SAMPLING WITH UNEQUAL PROBABILITIES AND WITHOUT
REPLACEMENT!

By H. O. HartrEy anD J. N. K. Rao
Towa State University

0. Summary. Given a population of N units, it is required to draw a random
sample of n distinct units in such a way that the probability for the sth unit
to be in the sample is proportional to its “‘size” z; (sampling with p.p.s. without
replacement). From a number of alternatives of achieving this, one well known
procedure is here selected: The N units in the population are listed in a random
order and their z; are cumulated and a systematic selection of » elements from
a “random start” is then made on the cumulation. The mathematical theory
associated with this procedure, not available in the literature to date, is here
provided: With the help of an asymptotic theory, compact expressions for the
variance of the estimate of the population total are derived together with vari-
ance estimates. These formulas are applicable for moderate values of N. The
reduction in variance, as compared to sampling with p.p.s. with replacement,
is clearly demonstrated.

1. Introduction. Most survey designs incorporate as a basic sampling proce-
dure the selection of » units at random, with equal probabilities and without
replacement drawn from a population of N units. It is, however, sometimes
advantageous to select units with unequal probabilities. For example, such a
procedure may be found appropriate when a “measure of size” x; is known for
all the units in the population ( = 1, 2, ---, N) and it is suspected that these
known sizes z; are correlated with the characteristics y; for which the popula-
tion total Y is to be estimated. One method (though by no means the only
method) of utilizing the z; is to draw units with probabilities proportional to
sizes z; (p.p.s.), a technique frequently used in sample surveys, particularly for
primary sampling units in multi-stage designs. Now the theory of sampling
with unequal probabilities is equivalent to multinomial sampling provided
units are drawn with replacement. On the other hand, it is well known from the
theory of equal- probability selection that sampling with replacement results in
estimators which are less precise than those computed from samples selected
without replacement; the proportional reduction in variance is given by n/N
(“finite population correction”). It has therefore been felt for some time that a
similar increase in precision should be reaped by switching to selection without
replacement in unequal probability sampling. However, the theory of unequal
probability sampling without replacement involves mathematical and computa-
tional difficulties and has therefore not béen fully developed.
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A general theory of unequal probability sampling without replacement was
first given by Horvitz and Thompson [4]. Since then, several papers have been
published on the topic; but we shall review here only the papers relevant to the
particular problem considered here. The estimator of the total Y as proposed
by Horvitz and Thompson is

™
with variance
N 2 yoop.. ,
(1.2) VD) =2 L 42 > —E gy — Y
1 T i'>i=1 ;' .

where 7; is the probability for the ¢th unit to be in a sample of size n and P
is the probability for the units ¢ and ¢’ both to be in the sample. Now when the
x; are exactly proportional to the y;, V( ¥) is zero which suggests that if we
make w; proportional to z;, i.e., if we set

N
(1.3) (n — Dm; = ';'Pw = yz:,

a considerable reduction in the variance will result since “z;”” and ‘‘y;”’ are cor-
related. Horvitz and Thompson, for the case n = 2, propose two methods to
satisfy (1.3) approximately, but their methods have some limitations. Yates
and Grundy [9] also deal with » = 2, and they suggest an iterative procedure
to obtain revised “size measures’’ which satisfy (1.3) approximately, but their
method becomes cumbersome when N becomes large. Moreover, this method
is unmanageable when n > 2. Des Raj [3] employs (1.3) as a set of N equations
for the N(N — 1) /2 probabilities P;»» and determines the latter by minimizing
(1.2) subject to (1.3). This leads to a “linear programming problem” for the
N(N — 1)/2 positive Py . The “objective function” (the variance) involves
the unknown population values y; and these are replaced by the known sizes z;
with the assumption that

(1.4) Yy: = «a + ﬁx,-

exactly. Even if this assumption is accepted, the method is clearly unmanage-
able for large N. Moreover, if it is assumed that the y; of the population satisfy
(1.4) exactly with unknown « and g, then, clearly the regression estimator has
zero variance and, even if an error term is introduced into (1.4), the regression
estimator would still be the “best estimator’” so that it is of little interest to
consider other estimators under such assumptions.

