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by analytic continuation [see MacRobert [2], page 122], the equality in (14) holds
for —o < A < » and namely for the n + k/2 under consideration in expres-
sion (6).

Expression (6) can now be written as

k/2
16) = (3) e[ = 0]
o (p272/220'4)n
2 T+ Din £ 3% 094

But (8), with k& even, can be written in exactly the same form as (15). Thus,
(15) is the density function for p°, with % even or odd.
Letting ¥ = r°/2¢" and x”* = p’/d*, (15) can also be written as

f (é) df = f(x)e dx* =L (5:2)%@'2) exp (—7) exp(— ﬁ)
7 2\ 2 2
S ) dx”®
rmonll(n + 3k)°
Equation (16) is the non-central chi-square distribution, and the Fourier integral

derivation of Equation (16) is different. from that usually found in the litera-
ture—see Mann [3], pages 65-68 and Anderson [1], pages 112 and 113.

(15)

(16)
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A CHARACTERIZATION OF THE INVERSE GAUSSIAN DISTRIBUTION

By C. G. KuaTrI
University of Baroda, India'
1. Introduction and summary. M. C. K. Tweedie [2] defined the inverse
Gaussian distributions via the density functions
f@;m, \) = N (2r2®)] exp [—\(z — m)z/(2m2:r.)] forz >0

=0 forx =< 0.

(1)

The parameters A and m are positive. The corresponding densities reflected
about the origin, and with A and 7 negative, may also be considered as in the
Inverse Gaussian family. The characteristic function of the Inverse Gaussian
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INVERSE GAUSSIAN DISTRIBUTION 801

distribution with parameters A, m is

(@) ¢(8) ='exp M1 — (1 — 2D} /m], i =+/~1T,
for all real values of ¢. If ;, 2, - - - , @, are n independent observations from
(1), then y =2 7 ,z; and 2 = D ;4 2;  — n’y " are independently dis-

tributed. The distribution of y is f(y, nm, n°\) and that of Az is Chi-Square with
(n — 1) degrees of freedom.

In this note, we prove that, if z;, z2, - - - , 2, are independently and identi-
cally distributed variates, with the existence of certain moments (different from
zero), and if y and z are independently distributed, then the distribution of z; is
Inverse Gaussian.

2. A characterization of the Inverse Gaussian distributions.

THEOREM. Let z; , &2, -+ + , Tn be independently and identically distributed vari-
ates and let the expected values of z, «°, z* and (Z}Ll ;)" exist and be different
from zero. Then the necessary and sufficient condition that the variates follow In-
verse Gaussian distributions s that y = D jaa; and 2z = D 1@ — n'y "
are independently distributed.

Proor. Let ¢(t) and F(x) be respectively the characteristic function and the
distribution function of z. Then, since |exp(¢pz)| = 1 for any finite p, for any
real value of ¢ lying between (—7, ), T = «, we have on account of the

result (7.3.3) of Cramér ([L], p. 68),
de(x) f_; exp (ipz) dp = /_; dp feXP (ipz) dF(z) = f_;«ﬁ(p) dp,
and, since E(z™) exists, we have
f AF(z) [ ; exp (ipz) dp = / (iz) " {exp (itx) — exp (—iTx)} dF(x).
Hence, we have
3  [a " exp (ite) dF@) = i [ : o(p) dp + [ o™ exp (—iTa) dF ().

Similarly, remembering z;, ¢ = 1, 2, 3, -+ , n, as independent and identical
variates and the existence of the expected value of 4y, we have
n t
[ [y e ) ITar) =i [ o)l dp
(4) ” §
+ [ [ v exp (—imy) T aFzy).
J=

Now since y and z are independently distributed, and E(z™) and E(y ™)
exist, i.e., E(z) exists and, say, E(z) = (n — 1)g, we have

(5) Elz exp (ity)] = (n — als(9)]".



802 C. G. KHATRI

Also, on substituting the values of z and y in the definition of expection, we have

Elz exp (ity)] = / e f il xfl'kfI exp (ttz) dF (ax)
(6) - )
— nl [ - fy—l exp (ity) g dF (xz).

