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1. Introduction and summary. Given z;,7 = 1,2, --- , n, a sequence of n
observations, the following statistics for measuring dispersion are defined as
usual:
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Further, we define the following ratio criteria:
w' = 8/, W = d/s,
(2) wy = 8/s°, Wy = dy/s,
w'=8/8, U =d/d

Von Neumann [12] proposed the ratio' w® = °/s® for testing the randomness
of the sequence against the alternatives of serial correlation or trend. W = d/s,
which has the advantage of being simpler for computation, was suggested by
Kamat [8] for the same purpose. Similarly, we can construct two more ratio
criteria, ws = 63/s" and W, = dy/s, by using the second order differences. And,
finally, using both first and second successive differences, it is possible to con-
struct a third type of ratio criteria, u* = 83/8° and U = dy/d, which may also
be used for detecting serial correlation or trend in successive observations of the
sequence. (See Tintner [11].)

Under the hypothesis of randomness, when the z; are independent normal
(», o), the distributions of the ratio statistics w’, w3, W and W, are known,
either in exact or approximate form (Von Neumann [12], Kamat [8] and [9].)
Under the same hypothesis, Kamat [9] has shown that they are all asymptoti-
cally normal. (See also Anderson [1], Hsu [6], and Dixon [3].) The distributions,
however, do not appear to have been discussed under any alternative hypotheses
of non-randomness.

Received February 24, 1959; revised August 4, 1961.
1 It should be noted that both Von Neumann and Kamat used n instead of » — 1 in the
denominator of 82 = D ; (z: — £)%/(n — 1).
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‘As to comparisons of their discriminating powers, Anderson [1] has shown
that, against the alternatives defined by the density function

p(x1, 22, -+, %) = K exp [—2—15{(1 + o) Zl (z; — p)?

— 2p :.Z;; (z: — p) (@i — #)}] ’
or by

p(@1, @, v, Ta) = Kexp[—gl&g{(l + 0 = p)((z1 — p)’ + ( — 1))

+ A+ T @) - 2 3 (z = ) (aen — n)}],

a statistic linearly dependent on w” is the best criterion (in the Neymann-Pearson
framework) to test the hypothesis of randomness, that is to test p = 0. As
mentioned by Anderson, these density functions are modifications of the density
function of the circular autoregressive model, z; — p = p(ziy — p) + €5,
where the e; are independent normal (0, ¢), and are obtained from it by modify-
ing the end terms in squares and products. For the autoregressive model, how-
ever, he has shown that no such best criterion exists. We are not aware of any
other work on the power of these criteria.

In this paper, we discuss the distributions of these ratio criteria under another
alternative of serial dependence between successive observations, specified in
(4) below, when the size of the sample sequence is large. It should be noted
that this alternative of serial dependence is different from the alternatives con-
sidered by Anderson, and that it is not related to the autoregressive model
mentioned above. First, in Section 2, we show that all these ratio criteria are
asymptotically normally distributed under this alternative hypothesis. In Section
3, we obtain the means and the variances of the limiting normal distributions.
In Section 4, we present numerically the power for three sample sizes, n = 100,
200 and 400, and for some positive values of the serial correlation coefficient.
Power curves are also exhibited for n = 200 and 400. Finally, in Section 5, we
compare the relative efficiencies of these ratio criteria by using the Pitman cri-
terion of asymptotic relative efficiency, as extended by Noether [10].

2.1. Some theorems. We state below two theorems from Hoeffding and Rob-
bins [5] which will be used in proving the asymptotic normality of the ratio
statistics. (See also Fraser [4].)

TaeoreM 1. Let X, Xz, - - -, be a sequence of random variables which is m-de-
pendent (ie., (X1, Xz, -+, X,) 1s always independent of (X, , Xo1, -+ -,) for
s—r>m).If

(a) E(X:) = pi, and the second and the third moments exist for all X, and
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(b) the limp,ep ' D By Aisn = A exists uniformly for all i, where
m—1

A; = Var (Xiym) + 2 ZOCOV (Xivis Xitm),
=

then D71 X is asymptotically normally distributed with mean p = Y1y ps and
variance nA.