In this paper, we adopt a particular procedure of drawing a sample in such a
way that (1.3) is satisfied exactly with the original sizes z; . Although this pro-
cedure, which is described in Section 2, is well known to survey practitioners
(e.g., Horvitz and Thompson [4], p. 678), no formulas for the probabilities P
in terms of the ; are available in the literature, due to mathematical difficulties.
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These difficulties are resolved in this paper and compact expressions for the vari-
ance and estimated variance of ¥ are obtained for moderate values of N. In
Section 2, the sampling procedure is described and illustrated with the help of a
numerical example. Section 3 deals with the cases n = 2, N = 3 and 4. We
develop an asymptotic theory for the case n = 2 and N large in Section 4. In
Sub-section 4.1, P;; is explicitly derived in terms of the ;. Sub-section 4.2
deals with the evaluation of the variance formulas, and a numerical example is
given in Sub-section 4.3. Estimation of the variance is considered in Sub-section
4.4. Section 5 deals with the general case n = 2, and compact expressions for
the variance and estimated variance of ¥ are obtained, which are applicable
when N is relatively large compared to n. In Section 6, a comparison with ratio
estimation is made. .

The extension of the theory developed here for simple sampling to more com-
plex sample designs such as stratification, multi-stage sampling, ete., is compara-
tively straightforward and therefore is not presented here.

2. A particular sampling procedure.
2.1. Description of the procedure. It is easy to show that there is no sampling
procedure whatsoever satisfying (1.3) unless v = n(n — 1)/X and

(2.1.1) npi < 1,

where p; = z;/X and X is the population total of the z; . Henceforth we shall
only consider such sizes z: and associated probabilities p; which satisfy the neces-
sary condition (2.1.1). The following sampling procedure is now considered:

a. Arrange the units in a random order and denote (without loss of generality)
by j=1,2, -+, N this random order and by II;, = > i_; (np:), I, = 0,
the progressive totals of the (np;) in that order.

b. Select a “random start”, i.e., select a ‘“‘uniform variate” d with0 = d < 1.
Then the n selected units are those whose index, j, satisfies

(2.1.2) ILa=d+ k< I0;
for some integer k& between 0 and n — 1. Since np, = 1, every one of the n
integers k = 0, 1, --- , » — 1 will select a different sampling unit j. It is easy

to show that m; = np, for this sampling procedure.

2.2. Numerical example. Consider a population of N = 8 units arranged in a
random order and with sizes z; shown in the second column of Table 1. A sam-
ple of n = 3 is to be drawn using our sampling procedure. Instead of computing
the quantities np; we scale all computations up by a factor of X/n = 300/3 =
100. Thus we compute the progressive sums of the z; and these are shown in
column 3 of Table 1 and correspond to the quantities X II,/n. Then we select a
random integer between 1 and 100 and this corresponds to the quantity Xd/n.
In our example this integer turned out to be 36 and the selection of the three
units in accordance with (2.1.2) is shown in column 4. We must find the lines
(j) where the column 100 II; passes through the levels 100d = 36 (for £ = 0),
100d + 100 = 136 (for k¥ = 1) and 100d + 200 = 236 (for £ = 2). The units
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, TABLE 1
Selection of n = 3 units from population of N = 8 units (p.p.s.)
Unit Number Size Progressive Sum Start = 36
J z; 100 II; Step = X/n = 100
1 15 15 _
2 81 96 k = 0,100d = 36
3 26 122
4 42 164 k = 1, 100d + 100 = 136
5 20 184
6 16 200
7 45 245 k = 2,100d 4+ 200 = 236
8 55 300

J = 2, 4 and 7 are thereby selected. This procedure (either with or without the
initial randomization) has been frequently used but, in the absence of a better
theory, is usually treated approximately as a p.p.s. sample drawn with replace-
ment.