Here we may note, on the right of (6), the signs of summation and integration
can be interchanged. Then using (3) and (4) in (6) and noting (5), we have

o1 [ ooy dp — i [ a7 oxp (=ia) d(a)

(7) _nz [[—; {¢(p)}"dp _ Zf fy—l exp (—iTy)JI:IldF(xj)]

+ i(n — Dglo(0)]" = 0.

Differentiating (7) with respect to (w.r.t.) ¢ and then noting that ¢() > 0 in
the neighborhood of ¢ = 0, we have

® ¢ [[ oo ap—i [+ e (~il) aF @) | = BOF = iaw' 0

According to the assumptions of the theorem, E(x) and E(2") exist and are dif-
ferent from zero. Hence ¢'(0) = 0, ¢”(0) exists and the differentiability of ¢’(#)
implies its continuity in the neighborhood of ¢ = 0. Then, dividing (8) by ¢'(t)
and differentiating it w.r.t. {, we have

9) #(1) = ige’ (1) + {[o()T6" () /16’ O]},

to be true in the neighborhood of ¢ = 0, or to be true for all real values of ¢
for which ¢(¢) = 0 and ¢'(¢) 5 0 or ¢'(t)/p(t) #= 0 and = .

Let a(t) = log ¢(). Then A'(t) = ¢/(t)/¢(t) ¥ 0 and = = in the neighbor-
hood of ¢ = 0 and h”(t) = {¢"(2)/e(8)} — {¢'(t)/(2)}°. On substituting these
values in (9), we rewrite it as

(10) R ()0 = ~ig.

Integrating (10) w.r.t. ¢ and then using #'(0) = im, (say), we have
W] = —(1 — 2igm’t)/m’.

That is, we can write ‘

(11) R = i(1 — 26gm’) 'm

to be true in the neighborhood of ¢ = 0 or to be true for all real values of ¢ for
which #/(t) # 0 and # «. Now integrating (11) w.r.t. { and noting ~2(0) = 0,
we have

h() = ={1 — (1 — 2igm’)}}/(gm).



HODGES BIVARIATE SIGN TEST 803

That is, we have
(12) ¢(f) = exp [£{1 — (1 — 2igm’t)}}/(gm)]

to be true for all real values of ¢ for which ¢(¢) # 0 and ¢'(¢) < 0. It was al-
ready demonstrated that (12) is valid in an interval around the origin in which
#(t) ¥ 0. Since ¢() is continuous, one has limy,o ¢(f — h) = ¢(t) = 0, how-
ever, it follows from (12) that this limit is not zero and this contradiction proves-
that ¢(£) = 0 for all ¢, so that (12) is valid for all £. On account of the uniqueness
theorem on the characteristic function ([1], (10.3.1) p. 93), we have the dis-
tribution of z as Inverse Gaussian, with the parameters ¢~* and (=m).

Lastly, the converse result, namely if z;, 2, - - - , , are independently and
identically distributed as Inverse Gaussian then y and z are independently dis-
tributed, is proved by M. C. K. Tweedie [2].

Thus, the theorem is completely proved.
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NULL DISTRIBUTION AND BAHADUR EFFICIENCY OF THE HODGES
BIVARIATE SIGN TEST

By A. Jorre! AND JEROME KLoTZ?

McGHll Undversity, Montreal

1. Summary. This note presents a simplified expression for the exact null
distribution of the Hodges bivariate sign test. The form is suitable for com-
puting both for small and large sample size and gives the limiting distribution
easily. A small table is given for the limiting distribution. The Bahadur limiting
efficiency of the test is computed relative to the bivariate Hotelling T? test for
normal alternatives. The value 2/# is obtained, which is the same as for the one
dimensional sign test relative to the ¢-test.

2. Introduction. Let V; = (X;: — X/, Y, — Y/),c= 1,2, -- -, n, be a sample
of n bivariate observations from a continuous distribution. The bivariate sign
test was proposed by Hodges [5] in 1955 to test the hypothesis that the median
is zero for the joint distribution. The test is based upon the statistic 4, which
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