THEOREM 2. Let (Pn,Q,) (n=1,2, ---) and (P, Q) be random variables
over R*. If '

(a) (Pa, Qu) converges in distribution to (P, Q) asn — «,

(b) du (n =1,2,---) s a sequence of mon-zero real constants such that
limy,e dn, = 0,

(¢) H(z,y) is a function of real variables (x, y) which has a total differential
at (0, 0), with
’ _ 3H(z,y)

H, =

g, = 2H(=y)
0o’ Yy ©0

ox

which are not both zero, then as n — « the random variable
Wn = d;l{H(ann ] ann) - H(O) 0)}

converges in distribution to H.P + H.Q .

Further, if (P, Q) s normally distributed with mean (0, 0) and a non-singular
g g], then W, will have a limiting normal distribution with
mean 0 and variance H1A + 2H,H,B + H3C.

From Theorem 2 we get the following

CoRroLLARY 1. If T and V are random variates with E(T) = T, and E(V) =
V., % 0, and if n}(T — T.) and n*(V — V,) have a distribution which is in the

limit bivariate mormal with a non-singular covariance matrix [‘; g], then

covariance matrix

2 (T/V — T,/V,) will have a limiting normal distribution with mean zero and
vartance

(3) V’A — 2T.V°B + T.v.'C.
The result follows by taking H(z, y) = (z + T.)/(y + V.) and d, = n%.

2.2. Definition of the alternative hypothesis: bounds for p. Suppose
zi,t=1,2, -+, n, is a sequence of normal variates with common mean, ,
common standard deviation, ¢, and common correlation coefficient, p, between
successive observations z; and z;4;, and zero correlation otherwise. Since the
ratio statistics are independent of u and o, we may, without loss of generality,
define the alternative hypothesis as follows:

(4) E(@) =0, E@)=1  E@@an) =p Ez) =0

otherwise, for all 7 and j.
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It should be stated here that the admissible upper bound for |p| is not 1 but
is 1. The n X n correlation matrix of the alternative (4),

p 00 --- 00
o p 0 - 00
0 p 1 p --- 0 0},
0000 --- p. 1

must be positive definite and this imposes the restriction
lol < (%) sec (x/(n + 1)).

It follows that the upper bound for |p|, valid for all n, is 4. The various correla-
tion coefficients which are introduced in Section 3 below, and which contain the
parameter p in their expressions, also impose different bounds on |p|. Examining
these bounds it is found that they are all covered by the restriction |p| < .

2.3. Asymptotic normality of the ratio statistics. We now show that the ratio
statistics defined in (2) are asymptotically normally distributed under the al-
ternative of serial dependence between successive observations, as specified in
(4) above. & and d are sums of 2-dependent sequences, and 6* and d; are sums
of 3-dependent sequences, and they all satisfy the conditions of Theorem 1. It
follows that they are all therefore asymptotically normally distributed under
the alternative (4).

To show that s* and s are also asymptotically normally distributed under the
alternative (4), we use Theorem 2 above. Let

Pn= _*Z(x?—l)y Qn=n}£y (£= in/n)'

Taking H(z,y) =z — 4" + 1,and dn = nt, we have
H(0,0) =1, H, =1, H, = 0.

By Theorem 2, the random variate n *[(n — 1) (s?/n) — 1] has the same limit-
ing distribution as that of P, . Under the alternative (4), however, P, is a sum
of 1-dependent sequence and it is therefore asymptotically normal by Theorem
1. It follows that s’ is asymptotically normally distributed with mean unity
under the alternative (4). Similarly, by taking H(zx, y) = (v — y* + 1)}it can
be shown that s also is asymptotically normally distributed with mean unity
under this alternative.

Finally, by Corollary 1, the ratio statistics w’, ws , W and W, are asymptoti-
cally normally distributed. Since 8’ and d have non-zero means (see Section 3),
it follows, by the same Corollary, that u* and U are also asymptotically normally
distributed.

2.4. Notation. If X, is asymptotically normally distributed with mean a, and
variance b, , @, may not necessarily be near E(X,) and b, may not be near
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Var (X,), for large n. The notation E.(X,) and Var, (X,) will therefore be
used in this paper to denote a, and b, respectively.