2.3. A cyclical analogue to the sampling procedure. From the point of view of
the mathematical treatment it is convenient to use an alternative but stochasti-
cally equivalent procedure to the steps a and b as follows:

a’. Arrange the units in a random order, denote by j = 1, 2, ---, N this
random order and form (as before) the progressive totals II; given by (2.1.2).
Mark off on the perimeter of a circle with radius n/(27) arcs of lengths (np;)
in clockwise direction starting at the top (jth unit corresponds to jth arc of
length np; on the circle).

b’. Select a uniform arc s with 0 < s < n. Then the n selected units are those
whose indices j satisfy

(2.3.1) IO, =s+k < I

for some integer k betwéen —(n — 1) and (n — 1) for which also0 £ s + %k <
n. Precisely n units are selected by this process. It is clear that all results in
Sub-section 2.1 still hold. For we know with certainty that of the above values

of s 4+ k the algebraically smallest will lie between 0 and 1 and this may be
identified with the variate d in step a.

3. The casesn = 2; N = 3 and 4.
3.1. The case n = 2, N = 3. Clearly we have

(3.1.1) Py =1—mp=m~+ms — 1,

where ¢” is the third unit in the population and 7; 4+ m» 4+ 7 = 2. Substitut-
ing for P;y from (3.1.1) in (1.2), and after some algebra, we get

(3.1.2) v(Y) = 21: (1 = m) ((yi/75) — Y,
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where Y* = 3> ! (1 — 7,)y;/=;. In the special case of equal m; = %, (3.1.2)
reduces to the well known variance formula in equal probability sampling with-
out replacement.

3.2. The case n = 2, N = 4. We evaluate P;; and assume’ without loss of
generality that

(3.2.1) m = and T = T
We distinguish two subclasses of the randomization results:

Class 1. The units = 1 and ¢ = 2 are adjacent on the circle.
Class 2. The units ¢ = 1 and 7 = 2 are separated by one unit.

It is easy to see that in class 1 the probability that ¢ = 1 and ¢ = 2 are the
sampled units is given by

, + -1 fm+m=1
(3.2'2) Pl = (7"1 2 ) 1 2
fm+m<l1
while in class 2, using (3.2.1), it is given by
m o+ w4+ w3 —1 fm4+m=1
(32.3) py = {mtmtm—D LT
o if m 4+ w3 > 1.

Since the relative frequency of sequences in the above classes 1 and 2 are in the.
ratio 3 to §, the overall probability Py, is given by

(3.2.4) Py, = 2P, + iP1, .

The substitution of (3.2.4) in (1.2) yields a formula for V(¥), although not in a
compact form. Similar results have been obtained for the case n = 2, N = 5.
As N increases, the exact evaluation of P, becomes more and more laborious
and, in any case, the resulting formula will be too complicated to yield a prac-
tical formula for V(¥). Therefore, we develop an asymptotic theory in the next
section and obtain compact expressions for V(Y).

3.3. Numerical example. To compare the efficiency of our sampling procedure
for the case n = 2, N = 4 with both the procedures of Yates and Grundy [9]
and Des Raj [3] we use the three populations examined by these authors. The
three populations have the same set of p; values and are given in Table 2.

Variances of ¥ for the three procedures and the three populations are given
in Table 3. Variances for procedures 1 and 2 are taken from Des Raj [3]. For
procedure 3 the variance is obtained from (3.2.4) and (1.2). It may be noted
that substitution of (3.2.4) in (1.2) gives an exact formula for the variance. The
variance of ¥ for p.p.s. sampling with replacement is also shown in Table 3 for
comparison.

From Table 3 it is seen that procedures 1, 2 and 3 are more efficient than

2 The numbering of the units ¢ = 1, 2, 3, 4 is here before randomization.
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TABLE 2
Three populations of size N = 4
Unit Population 4 Population B Population C
Number i Yi Yi Ys
1 0.1 0.5 0.8 0.2
2 0.2 1.2 1.4 0.6
3 0.3 2.1 1.8 0.9
4 0.4 3.2 2.0 0.8
TABLE 3
Comparative efficiency of four sampling procedures
Procedure Population 4 Population B Population C
Var. Eff. 9 Var. Eff. 9 Var. Eff. 9,
1. Des Raj 0.200 100.0 0.200 100.0 0.100 100.0
2. Yates and Grundy 0.323 61.9 0.269 74.3 0.057 175.4
3. Hartley and Rao 0.367 54.5 0.367 54.5 0.033  333.3
4. With replacement 0.500 40.0 0.500 40.0 0.125 80.0

