater than zero and d;
the decision that it is. In the theory of hypothesis testing the same problem is
often more loosely regarded as that of testing Ho:+ < 0 with the alternative
H,:7 > 0, the decisions thus being

(2.2) doidecide 7 £ 0 and dj:decide r > 0

Strictly speaking however the null decision does not deny the possibility of posi-
tive though relatively small values for 7 and some such formulation as (2.1) is
more precise. The change is relatively trivial in this problem by itself. It.is essen-
tial however to our subsequent developments as is brought out shortly after
(4.12). (See Lehmann [7] also for a similar change).

Our first result is a Bayes rule ¢(¢) for this problem with respect to a simple
linear loss function

~

oo

Lo(r) = L(r, do) = {2

07T,

EEER)

(2.3)

-

VIA VIA
L

Li(7) = L(r, d;) = {Ioc: 7l

a8

where ko and &, are positive constants such that k; > ko, and with respect to a
normal prior density for r,

(2.4) £(r) = (2m?) ¥, —0 <7< o,
“with mean zero and variance y*. The rule is of the common form

0, < tx,
1

(25) sy ={0 ISt

where ¢(¢) = 0 or 1 is the usual indicator function for making the decision do and
d; respectively, and tx = t«(k, v, ¥°) is a significant or critical ¢ ratio for which
a set of values are given in Table 1. The arguments determining the significant
value 4 , are the ratio k¥ = ki/ko from the loss function, the degrees of freedom »
for ¢ and the variance 4* of the prior density for r.

The rule ¢+(¢) may be derived as follows. For the average risk of any rule
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TABLE 1
Minimum- Average- Risk Significant t Values (t5 Values)
Log %
. » |00 .5 1.0 1.5 720 25 30 35
1 0.0 .375 .807 1.353 2.102 3.160 4.685 6.854
2 0.0 .413 .860 1.379 2.012 2.814 3.851 5.208
® 4 0.0 .434 .884 1.367 1.900 2.502 3.197 4.010
6 0.0 .443 .891 1.356 1.848 2.374 2.948 3.580
14 0.0 .451 .898 1.340 1.779 2.217 2.654 3.099
© 0.0 .457 .902 1.326 1.721 2.091 2.436 2.759
1 0.0 .444 1.053 2.503 © © @ ©
2 0.0 .484 1.060 1.926 4.077 ® ® ©
3 4 0.0 . 506 1.056 1.718 2.623 4.178 9.595 ®
6 0.0 .515 1.053 1.653 2.370 3.308 4.732 7.706
14 0.0 .522 1.047 1.582 2.136 2.724 3.360 4.074
© 0.0 .528 1.041 1.531 1.987 2.414 2.813 3.186
1 0.0 .572 1.930 © © ® ® ©
2 0.0 .610 1.532 8.741 ® ® ® S
1 4 0.0 .629 1.395 2.648 8.592 ® © @
6 0.0 .637 1.353 2.303 3.980 13.625 © @
14 0.0 .642 1.308- 2.030 2.859 3.891 5.326 7.818
© 0.0 .646 1.275 1.875 2.433 2.957 3.445 3.902
1 0.0 767 ® ® ® ® ® ®
2 0.0 .785 2.292 ® ® ® ® ©
.5 4 0.0 .791 1.963 9.243 © © ® ®
6 0.0 .794 1.800 3.777 @ © ® ©
14 0.0 .792 1.653 2.693 4.162 6.670 ® ©
© 0.0 .792 1.562 2.296 2.980 3.622 4,219 4.779

(), we have

(2.6)

where f(¢| 7) is the non-central ¢ density function, (2.12) below, and

(2.7)

At ¢)

/,: f_: [Lo(r) (1 — ¢(8)) + Li(7)¢(®)]f(t]7) dt £(=) dr

constant -+ [ o (t)ha(t) di,

m(® = [ (L) = L] D)

The minimum average risk rule may thus be written

(2.8)

o) = {¥

m(t) > 0,
hi(t) <O0.
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From the inequality h:(f) < 0 we get
0 ©
(29) [oo kul7|fCt| )E(7) dr < [o kof(t| 7)£(7) dr,
and hence

f hs(r,t) dr k

(2.10) h(t) = —fp—uo— > =k
—f hs(r, t) dr 0
where
(21) ho(r, 8) = of(t] ().
Now, introducing the non-central ¢ density in the form
—i(ui—z')2
(212) fln) = [ Car W) d, - <<,

where y(u | v) is the x’-related density function of u = x(v)/v, that is

Y(ulv) = @) /(30 — 1)1207, u >0,
(2.13) .
= 0, otherwise,
and discarding constants in h3;(7, ¢) which will cancel and not affect the value of
ha(t), we have
(2.14) hs(r,t) « 7-[ exp{i[(ut — 1) + /¥’ up (w|v) du.

0

Putting 8 = 1 4+ 1/4* this becomes

hs(r, 1) « 76_57232.[ exp{utr — 3’ (v + &) v’ du

(2.15) =7 7P Y Sﬁ A wtexp{—1d’(v + &)} du

=0 !

e s (t'r)i 2 b (v + 17— 1)
= (v+t2) 2 .