3.1. Limit distributions. We now apply Corollary 1 to the ratio statistics de-
fined in (2) to obtain the means and variances of their limiting normal distribu-
tions. Since 7 is large, terms of orders O(1) and O(n™!) alone are retained in the
expressions for the means and the variances respectively.

3.2. Limit distribution of w2 In order to find the mean and the variance of
the limiting distribution of w* under the alternative defined in (4), the first and
second order moments of s* and &° must be determined. This consists of evaluat-
ing the expectations

(5) E(s"), E(s"), E(8"), E(8"), E(5""),
which in turn depends on the evaluation of the expectations
E(s%), E(%), B(&), E(&), E(z%)), E(yi), E(v), E(yii), E(&Y:), ete.

where, for the sake of simplicity, we have put y; = z; — ;41 . Now 2, y; and
Z are normally distributed with means zero and variances 1, 2(1 — p), and
n%[n + 2(n — 1)p] respectively. Their mutual correlation coefficients can also
be found; e.g.,

p(z: ’ ye) = %(1 - P)}, P(xi , yi—Z) = —P/[2(1 - P)]’;

o 1+p oy = 12
p(.’l)l,.’l?) _[n+2(n_1)p];; P(y1,yu+l) _2(1_}7)’

and so on. Hence all these expected values can be worked out; e.g.,
E(zt) =3, E(#) =3n7'(1 4 20)" 4+ 0(n™),
E(y) = 12(1 — p)’,  E(&y) = 207'(1 — p)(1 + 2p) + O(n7),

etc. Evaluating the expectations in (5), after considerable simplification, we
get the following results for large n.

(6) E(s) =1 — [2p/n] = 1,

(7 Var (s*) = [2(1 + 2¢")/n] + O(n™%),

(8) E(@#) = 2(1 — p),

9 Var (") = [4(3 — 8p + 70°)/n] + O(n™"),
(10) Cov (&, ") = [4(1 — 2p + 2¢")/n] + O(n7").

Finally, by Corollary 1, for large n we have
(11) E.(w") = [E(8")/E(s)] = 2(1 — p) + O(n7"),
Var, (w') = [Var (8) — 4(1 — p) Cov (&, s*) + 4(1 — p)® Var (s°)]

(12) 2 4 -1
=[4(1 —3p" + 4p)/n] + o(n™).
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3.3. Limit distribution of W. The evaluation of the mean and variance of the
limiting distribution of W, under the alternative (4), differs, in some respects,
from the procedure followed in 3.2. We shall first evaluate the mean and variance
of d, for which we require E(d) and E(d?). These expectations can be found by
the use of the formulae for bivariate absolute moments, given by Kamat [7],
by substituting therein the appropriate values of the variances and the correla-

tion coefficients. For instance the following expectations are used in determining
E(d) and E(d).

E(ly]) = 22771 — p)t,  E(y) = 2(1 — p),
E(lyll9e]) = 2013 — 40) + (1 — 20)¢),
(13) E(y| lys]) = 20 (2 — 5)(2 — 30)1 + o},

After substitution and some simplification we have
E(d) = 20 (1 — p),
(14) Var (d) = 2(mn) {(x — 10)(1 — p) + 2[3 — 4o}
+ 2[(2 — 0)(2 — 30)1' + 2(1 — 2p)¢1 + 20¢s} + O(n7Y),

where ¢, , ¢, are defined in (13).

The derivation of the other three results E(s), Var (s) and Cov (d, 8) re-
quires the use of the following

TuEOREM 3. Let H(v, s°) be a function of two arguments, v and s°, where v is a
statistic (e.g., d or dz) based on the first or second differences. Suppose the following
two conditions are satisfied: ’

(1) In some neighborhood of the point v = E(v), s = E(s%), the function H
18 contiznumts and has continuous first and second order derivatives with respect to
vand s

(2) The third order moments of v and s* are of order O(n™"). |

Let Hy, Hyu , Hie and Hy, be the values of H and its partial derivatives of second
order in the point v = E(v), s* = E(s”). Then

E(H) = Hy + (3)Hy Var (v) + Hy Cov (v, 5%
+ (3)Hx Var () + 0(n7?).

(A proof can be given on the same lines as for Cramer’s Theorem in [2], p. 353
and is therefore omitted).