sampling with replacement for all the three populations. For populations A and
B the linear model (1.4) is fairly well satisfied so that Des Raj’s “optimum
procedure” is more efficient. For population C the model is not appropriate so
that considerable loss in efficiency results from Des Raj’s procedure as compared
to procedures 2 and 3. No general statement can be made between procedures 2
and 3 regarding efficiency. However, it can be shown that procedures 2 and 3
have exactly the same V(¥) to order O(N") for large N. For the present ex-
ample with N = 4, this result for “large N’ does not, of course, apply.

4. The case n = 2 and N large. Since the case n = 2 is useful particularly in
stratified designs and since this case has been extensively dealt with in the litera-
ture, we consider this case in detail in the following subsections.

4.1 Evaluation of the probabilities P;;» . For the evaluation of P;;; we make the
following two assumptions: (a) =; < ¢N " for all < and N, and (b) e;N % <
S?s < ¢oN? for all pairs (7, 7') and N, where ¢, ¢; and ¢; are universal con-
stants and where SZ is the mean square of the 7; (j # %, ©/). It should be noted
that the upper limit in (b) is, of course, a consequence of (a). While assumption
(a) is vital, the lower limit in assumption (b) could be circumvented by a special
argument not given here. Under the above two assumptions it can be shown
that statements on the relative order of magnitude of our leading term V’(¥)
in the variance formula V() (see eq. 4.2.4) to the terms of lower order of mag-
nitude can be made. In fact it can be shown that the ¢{th lower order term in
V(?) divided by V’(Y?) is less than or equal to const. N_* (¢t = 1, 2, 3), where
the terms for ¢ = 1, 2 have been retained in equation (4.2.2). In order to sim-
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plify the argument, however, we fix an arbitrary scale of absolute order of magm-
tude by making, in what follows, the additional assumptions that 0 = y: = c*

for all 7 and N and that the variance formula in sampling with replacement,
V'(Y), is of order O(N %) (in practice this is usually the case). In sampling with-
out replacement V’/(¥) will be the leading term in the variance formula and it is
necessary, in order to supply formulas for moderately large N, to evaluate the
term of next lower order of magnitude in powers of N~ This term will represent
the gain in pre01s1on due to sampling without replacement. The variance of Y
to order O(N") is obtained by evaluating the probabilities P.: to order O(N ™~ %
and substituting it in the variance formula (1.2). For the benefit of smaller
size populations we also find V(¥) to order O(N®) by evaluating P;;» to order
O(N™*) and substituting it in (1.2).

We use the circular analogue to the sampling procedure described in Sub-
section 2.3. The total number of arrangements of the N units on the circle,
namely N, can be divided into (N — 1) groups according to whether there are
»=20,1,---, (N — 2) units “between” ¢ and 7', where “between” means
that we have v units when proceeding from unit ¢ to ¢ in clockwise direction.
There are N X (N — 2)! arrangements in each of these (N — 1) groups so
that they are all represented with equal probability 1/N — 1. Consider now
the contribution to P from a particular group with v units between units ¢
and ¢’. For the 7th unit to be in the sample, the inequalities I, ; < s + k£ < II;
must be satisfied where &k can take values —1, 0 and 1 and s is a uniform arc
with 0 < s < 2. This means that either II, ; < s < Il or II,; — 1 £ s <
O, —1if I, =1and II,;, + 1 < s <II; 4+ 1if II; £ 1 must be satis-
fied. Therefore, to evaluate P;; we have to add the contributions to P from
the first case, say Pis , and from the second case, say PY;» . Since the length
of the range of s is equal to m; in both cases, Pii and P7; are identical. Consider
now the evaluation of P;; . Since