Next, putting hy(t) = [§ h(7, t)d 7 and y = t/8(v + &)} and integrating term
by term, we get

w() = 502 (LEEZ)1 [T (oot g

=017

(2.16) «,2,2’12(”; )‘(é)'

S0 () () (Y /()
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But 27(s + 1)/2]1(5/2)! = (i + 1) &(x)}, from which
_d[ & ifv+i—1 T+ 1
o =g [v 5o (57)1/ (5) ]

= d_dz; [yhs(y) + yhs(y)],

(2.17)

where hs(y) is the sum of even terms,
W) = 59+ = DYG+ DY
with p = v/2, and he(y) is the sum of odd terms,
h(y) = 29" + )G + DL
Working first with A;(y), it may be written as
(2.18) hs(y) = (p — DIF(p + 3, 1,8 9)/B)
where F(a, b; ¢; ) denotes the hypergeometric function

a(a + 1)b(b + 1) o

clc+1) 2+'“

14+ %
c
Applying Euler’s transformation
F(a,b;c;z) = (1 — 2) ™ °F(c — a,¢c — b; ¢; x)
and reducing, we get
(219 W) =1 0= [ Q=) dulp — DY)
Hence
(2:20) ‘%[yhs(y)] = (1 =4 [(1 —9")" + 2py foy a- uz)”‘ldu]
(p—=HYE)L

Next, hs(y) sums to (p — 1)![(1 — 4*)™® — 1]/y so that

(2.21) (d/dy)lyhe(y)] = (1 — o)~ " P2ply.

Treating the denominator of h(t) in the same way and combining results we get
(2.22) ha(t) = ha(t)/ha(—t) = g(y)/9(—y),

where

_ _ 2\3v v _ 2\4(v—2 2(%)!(v)ly
(223) g(y) =1 —9) -I-vyfo(l u’)¥ )du+[~%-(7_"‘2—w-
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From (2.8), (2.10) and (2.22) we have

0, 9(y)/9(—y) <k,
2.24 t) =
(2:24) ¢x(1) {1, 9(y)/9(—y) > k.
Hence, since g(y)/g(—y) is monotone increasing with respect to y,
o, Y < Yx
2.25 t) = ’
(2:25) o) = { Y AN

where ysx = yx(k, v) is the solution for y in g(y)/g(—y) = k. Finally, putting
tx = tx(k,v,~*) for the solution for ¢ in yx = ¢/8(v + &*)! we have

_J0, P < tx,
(2.26) Balt) = { ! S

as was to be shown. More specific details of the computation of the significant ¢
ratios in Table 1 are given in Section 6.

ExampLE 1. To illustrate suppose the following: A standard treatment is
modified in the hopes of producing an increased yield. An experiment is run
giving r yield observations 11, +++ , Z1r and 2z , * -+ , e, for the new and control
(standard) treatment respectively. It can be assumed that the respective sets of
data are random independent samples from normal populations with means u,
and yu, and with the same, but unknown, variance o°. It is required to decide
whether the new treatment is significantly superior (in yield) or not significantly
superior than the standard; whether to generally recommend it as the superior
or to withhold such a general recommendation. Type-1-like errors of recommend-
ing a non-superior new treatment (making d; when 6 < 0, where § = u; — ps2)
are thought to increase in seriousness in direct proportion to the degree, —4, of -
inferiority involved. Type-2-like errors of failing to recommend a superior new
treatment (making do when § > 0) are similarly thought to increase in seriousness
in direct proportion to the degree, 8, of superiority involved. For any absolute
difference 8, = |6] , recommendation of an inferior new treatment with § = —é
is considered k times as serious as the corresponding failure to recommend a
superior new treatment with § = & . In the averaging of risks it is desired to
weight risks symmetrically at § = =6, for all possible differences §o = 0, with
weights decreasing with respect to 8 as given by a normal density for r =
8/ (2a2/r)’ with mean zero and variance y°. A minimum-average-risk rule is re-
quired which would be invariant with respect to any changes of scale or location
in the observations.

Because of sufficiency and invariance considerations the required rule can be
restricted to depend on the observations through only the ¢ ratio

(2.27) t = (& — &)/(25/r)},

where & and Z, are the respective sample means and s’ is the pooled within-sample
variance estimate

(2.28) § = i Zr: (x5 — &:)°/2(r — 1).

i=1 j=1
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The required rule is then given by (2.26) where t« = t«(k, v, ¥°) with
v = 2(r — 1).

In practice a similar problem could well arise in which it is desired to use a
non-zero mean u; for the prior density. With infinité error degrees of freedom
(v = o) the significant ¢ ratio for such an asymmetnc problem can be shown
to be given by subtracting a correction of u.;/(2a'2/7') from the corresponding
value in Table 1. For v finite the derivation is more difficult. The use of a similar
correction of ws/ (28%/r)¥ would no doubt suffice however for practical purposes
except for very small values of v. Since the extensions of this.problem in the later
sections concern only the symmetric case, a more detailed treatment of the
asymmetric case will not be taken up here.