Now it can be easily verified that the third order moments of d and s*, under
the alternative (4), are of order O(n%). Taking H (v, s*) = (s°)}, and applying
Theorem 3, we have

E(s) = [E()) — (3)(E(s)) ™ Var (6,

(15)
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and substituting from (6) and (7), for large n, we have
E(s) =1 — (Dn7' (1 + 40 + 20°) + O(n7)
= 1.

Then, from (6) and (16), we have
(1) Var(s) = B(s) — E(s) = [(1 + 26)/20] + O(n™).

To determine Cov (d, s) we must find E(ds) which is done by taking
H@d,s§) = d(s")} and using Theorem 3. We then have
E(ds) = E(@)[E()] + (3)(B(s") ™ Cov (4, &)

— () E(d) (E(s")™ Var (),

and it is now necessary to evaluate Cov (d, s’) = E(ds*) — E(d)E(s"). For
finding E(ds®) we use bivariate absolute moments with the appropriate values

of the variances and the correlation coefficients. This enables us to evaluate
terms such as

(16)

(18)

A | _ 92
BT lwh) = 2ol B

and others, which occur in E(ds"). Then, after considerable simplification, we
have

(1 =20 + 20"
n[x(1 — p))*
and using the results (6), (7), (14) and (19), in (18), after further simplifica-

tion, we get

(19) Cov (d,") = 2 + 0(n™®),

NV 1—2 42 -2
(20) Cov (d, s) = TEd = aF + 0(n™°).
Finally, applying Corollary 1, we have, for large n,
~ B _ 20 —p)’ -
@)  B.(W)=xpe=——F 0(n™),

Var.(W) = [E*(s)][E*(s) Var (d) — 2E(s)E(d) Cov (d, s)
+ E*(d) Var (s)]
= 2(ne) (1 — p) — (11 — 13p + 2¢* + 20°) + 2[3 — 4p)’
+ 2[(2 — p)(2 — 3p))F + 2(1 — 2p)¢1 + 20¢2} + 0(n7),
where ¢, , ¢; have the values given in (13).

3.4. Limit distribution of wj . As in the case of w?, here we have first to find
E(83), Var (83) and Cov (83, s*) under the alternative defined in (4). This is

(22)
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facilitated if we take z; = x; — 2x;41 + Ziy2. Then, 2;, £ and z; are normal
variates with zero means and variances 1, n™’[n + 2(n — 1)p] and 2(3 — 4p)
respectively, and their mutual correlations can be found; e.g.,

oy 1=2 ) = 2T
p(x,,z,)—my p(z1720+1)—2(3_4p)!

- [
y21) =

P& 5) = GG = T 2 = DA

etc. We then evaluate the expectations E(23), E(z2}), E(2}2}), E(z32)), E (8%23),

etc. and following the same procedure as in 3.2, after considerable simplification,

we have

(23) E(33) = 2(3 — 4p),
2
(24) Var () = 285 = 10 & 980) 4 oy,
. 2

(25) Cov (33, §) = 46 — 8: +7) + 0o(n™%).
Finally, by using Corollary 1, we have, for large n,
(26)  B.(ud) = Z9) _ 93 — 1) + 0(n7)

SV =EE) ’

Var. (wd) = [Var (62) — 4(3 — 4p) Cov (53, &) + 4(3 — 4p)? Var ()]

(27) _ 417 — 16p — 466" + 160" + 6499 |

n

3.6. Limit distribution of W, . We proceed in the same manner as in the case
of W and first find E(d;) and Var(d.), under the alternative defined in (4). For
this purpose, we need the following bivariate absolute moments.

E(lal) = 2573 — 4p)’,
E(lallze]) = 207[(20 — 40p + 150 + (4 — 7p)¢il,
E(lallasl) = 277'[(35 — 88p + 485")} + (1 — 4p)e],
E(lallzd) = 277'[(36 — 96p + 630)! + pes],

where

R 4—7p) _._1<1—4p)
oo (=) em e (= g):

(28)
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Then by the usual procedure, after much simplification, we have
(29)  E(d) = 20 '(3 — 4p)},
Var (d) = 2(7n) [(r — 14)(3 — 4p) + 2(20 — 40p + 1501}
(30) 4+ 2(35 — 88p + 48p")! + 2(36 — 96p + 63p°)*
+ 2(4 — To)¢s + 2(1 — 4p)s + 20¢5] + O(n™).