(4.1.1) O, <s < I

a positive contribution to Py can be made only if

(4.1.2) IL+T,<s+1<IL+ T, 4+ =

is satisfied, where 7', = > ;. (4.1.2) can be written as
14+t—m—m <T,=14+1t— =,

where ¢t = s — II,_; . The uniform variate ¢ (like s) has an ordinate density of
1 and from (4.1.1) we have 0 < ¢ < ;. Therefore, the integrated contribution
to P« is given by

Ti

1Pr(l+t—m—m <T,=14+t—m)dt
(4.1.3) y
=3[ A+ — ) — P+t = m = m)ld,
0
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where F,(T) denotes the cumulative distribution function of the total T, .
Since the units are arranged in a random order prior to drawing the sample,
T, represents the total of » values of the =; drawn with equal probability and
without replacement from the finite population of (N — 2) values of the =;.
Therefore, noting that »_" =; = 2, we find that

w2 = =)
E(Tv) = —"—NT =T (say)

and

V(T,) = o[l —v/(N — 2)]18%s,
where :

N
=W =) 2 (m— #)
JAGA")

= W= A = - (@ == )/ - 2

Finally, adding the two (identical) contributions to Py and P{;, given by
(4.1.3), multiplying by the factor (N — 1)~ which represents the (constant)
probability of a random arrangement of N units in which v units lie “between”
units ¢ and ¢/, and summing over v, we obtain
N—2
Py = (N—-1)7"2
v=0
(4.14) .
e N I
0

In order to obtain usable results, we now evaluate an approximation to (4.1.4)
by expanding F,(T) in an Edgeworth series of which the cumulative normal
integral is the leading term. Edgeworth series representation of a cumulative
distribution function F(z) is (see, e.g., Kendall and Stuart [5], p. 158) given by

_ o~ i ki 1N
(4.1.5) F(x) = exp {];,D 7 (=1) }P(x),
where

P@) = 0" [ ew (-1 &y

D’ is the jth order derivative operating on P(z) and k; denotes standardized
cumulants. In what follows we assume, without loss of generality, that ¢ = 1
and ¢/ = 2. In our case, (4.1.5) is applied to the standardized variate

s = T, — (2 —m — m)/(N — 2)]
’ Sp{[l — v/(N = 2)]}
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in place of z so that F(z) is the finite proportion F,(2) (say) of values 2z, with
2, < z. This function is therefore a step function with a finite number of dis-
continuities and the complete series representation (4.1.5) will yield this step
function for almost all values of z while at the points of discontinuity the right
hand side of (4.1.5) will yield Pr(z, < 2) + 3 Pr(z, = 2). We, therefore, have

(4.1.6) F,(z) = P(z) — (ks/8)D*P(2) + R(v),

where the k; are the cumulants of z, and

7
(417)  R(v) = exp {Zj ’i(;—l) D”} P(z) — {1 - §D3} P(z)
7 ! !
and therefore is a double infinite series each term involving a power product
of the cumulants k; and an associated high-order derivative D'P(2), the term
with the least order differential is seen to be (ki/4!) D*P(2). In order to ex-
press the cumulant ks in terms of the standardized cumulant K; (say) of the
finite population of the =;, we make use of the results given by Wishart [8].
In terms of the variable z, we find, after some substitution, that

(418) ks = [v—* (1 — 2>% - {v* (1 - 2>_%/(N - 2)}] Ky

Substituting (4.1.6) in (4.1.4) we obtain
N—2

P12=(N"‘1)_IZ

v=0

fo’" {P(21) — P(z) — %[P(s)(zl) - P(s)(z2)]} e

(4.1.9)

where D’P(z) = PY(2),
3
21 = {t + 1 —m — 1)(2—7&—72)(N—2)_1} /Slg 1)% (1 — N 11_ 2) ,

(4.1.10)

b
. N VA L (= B
and the remainder term p is given by
N—2 L3%
(4.1.11) p=(N-D7Z fo [R(z) — R(z)] dt
while k; is given by (4.1.8). We now apply the Euler-Maclaurin formula

[/ o200 dt = 40) = ga) = @ — g (“5)