From the roles they play the parameters k, v, and v° determining the minimum-
average-risk significant ¢ values may be usefully termed the loss or error sertous-
ness ratio, the error degrees of freedom and the risk-weighting variance ratio re-
spectively. Before going on it is of interest to note in Table 1 that a loss ratio of
100 (log k = 2) infinite error degrees of freedom (v = ), and a risk weighting
variance ratio of 3 (v2 = 3) givea tx of 1.987 close to that 1.960 of a .025 level
test of Ho: 7 = 0.

3. A related three-decision Student-t problem. Given a similar observed ¢
value, a problem related to that of Section 2 is one of choosing between the three
common decisions

(8.1) dp:decide |7| = A, dizdecide r > A and dpidecide 7 < —A,

where, as before, A is some unspecified positive boundary value. In the language
of the experimenter do , d; and d, are the decisions that 7 is not significantly dif-
ferent from zero, that r is significantly greater than zero and that 7 is signifi-
cantly less than zero, respectively.

Our second result is a Bayes rule for this problem with respect to a similar
linear loss function

@ - 7® 0, r =0,
<
(3.2) LP(r) = LP(7, ) = {81, - : > g:
@ _ 7@ _Jo, r <0,
) = 19 a) = {2 155

where ¢, and ¢; are positive constants such that ¢; — ¢ > co and with respect to
the same normal prior density (2.4) for 7. The rule is

(100), It < te.
(3.3) (1) = (dox(t) d1x(t) #2x(t)) = 1(010), t> tx,
(001), t < —ix,

where the significant ¢ ratio ¢4 = t«(k, v, ¥°) is the same as that of the previous
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section with the loss ratio now given by k = (c1/co) — 1, and where ¢$® () = 0
or 1 denotes the not making or making of the decision d;, 7 = 0, 1, 2.
This result can be obtained a8 follows: First the three-decision subset system

(34) wot|r| £ A, wiT > A, wiT < —A,

can be expressed as the restricted product (the full product less empty intersec-
tions, see Lehmann [7]) of two component two-decision subset systems like that
of the previous problem in Section 2, namely

Component system for +7: wg: 7 < A, wi: 7> A,
(85) Component system for —7: wp:—17 < A, wii—T1 > A,
Thus
(3.6) wo = wg N wy, w1 = wi N o, w2 = wq N of.

The intersection wi N wy is excluded since it is empty. Put in other words, each
of the main decisions is equivalent to two joint component decisions

(8.7) do to df with dy, di to df with dy and d, to di with di;

the joint decision di with dy is excluded since it has mutually incompatible com-
ponents; df is the decision r e wi; & = +, —;% = 0, 1.

Second, by putting k; = ¢; — ¢o and ko = ¢ the losses for the main decisions
can be expressed as the sums of losses for its component decisions as given by
the two-decision loss function (2.3) in the previous section. Demonstrating this

0+ ko(—7) = co7|, T<0

Lo(7) 4+ Lo(—=7) = 10 4+ 0 = 0, T =0p = LP(1),
IC01'+0=60|T|, >0
kl |T| -l— ko(—T) = C |‘r| y T < 0

(3.8) Ly(r) + Lo(—7) = Ski|r| + 0 = ¢ |7/, r=0¢ = LP(7),
04+0=0, >0
(040 =0, <0

Lo(7) + Li(—7) = {0 + ky |—7| = e, 7 =0¢ = L (7).
]cof-l-kll—rl = 7, 7>0

Next, any rule ¢ (¢) for the three-decision problem can also be expressed in
terms of two component two-decision rules. For this purpose it is convenient to
first re-express the two-decision function ¢(¢) in the two-element vector form
(3.9) (1) = (o(t) ¢u(2)),
where ¢o(t) = 1 — ¢(t) and ¢1(¢) = ¢(¢). In this form, for example, the Bayes
rule ¢4(t) of the previous section appears as

(3.10) da(t) = {E? 8 :; ﬁZ
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With this vector notation (3.9) for the two-decision function and the components
(3.7) of the three decisions in mind we can write

o®(t) = @P(1) 7)) ¢87(D)
= (et (t) ST (t) S0 ()1 (D)),

where ¢Z(t) = 0 or 1 denotes the not making or making of decision d;; a =
+,—;7=0,1.
"Now, working with the average risk of & (t) we have

4™ = [ [ S 10@0P sl des() dr

2=0

(3.11)

(312) —0 poo 1 1
= f_ )R @) 4 L= )t (17 (Of(t] ) dt &(r) dt,

—o0 1=07=0
provided that the condition
(3.13) &1 ()1 (t) = 0, —w <t < o,

is satisfiied. (Following Lehmann [7] this may be termed a compatibility condi-
tion since, if it were not satisfied, the component rules would give incompatible
decisions). Assuming pro tempore that this is satisfied, the average risk readily
reduces to

(3.14) A(E, 9P) = A(g ¢T(1) + A(E & (),

where the component average risks A (§, ¢°(¢)), « = +, —, are the same func-
tions of ¢ and —t as was A(¢,¢) = A(§ ¢()) of tin Section 2. To minimize
(3.14) it is sufficient to minimize the component average risks separately subject
still, of course, to the compatibility condition (3.13). From the result of the pre-
vious section, as expressed in (3.10), the component solutions are

(3.15) @) ={§(1)(1’§ (S and ) ={E(1,(1)§ s

Since ¢1x(t) = 1only in ¢ > tx, dox(t) = lonlyin —t > b = ¢ < —t4, and
since ¢y is positive (from & > ko) we do have o1 (t)prx(t) = 0 for all ¢, that is,
the solutions are compatible. Thus the required Bayes rule is given by

6D(1) = (d(t)  dm(Ddtx(B)dox(t)  dox(t)dix(1))

(3.16) =4{(010), (t> te)(t > —ts) = ¢ > tx,
(001), (t < ta)(t < —tx) = 8 < —bx,

as was to be shown.