To find Cov (d,, s) we need E(dss), which, by Theorem 3, can be written in
the form

E(dss) = E(d)[E(HT + (3)(E(5)) ™ Cov (da, &%)
— (3)E(d) (E(s")) ™ Var (s%).

Proceeding as in 3.3, using the appropriate bivariate absolute moments, it
can be shown that

(31)

(3 — 8 + 7o)
n[xr(3 — 4p)]

Finally, using (6), (7), (29) and (32), in (31), after much simplification, we
have

(32) Cov (ds, &) = 2 + 0.

(33) Cov (ds, 8) = % + o(n™).

Then, by Corollary 1, we get, for large n,

— ]
(38)  E.(Wa) g%((‘?)) _ 2B =4 o,
Var. (W) = [E*(s)][E*(s) Var (d;) — 2E(s)E(dz) Cov (ds, S)
+ E*(d,) Var (s)]

= 2(nw) [x(3 — 4p) — (45 — 68p + 8" + 8p')
+ 2(20 — 40p + 150°)! + 2(35 — 88p + 48p%)}
+ 2(36 — 96p + 630")} + 2(4 — 7Tp)¢s
201 — 4p)¢u + 2p¢] + o(n7),
where ¢; , ¢4, ¢5 have the values given in (28).

3.6. Limit distribution of +’. In Section 3.2 it was shown that &’ is asymptoti-
cally normal with mean 2(1 — p). Therefore, by Corollary 1, u’ = 53/% is also
asymptotically normal, provided p # 1, and further, the mean and the variance
of the distribution for large n, are given by

2 E(82) _3—4p
(36) E.(u =E® - 1=p’

(35)
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1) Var. (v') = 4(1 — p)~'[(1 — p)* Var (52)

— 2(1 — p)(3 — 4p) Cov (3, 8") + (3 — 4p)* Var (5")].
In (37) the only term which is not so far evaluated is Cov (82, 8°). Since y; , 2z
are normally distributed and p(y., 2z;) can be determined, e.g.,

3 3—4p
p(yi,2:) = 2[(3 — 4p)(1 — p)¥’

all expectations in the expression for Cov (57, 8*) can be evaluated. Substitution
and simplification leads us to

(38) Cov (82,6%) = [8(5 — 15p + 13p")/n] + O(n™%).
Finally, using results (9), (24) and (38), in (37), we have, for large n,

2(1 — 3p + 20" + o)
n(l — p)*

3.7. Limit distribution of U. In 3.3 it has been shown that d is asymptotically
normally distributed with mean 2(1 — p)}/x*. Hence, applying Corollary 1, it
follows that U = d,/d is also asymptotically normally distributed, provided
p # 1. Further, the mean and the variance of the distribution, for large n, are
given by

IR\
i =580 < (5=%)'

(39) Var. (¥f) = + o(n™).

Var. (U) = 4(1 [(1 — p) Var (d2)

)2
— 2[(3 — 4p)(1 — )} Cov (dz, d) + (3 — 4p) Var (d)].

In (41) the only term which is still to be determined is Cov (d;, d). This re-
quires the evaluation of E(d;d), under the alternative (4), which in turn de-
pends on the evaluation of bivariate absolute moments of the type E(|yz;]).
These can be determined as before from the formulae for absolute moments;

e.g.,

(41)

E(lyill2) = 22713 — 40)* + (3 — 4p)g,

where ¢s is defined in (43) below. Then, following the usual procedure, after
considerable simplification, we have ;

Cov (do, d) = 4(nm)[(12 — 28p + 150" + (11 — 22p + 7p")}
(42) + (3 —4p)* — 6[(1 — p)(3 — 40)1' + o6 + (1 — 3p)¢r
+ (3 — 4p)¢sl + O(n7%),
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where

a1 14 . = sint 1— 3P
¢s = sin (2[(1 — 0@ = 4p)]*>’ ¢ = sin (2[(1 - 03B — 4P)]*)’

IR | 3 - 4p
o= ™ (= 4p)1*>'