ExampLE 2. Suppose that two samples of yields have been observed as in
Example 1 except that now they are for two new treatments. It is required to
decide whether the first can be recommended as the superior (in yield), whether
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the second can, or whether to withhold recommendations on both. Errors of
making a wrong recommendation or of failing to make an appropriate recom-
mendation are again scorable in direct proportion to the degree of inferiority or
superiority involved respectively. For any difference that may exist the error of
a wrong recommendation is considered ¢ times as serious as that of just failing
to make the right recommendation. The requirements for weighting of risks and
invariance are the same. The required rule is then given by (3.16) where ¢ is as
obtained (2.27) in Example 1, t4 = t4(k,v,v’) withk = ¢ — landv = 2(r — 1).
The subtraction of one from the loss ratio ¢ will be trivial and unnecessary in
most practical situations with ¢ not small. The need for it here and not in Exam-
ple 1, it may be said, comes from the fact that a wrong recommendation now in-
cludes implicitly a failure to make an appropriate recommendation as well.

4. A symmetric multiple comparisons problem. Given N = in(n — 1)
t statistics of the form

(4.1) tog = (fp — ﬁq)/sﬁp—ﬁq ’ pg e N,
with non-centrality parameters of the form

(4-2) Tpg = (I‘p - I‘q)/a'ﬁp—ﬁq ’ pee N,
where N is used for convenience to denote the set of pairs

as well as its size, a common multiple comparisons problem is that of choosing
between the three decisions

(4.3) d(z)»q:"'pq € “’(1):41 ’ d;q:"'m & ‘*’;q ’ d;q:"'pq € wiq ’
simultaneously for all pg € N, where the subsets are of the previous (3.1) form
(4.4) Wpat |Todl < A, WpaiTpg > A, WheiTpg < —A.

The joint density of the t,,’s is the one that would result, for example, from
the common assumptions (a) {1, - - - , fi» are normal independent variables with
means p; , -+ , i, and the same but unknown variance o and (b) sz is an esti-
mator-of oz with.v degrees of freedom such that u = s3/0s has the x*-related
density (2.13) independently of A1, - - -, fin, from which oz, = 2*0,; and
Spppy = 2%, . If we put y for any vector of (n — 1) orthogonal normalized com-
parisons among the estimates fi;, that is, y = A¢ where AA’ = I,,,Aj =0
(j being a vector of ones), and @ = ({1 - - - fin)’, then the density of the ¢,,’s can
be represented conveniently in terms of that of the (» — 1)-element ¢ vector

(4.5) t=y/s
depending on the corresponding (n — 1)-element non-centrality parameter
vector

(4.6) t = n/op
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where n = Agand y = (w1 - us)’. This can readily be expressed as

ultlsy) = [ exp IR OE = Doty ugo) au,

4.7
—o <t < oo

where y(u | v) is the x’-related density (2.13).
Our main result is a Bayes rule for this problem with respect to generalizations
of the linear additive loss functions and normal prior density used in the previous

sections.
More explicitly, the subsets wo, wi, - -, wy—1 of the multiple comparisons
problem are the non-empty intersections

(4.8) wi= 2,  jp=010r2 i=0---,M—1,

of the subsets of all the component three-decision problems involved. The deci-

sion system consists of the M corresponding decisions

(49) d,’l‘té‘wi, 1:=0,"',M—1,
For example, thinking of the component subset systems (4.4) in the form

(4.10) wgzq: (lo — 1ol = A7), "’zq: (kg < pp — 4A'), wf,q: (up < pg— 4'),

(where A’ = A2%s;) and using the corresponding more graphic notation

(4.11) (p, 9), (¢, ), (P, 0),
in place of wyg, wyq, Woq respectively, the M = 19 multiple comparisons subsets

(1, 2) (21) (1,2)
(2»_3) w = (1,2,3) w = (%id) = (L3 2)
(L,3) (3,2)]  ws (3 ,2) . = (1 3,2)
(2,3)] s (2_ 3)  ws =(2,1,3)
(4.12) (2,3) wr = (3:2,1)  w =(3,21) .
(3) 1) (3; 2) Wy (3 ) w1 = (37 2) 1) w11 = (3, 1; 2)
(2,3) we = (2,3,1) .
(?ﬁ) w1y = (1_:2’_3) . , Wy = (1: 2»_)
(1’ 3) (3) 2) : : Wi = (]—) 37 2)
(2,3) w1 = (1,_2_, 3) w17 = (2, 1,3) wig = (1,2, 3)

in the case n = 3 may be developed as in (4.12). In general, following Duncan
[3], the notation (%,J, k, - *) may be used to denote subsets in which the corre-
sponding means u; , pj, ux, - - - are ranked in significantly ascending order from
left to right (i.e. with differences |8| > A’) except that subscripts underscored by
a common line denote pairs of means for which the difference is not significant
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(ie. |8] = A’). Thus w, = (1,3,2) is the subset in which , is significantly less
than u, but u; and w, each do not differ significantly from ;. The remaining
2° — 19 = 8 intersections, e.g., (2, 1)(1,3)(3, 2), of the component subsets are
not included in the multiple comparisons system since they are empty.

Choosing the elements of = as 7 = (u — wz)/2%0s for abscissa and m =
(1 + w2 — 2u3)/6%0; for ordinate the parameter subsets, in the case n = 3, may
be represented as shown in Figure 2 of [3], where the vertical lines are 7o = A,
the lines from top left to bottom right are 73 = A and those from bottom left
to top right are 723 = +£A.

Referring back for a moment, the need for the definition (2.1) instead of (2.2)
for the decisions of our initial subcomponent problem can now be seen more
clearly in the formation of the subsets (4.12). If (2.2) were used the six subsets
w1, we , w3, ws , wy and wyg of the form (%,J, k) would be eliminated. These however
are useful members of the system, hence the need for some such definition as
(2.1) to retain them.

The size M of the multiple comparisons subset system increases rapidly with n
the number of means involved. In the next case n = 4, for example, the numbers
of the various forms of subsets, using the same notation, are

(1’ 2’ 3 ’4) o 1: (i’j> k’ l) e 447 (i’j’ k’ l) e 47 (ﬂ, k’ l)
(4 13) e 12’ (7'7.7’_10’1) e 127 ('i7j’ ]ﬂ) e 12» ('i;j; k: l) to 24,
' (b ko) - 12, (5,4, K1) --- 12, (55, k1) -- - 12, (%4, k1)
e 24’ (u;]i’_l) e 67 (%,_]_,_]C_,l) e 24’ (71-7__7,]_&1) e 24)
making M = 183 in all.
The losses are defined as the sum of the losses (3.2) for each of the component
decisions involved; that is
L&P(z) = L'(z,d:) = 22 Li}(750),

(4.14) ?“N
Jpa=0,10r2;¢=0,---, M—1.

Thus, suppose for example in the case n = 3, w2 = (upaus)’ /2% represents
the expected standardized yields of three manurial treatments on a particular
agricultural crop. Then the loss L (=) at 9/2*0 = (10, 12, 8)’ incurred by the
decision diu:ve (1, 2, 3) is

L (x) = L (1) + L (1) + L (72s)
(4.15) = LP(-2) + L (2) + LP(4)
=0 + 2¢ + 4co = 2k + 6ko.

The third contribution 4¢o = 4k, enters, it may be said, because the decision dy4
has failed to recognize the 4-unit superiority of treatment two over treatment
three. The second contribution 2¢, = 2k; + 2k, enters, because, in similar terms,
dis not only fails to recognize the 2-unit superiority of treatment one over treat-
ment three, incurring a loss of 2k, it also commits the more serious error of
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ranking treatment three above treatment one, incurring an additional loss of
2k; . No loss is incurred by the first component decision because dy4 ranks treat-
ment two correctly above treatment one.

The prior density for averaging risks over all points in the (n — 1)-dimensional
space for = is the simple normal density function

(4.16) . £z | 7?) = (2my?) F DT —®» <1< ®,
This is one which would result, for example, from assuming that the means
M1, -, M have independent normal prior distributions with the same mean 6

and same variance o, = 7’0} .

From the additive losses assumption it follows as before that the average risk
for any decision rule ™ (t) = (¢ (t) - -+ ¢%21(t)) may be expressed as the

sum of average risks for component three-demsmn rules
(1) = (#F(t) oT*(t) #2°(t))

provided again that the component rules are compatible. The steps may be
written

4G, e™) = [ [0 5 L@ Ot 19)dt 65) ds

-[r mgo m2= (L8 () + - -+ + LE (reamsyn)]

(4.17) @i () - SO (t) fult] ) dtEa(s) dr

=mf f ZL@)(%«)#”(t)fn(tlv) dt £.(z) de

—00 j=!

2 At 9™ (1))

PaEN

The compatibility condition may be written as

(4.18) II ¢P2(t) =0, jpu=0,1 or2,— <t < o,

for all products leading to incompatible decisions not included in
{dz;i = 07 e 7M—1}

and is required in proceeding from the first to the second line of (4.17).
It then follows as before that the Bayes rule

(4.19) 357 (1) = (@68 (1) -+ ¢{in#(1)),
for the multiple comparisons problem is formed by the products

(4.20) o (1) = I $rian(t), Joe=0,1o0r2,
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of the elements of the Bayes rules ¢%%(t) minimizing
(4.21) A&, $™(1)), pgeN,

provided these are compatible.
The first step in deriving $£’(t) is practically identical with that ((3.12) to
(3.14)) in Section 3. Thus

(4.22) (L) = (SBT(DB (1) SBE()SBE (L) SR (t)oBE (L))

where, dropping the superscripts pg+ or pg—, ¢x(t) = (dox(t) d1x(t))
now minimizes a subcomponent average risk of the form