And, finally, substituting the values given by (14), (30) and (42), in (41), we
obtain, for large n,

Var. (U) = [n(1 — )] ™{x(1 — p)(3 — 4p) + (3 — 49)[(3 — 4p)*

+ ((2 = 0)(2 = 30)  + (1 — 20)¢1 + pto]
+ (1 — p)[(20 — 40p + 150" + (35 — 88p + 48p")°

(44) + (36 — 96p + 630")" + (4 — Tp)ds + (1 — 4p)¢x + pohi]
— 2((1 — p)(3 — 4p))*[(12 — 28p + 150")*
+ (11 — 220 + 7)) + (3 — 40)* + pts + (1 — 3p)én
+ (3 — 4p)¢ul} + o(n™),

where ¢; to ¢s are defined in (13), (28) and (43).

(43)

TABLE 1

Power of ratio statistics against serial correlation (p = 0.000 (0.025) 0.300) for
sample sizes n = 100, 200 and 400
(Table gives 1000 X power)

w? w w} W2 u? U

~

B8B5EEESERE | <

100 | 200 | 400 | 100 | 200 | 400 | 100 | 200 | 400 | 100 | 200 | 400 | 100 | 200 | 400 | 100 | 200

400
050| 050| 050| 050, 050| 050| 050| 050| 050| 050| 050| 050 050, 050 050 050 050| 050
081| 098| 126/ 078 092| 115 078] 094| 120| 078 092| 116/ 074| 085/ 103| 069 077| 090
125| 173| 259| 117| 157| 226| 117| 162| 244| 116| 157| 229| 107| 137| 190| 094| 115 150
183| 278| 442| 168| 245| 381 169| 260| 421| 168 248| 391| 151| 210| 315| 126 166| 236
256 407| 641 231| 356 559| 236 386| 623| 232| 365| 578| 206| 305| 472| 166| 232| 346
343| 550 809| 306] 482 728| 319| 530 802| 312| 499| 754 274| 419| 639 214| 312| 475
611
739
845
920
965
988
997

440| 689| 919| 392 611| 858| 416| 678 921 405/ 638 884| 355| 545| 787 271| 405
544! 808| 974| 484| 731| 939| 524| 807} 978| 506 764| 957| 446| 671| 896 337| 508
647| 896 994! 579 830| 978| 636 903| 996 611| 865 988| 545| 785| 959 412| 614
743| 951| 999| 672| 904| 994| 744| 961| 999| 712| 934| 998| 646| 876| 988 493| 716
826 981| — | 753| 952| 999| 838| 988 — | 803| 973| — | 742| 939| 997) 578} 807
892| 994| — | 830| 979| — | 911 997| — | 878 991| — | 828| 975 — | 664| 881
940 998 — | 889| 992| — | 959] — | — | 933| 998/ — | 897| 992| — | 746| 935

coocoocoo00000

o
g3

(Dashes indicate that the corresponding power is almost unity or greater than 0.999).
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4. Comparison of power for large samples. Since the six ratio criteria, defined
in Section 1, are asymptotically normally distributed for the null hypothesis of
randomness, (p = 0), as well as the alternative of serial dependence defined in
(4), we may compare their power with the help of the means and variances of
their asymptotic distributions obtained in Section 3 above. This is done in
Table 1, where the power of the six ratio criteria is given for p = 0.000 (0.025)
0.300, and for sample sizes n = 100, 200 and 400. (It is assumed that the ratios
are almost normally distributed for these sample sizes and for these values of
p.) Power curves are also drawn for n = 200 and 400.

The following conclusions seem to emerge from the study of Table 1.

1. The ratio criteria w’, w; and «*, which are based on the squares of successive
differences, appear to be more powerful, in general, than the corresponding cri-
teria W, W2, and U based on the absolute values of successive differences.

2. For alternatives very near the null hypothesis, (p» = 0), w’ seems to be
the most powerful amongst the six criteria; but for alternatives which are fur-
ther away, w§ seems to take the lead over w’ and it is actually the most powerful
for certain values of p.

3. An equally surprising fact is the superiority of W, over W, for alternatives
further away from p = 0. A comparison of the corresponding columns, for
n = 400, suggests that W, may be more powerful than W for all alternatives,
provided 7 is sufficiently large. It looks as though W is the least powerful among
the four criteria, w’, W, ws and W . (See Section 5 below.)