0 ,00 1
(423) 4@ o®) = [ [ 3 LlreOflt]x) dt ) e
—00V—gp +=0
The elements of = may be chosen so that r,, is the first element 1; of =. The com-
patibility condition
(4.24) ot (et (t) = 0

must again be met. ,

The work of minimizing (4.23) follows closely that of minimizing (2.6) in Sec-
tion 2 exeept that now the sample and parameter spaces have additional dimen-
sions, (n — 2) each. Dropping the subscript pg from 7,, the steps follow through
with obvious changes till we get to

hm (7, t,0)
(4.25) ® o (=t
o q-f f exp {—5 > [(uts — ) + rf/vz]'} W (u|v) du dry
—00 Jo i=1
where the first integration is with respect to . defined as the last n — 2 elements
of = = (t+,)’. Thisappearsin place of hs(r, t) asin (2.14) before which may now
be denoted by A (7, t, v). On integrating with respect to =, we get

B (7, t,0) o 1-/; exp{ — %[(ut — )+ 7/

n—1
(4.26) — Z u2tf/(1 + 72)]} un—-luv—-]e—gvuﬂ du
i=2
o« 'r[ exp {—%[(u't’ _ 1')2 + 1_2/72]}u,u,(v'_ne_g,,ru,z e,
0

where ¢ = ¢ is the first element of = and is thus ¢ = #,,,

n—1
(427) W' =w/R, ¢ =Rt R = v’/ [1/ + 22 /(1 + 72)].
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and v/ = v + n — 2. Thus

(4.28) B (r,t,0) « 1 fo " exp {—3[(ut! — 1) + 2/ up(u] ) du

= K (r, ¢, ).

Making a direct application of the remaining derivation in Section 2 it now
follows that

C[(,0), (¢ <tx) = (t < ta/R)
(4.29) “’*“)‘{w,m, (& > 1) = (¢ > tw/R)

where tx = tx(k, v/, %) is the same significant ¢ value as before except that its
degrees of freedom are now v’ = v + n — 2.

Since tx/R > 0, the compatibility condition (4.24) i is met and applying (4.22)
the component average risk (4.21) is minimized by

(100), (tpe < tx) = (tog < t/R),
(4.30) $3%(t) =<(010), (tpg > ts) = (tpg > t+/R),
(001), (thy < —tx) = (tpg < —ts/R),

where t,, = Rt,, for all pg ¢ N. Again since t+/R > 0, the preceding compatibility
conditions (4.18) are met and applying (4.19) the Bayes rule for the multiple
comparisons problem is given by the simultaneous application (4.20) of all
N = n(n — 1)/2 of the three-decision Bayes rules (4.30).

ExampLE 3. Suppose that n samples of yields like those of Example 2 have
been obtained for n new treatments. For each and every pair (a, b) of treatments
it is required to decide whether a can be recommended as the superior, whether
b can or whether to withhold recommendations on both. Losses are scorable with
respect to each pair of treatments as in Example 2, the loss ratio ¢ being the same
for all pairs, and are additive in giving the losses for each of the joint decisions
to which they contribute. Risks are to be averaged with respect to a normal inde-
pendent prior density for each of the means y; , - - - , 1. each with the same mean
and same variance y’o’/r. An invariant rule is required as before.

Because of sufficiency and invariance considerations the required rule can be
restricted to depend on the observations through only the ¢ vector

(4.31) t = Ax/(s%/r)}

where 4 is as defined before for (4.5), % = (%1, -+, &)’ is the vector of sample
means and s° is the pooled within-sample variance estimate

(4.32) Zl Z (zi; — &)°/n(r — 1)
i=1 j=1
with v = n(r — 1) degrees of freedom.
The required decision rule is then given by the simultaneous application
(4.20) of (4.30) where ty = t«(k,v',v") withk =c — landv' =v +n — 2 =
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n(r — 1) + n — 2 and where t,, can be obtained by analysis-of-variance type
steps as follow: Put S;, Spe, Spq and S, for the treatment sum of squares, the
sum of squares for the pq difference, the residual sum of squares for the pg dif-
ference and the error sum of squares

S =r Z Z; — C: Spq = r(jp - jq)2/2:

=1

She = 80 — Sy, se=(Zfo~,~—0)—st,

=1 j=I

(4.33)

respectively, where C is the correction term ( X1y 2 71 2:;)/nr. Let s,y denote
the pooled estimate of o* obtained as
(4.34) qu [S. + Spq/(l + v )]/v
Then ¢,, may be obtained as the square root of the variance ratio
to

(4.35) pg = pq/qu ’

thq is given the same sign as &, — Z, .
A more convement rule for apphcatlon can be obtained by expressing. the in-
equalities {p, S tx in the form d5, 2 d* where dx is a least significant value for

the difference dp, = &, — &, . From ty; = tx we get
th = Spa/Spa = V'Spa/[Se + (8¢ — 8p)/(1 4+ 7))
(4.36) [S. + (8¢ — Sp)/(L 4+ 7")] = vy
Spalv’ + /(1 4 ") = &IS. + S/ (1 + ).

But S,y = %rd%, , hence this gives d5, = di where
ke
(4.37) de = {f t[S. + 8/ + )/l + /(1 + 72)]}

From this and a check on signs it follows that the multiple comparisons Bayes
rule is given by the simultaneous application of the rules

(100), ldpql < d*’
(4.38) ox'(t) =<(010), dpg > ds,
(001), dpg < — .

6. Discussion.

5.1. On the additional error degrees of freedom. The emergence of tp, =
dpe/ (2rs)} with o' = v + n — 2 degrees of freedom as the component test sta-
tistic in the multiple comparisons solution may be surprising at first but less so
after due consideration. In giving u;, - - - , u» identical independent normal dis-
tributions with variance v%/r for risk-weighting purposes, the residual sum of
squares between treatments, S,y = 7)1 ¥i = 75’ D i% t; in Example 3 for
instance, is given the distribution of (1 4 %*)o’x%_z . On this basis

(5.1) sznq =[S, + Spq/(]- + v )]/1)
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becomes the appropriate estimator for ¢* in place of s* = S,/» and the result is
as might be expected. In practice a user might sometimes be reluctant to depend
on the prior distribution assumption to this extent however, and might even want,
see Subsection 5.3, to use Sj,, or better S;, to decide on an appropriate value
4* for v*. In such cases it would seem good sense to use a modified rule based on
tpq instead of ¢, . This would consist of simultaneous applications of

(100), dpg < dx
(5.2) $x'(t) =4(010), dpg > dx ,
(001), dpg < —dx,
where dx is the least significant difference
(5.3) de = (28%/7) 4,

with tx = t«(k, v, 4*) based on v degrees of freedom.

5.2. On the independence of the least significant difference and n. By far the most
striking feature of the multiple comparisons Bayes rule is the practically com-
plete lack of dependence of the least significant difference dx on n, the number
of means involved. (The dependence of dy« on n via the estimation of error as
discussed in the previous subsection is relatively trivial in this context and de-
creases to zero as v increases to «.) This is a direct consequence of the additive
losses assumption similar results of which have also been treated by Duncan
[3] and Thompson [15] and, in a more general form and context, by Lehmann [7].
In the past, a rule of this type, with d« not increasing with =, has been con-
sidered more or less unacceptable. The main basis of objection has been the
rapid increase in its so-called m-treatment significance level (Duncan [1] and
[3]) or its experimentwise error rate (Tukey [17] and [18]),

(5.4) an = Plrejecting H., | H,), Ho = Huyips - = pn,

with respect to n.
To illustrate, a non-increasing least significant difference of

d« = 1.960 \/20; = 2.770;
in the case v = « gives the experiment-wise error rates (found as upper-tail
probabilities Plg, > 2.77] of the range ¢.)
(5.5) on = 0500, a3 = .1223, @ = 2034, ---,  am = .9183.
The possibility in this case of wrongly rejecting the homogeneity hypothesis for
20 means, for example, with a probability of 91.83 per cent, may at first appear
to be unacceptably high. As a result, procedures have been proposed with in-
creasing significant differences aimed at suppressing the rapid increases in a, .
These have varied considerably from rapidly increasing significant differences
such as (in comparable cases, dropping the factor o;)

(5.6) 2.77,3.32, 3.63, ---, 5.01,
to more slowly increasing ones such as
(5.7) 2.77,2.92,3.02, --- ,3.47,
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depending on the relative importance attached to experimentwise error rates
and the degree to which they should be suppressed. The differences (5.6) termed
honest significant differences by Tukey [17] [18] suppress all of the experiment-
wise error rates to .0500. The differences (5.7) proposed by the author [1] and
[3] suppress them to less conservative so-called levels based on degrees of free-
dom .

(5.8) az = .0500, a3 = .0975, a5 = .1426, ---,  ayn = .6415,

obtained as a, = 1 — (1 — a;)™". A less conservative procedure yet is the
one due to Fisher [5] that uses the same least significant difference for all n
(2.77 in the case above) provided that first the homogeneity hypothesis H, can
be rejected by an F ratio test.

Now it appears that, in a Bayes sense, provided the losses are additive and
other things (e.g., k and +°) are equal, the same least significant difference is
optimum no matter how large the number n of treatments involved. (From
Lehmann’s work [7] it is clear that this would also apply under other optimality
criteria such as, for example, minimax.) The high experimentwise error-rate of
91.83 per cent in the case quoted might well be worth tolerating for instance,
because, it might be said, of the relatively low prior probability of the hypothesis
Hj involved and its relative unimportance among so many others.

The inverse form of dependence of the least significant difference dx on the
risk-weighting variance ratio v* may do much to reconcile its independence of n
with at least some of the common almost instinctive urge to make it increase
with n. In the case v = o it is d1rect1y proportional to (1 4+ 1/4%)! and approxi-
mately so for smaller values of ». If, in the conduct of a large experiment, the
treatments under study have a lower anticipated heterogeneity than those which
would have been studied in a more limited experiment with fewer populations,
a lower risk-weighting variance ratio v* would be appropriate and hence would
be a larger least significant difference. Such a situation could often arise in
practice, and, if 4° is varying in an interval of small values this could make a
substantial increase in the significant difference with an increase in n. On the
other hand, however, the reverse situation could also arise. In selection experi-
ments, for example, the treatments under consideration may be the top n per-
formers as assessed by experiences in previous trials. Here, the larger the num-
ber of treatments it has been possible to include in an experiment, the larger
will be the appropriate v* and hence, the smaller the least significant difference.