4. u’ appears to be more powerful than U. It even seems to catch up with W
for alternatives further removed from p = 0. In general, however, both «* and
U are inferior to the other four.

6. Asymptotic relative efficiencies. It is clear from these investigations that
when the sample size becomes sufficiently large the powers of all the six ratio
criteria, defined in Section 1, will be practically unity. In other words all of them
are then equally efficient or powerful. In such cases, where the power function
does not provide a satisfactory approach for comparison, one may use the ap-
proach of asymptotic relative efficiency, suggested by Pitman and extended by
Noether [10]. It should be remembered, however, that in this approach the
alternative hypothesis is formulated in such a manner that the parameter de-
fining the alternative tends to its value for the null hypothesis, as the sample
size tends to infinity. Briefly, Noether’s extension which is used here, may be
stated as follows:

Suppose we want to test a null hypothesis, § = 6,, against the alternative,
0 = 0, > 6, where 6, — 6 as n — . Let the two tests which are to be com-
pared be based on the two statistics, Th1 and T. , which are asymptotically nor-
mally distributed under both the null and the alternative hypotheses. Let
E(T:) = ¢:(6) and Var (T:) = 0¢3(6), 1 = 1, 2; and further let m; be the least
integer for which ¢{™"(6;) = [9™¥:(0)/80™lsms, %~ O, for i = 1, 2. Defining
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8; > 0, such that

. Ty (gy)
(45) E.I-I}:’ 0’,‘(00)

Noether has shown that, in the particular case whenm; = 1andé; = 3,7 =1, 2,
the asymptotic relative efficiency of the test based on 7, as compared to the
test based on 7T, is given by the formula

(46) En = C3/Ch.

(It should be mentioned that the C; should be both positive or both negative.)
We now apply this technique to compare the criteria w, W, ws , W, , w* and U
with one another. Taking

(47) Hy:p=p =0, H,:p=p,>0,

and assuming that p, — 0 as n — o, it is easy to verify that all these criteria
satisfy the conditions mentioned above, and that m = 1 and § = } for all of
them. It is fairly straight-forward to calculate C* in each case. For instance,
taking T = w’, we have

(48) E(T) =¥(p) = 2(1 —p), (3/3p)o = =2, o'(m) = 4/n.

Hence m = 1 and d = , and, using (45), we get T* = 1.
The values of C°, (which are obtained more conyeniently than those of C°),
for the six ratio criteria are given below.

w 1

W 8x/3 — 2(7 — 24/3) = 1.3058

w;  17/16 = 1.0625

(49) W, 97/8 — 99/8 + () (25 + /35 + 4 sin™ (3)

+ sin”! (3)) = 1.2656

u 2
6(7 — 4v/3) + 12(2/5 + V35 + 3/3 — 24/33 — 6)
+ 12(4sin”" (3) +sin”' (3) — 24/3Bsin’ (2v/3)7)
= 3.3595

Using (46) we calculate the asymptotic relative efficiencies of the ratio criteria
with respect to w’. They are as follows:

w 1.000, w 0.766,
(50) ws 0941, W,  0.790,
u* 0.500, U 0.298.

= Cs, 1 =12
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From these values it follows that the three criteria w’, wj , u’, based on the
squares of successive differences, are more efficient than the corresponding three
criteria, W, W, , U, based on the absolute successive differences, which confirms
a similar conclusion, drawn above, from Table 1. It is also interesting to note
that wj , which is based on second order differences, is more efficient than W,
which is based on first order differences. But perhaps the most surprising result
is that W, is more efficient, although only slightly so, than W. We had noted, in
our comments on Table 1, that the power functions of W and W, , for the sample
size n = 400, almost indicated this result. It may be observed in this connection
that the alternative hypothesis, (47), assumed in the Noether procedure, ap-
plied above, corresponds to those alternatives defined in (4) which are very
near to the null hypothesis, (p = 0), together with large sample sizes, in the
power-function approach. In such situations the six statistics, as arranged in
the descending order of asymptotic relative efficiencies, will be

2 2 2
w,ws, We, W,u", U.
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