5.3. A practical adaptation of the Bayes rule. In the complete absence of prior
criteria for choosing 4%, the user might sensibly, it would seem, obtain an esti-
mate of it from the variance ratio
(5.9) F = ! n—ly—g (= 1 &, in Example 3)

) n— 13§ n—18
employed in the preliminary F test of Fisher’s least-significant-difference pro-
cedure. Since the ratio of the corresponding expectations is 1 + 4* he might for
example put 4 = F — 1, enter Table 1 with v* = 4%, and use the simple direct
rule as given (5.2) in Subsection 5.1. It is of considerable interest to note the
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closeness of Fisher’s earlier procedure to this type of adaptation. Both rules de-
pend on a preliminary inspection of the F ratio. In Fisher’s rule a big or small
F ratio leads to the use of an independently chosen least significant difference on
a go-no basis. In the new rule a big or small F ratio leads to the use of a small
or big least significant difference on a continuously related basis.

6.4 Concluding remarks. As presented the model is limited to a class of sym-
metric problems in which the loss and prior probabilities are invariant with
respect to all n! permutations of the means involved. Many problems in practice
however are naturally taken to be symmetric in this way. Within this class, the
assumptions of linear losses and normal prior densities would seem directly ap-
propriate for some problems and useful at least as good approximations for
many others.

From the given development it is fairly clear that similar rules for a wider
class of less symmetrical problems can be obtained leading to the use of differ-
ent significant ¢ ratios for each of the component or even each of the subcom-
ponent problems involved. Development and discussion of these are deferred to
a further paper.

A most interesting point is one raised (in private correspondence) by Pro-
fessor F. J. Anscombe following from the type of discussion i in Subsection 5.3.
In addition to providing an estimate of the prior variance 4° and therefore a
means of rejecting an assumed value for this parameter, the data may provide
evidence for reasonably rejecting other assumed features of the prior density.
Further developments are needed for handling problems of this type.

In conclusion, it is worth repeating, the most important result discussed in
Subsection 5.2 namely the independence of the least-significant-difference d« and
the number of components problems involved, depends only on the additivity
assumption for the losses. It is independent of the form of the component loss
functions and of prior density assumed. It appears further that the same result
would follow even if the class of component problems were extended to include
all contrasts among the means as considered by Scheffé [11]. Thus in a symmetric
situation, for example, the same significant ¢ ratio would be appropriate whether
it be desired to test just one comparison chosen a priori, the set of all in(n — 1)
comparisons in the multiple comparisons problem or the set of all contrasts.
The additivity-of-losses assumption on which this critically depends appears to
be a reasonable one, and appropriate to many practical situations.

6. Computation of significant ¢ ratios. In computing the values in Table 1 the
ratios g(y)/g(—y) in (2.22) may be simplified first to gi(y)/g:(—y) where

(1= ¢")! + ysin™y + my/2,
1+ 9y’
2(1 — ) + 38*(1 — &) + 3y sin”' y + 3my/2,
(6.1) q(y) =41 + y)“/(3 + ),
(1 +y)/(5+4y+y),
(1 + 9)°/(429 + 1384y + 2063y + 1776y°
+ 915y + 264y° + 33¢°), v = 14,

~

SR
I
oo

-

~

-

\



1032 DAVID B. DUNCAN

or to g2(2)/g2( —z) where
(6.2) g2(2) = f(2) + 2F(2), v= o,

and f and F are the standard normal density and cumulative distribution func-
tions respectively. These follow readily from (2.23) except for (6.2) in the case
v = o which can be obtained as follows.

Putting y = 2/(v + &)} and thus (1 — ¢%) = 1/(1 + 2°/») and dy =
dz/['(1 + 2%/v)} in g(y) in (2.23) we get

_ 1 2 * du
9(y) = (1 + 22/v) + 1+ zz/v)*/; (1 + w/o)@+dr

n (r0)[(v — 2)/2]! 2
[ — /2121 + 2/

Recalling that the probability density function of the Student ¢ distribution is

[(w — 1)/2! 1
@) — 2)/211 (1 + #/n)@r

(6.3)

(6.4) h(t|v) =

we may write

27y 2[H(z]v) — 3] 2/2
9(y) « (1 +2/v)'h(z|v) + 1 + 22/v)t + 1 + 22/v)?

(6.5)
« (1 4+ Z2/v)h(z|v) + 2H(z|v) = gs(2) say,

where H(z | v) is the cumulative distribution [Z h(t|v) dt. Treating g(—y) in
the same way we reach the result

(6.6) 9(y)/9(—y) = gs(2)/gs(—2),

which reduces to g2(2)/g2( —2) as v — ©.
Next, yx(k, v) or z4(k) is found as the solution of gi(y)/g:(—y) =k or
¢92(2)/g:(—2) = k respectively. Finally ¢4 is found as the positive square root of

(6.7) £ =v/(B % — 1) orfrom tx = 24/B.
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