(b — a)3 @) (a + b) (b — a)5 5 /7
+ 5— )t om0 ¢ ),

(4.1.12)
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here formulated for a general function g(z) satisfying the required continuity
conditions, where g’ (z) denotes the rth order derivative with regard to x and
{ is such that @ < f < b. This formula is first applied to the differences

P(21) — P(z)
and P®(z) — P®(z) in (4.1.9) thereby giving rise to four terms involving
respectively P, P®, P and P'®. The integration over ¢ of these four terms is
then performed by again using (4.1.12). Retaining only the relevant terms in
(4.1.9) we obtain

N—2 3 —3
— _ 1) m T2~ p) T T2 V1 )
Pa= 0 = [T B2 + B PG

(4.1.13)

3 k —
+112:§f21 P(S)( ) 37287:221)1 P“)(vg)] dv+p+w+p',

where v; = 0[]l — /(N — 2)],
— 1 _ (2 — m — m) 1 _ v d
(4.114) Vy = [1 ot 2(1!'1 + 7l'2) -——]\7——_—2——]/8120 (1 N = 2) y

and p is given by (4.1.11) while w represents the aggregated remainder terms in
the application of formula (4.1.12) and p’ denotes the remainder when approxi-
mating D, by [ dv. The discussion of the remainder terms p, w and p’ is given
in Appendix I where it is shown that these remainder terms do not contribute
to Py to the order of approximation desired, namely O(N*).

We now evaluate the remaining terms in (4.1.13). The first term which in-
volves

PP (v) = (2m)~ exp [—03/2}
will be called A. We now make the transformation
(4.1.15) u=v— 3N —-2)
so that » = 3(N — 2){1 — [4u’/(N — 2)]}. Expanding the exponential in
P®(v,) as well as the term v in powers of u, we obtain
wie A" O [ exp (a7
— 417*p° + higher terms} (1 + 27%p" + $h~*p" + higher terms) dp,

where

(4.1.17) h=(2—m—m) (N — 278,

and the variable of integration has been changed to

(4.1.18) p=2uh(N —2)7L

Expanding the term exp { } in (4.1.16) and multiplying by the series inside
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(4.1.16) we reach
(N - 2) ™ T2 -1 h —p2/2
A = 2 r
(4.1.19) (N—=1) @ —m — m) (2r) [he
14+ 307(p" — p") + $7*(3p" — 6p° + p°) + higher terms] dp.
Since A is O(N*), we can (for large N) replace the integration limits in (4.1.19)

by — « and + » apart from errors which are O(e " N?). Using the standardized
normal moments we therefore obtain

. WV =2) m T
(N—'l) (2—11'1—‘"'2)

(4.1.20) A (1 — 1" + 307

to order O(N*). By a similar argument it can be shown that the first of the
two terms in (4.1.13) which involves P*®(v,) and which we call B, can be re-
duced to

_ m 58 (27)
6(N — 1)(2 — 7 — m)

h
f P P(p' — 1) — $7(p° — 6p' + 3p°) + higher terms] dp

B
(4.1.21)

while the other term involving P® (1), which we call C, reduces to

o - mmW —2)2n)
24(N - 1)(2 - m — 1l'2)

(4.1.22) A

. / (' — 1) — (P — 4p* 4+ p*) + higher terms] dp.
The integral of the terms retained in (4.1.21) is zero while C' can be seen to
be O(N~°) so that B and C do not contribute to Py to order O(N*). Finally,
consider the term D (say) involving k; in (4.1.13). Substituting for k; from (4.1.
18), we obtain

2(N — 2)'mm K;
3N —1)@2 —m — m)

D=

h
-(2r)7? j_-h e P “(p' — 3p%) + 1h%(8p° — 9p* — p°) + higher terms] dp,

and the evaluation of the terms retained yields

2K, S?z(N — 2)21r1 e

(4.1.23) D = TN =DE = m— m)

which is of order O(N™*) since

N 3
(4.1.24) K8 = (N -2 % (1r,- 2 Nﬂ_ - 1r:_»> '

3
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Adding the expressions 4 and D we obtain for the probability P;; an approxi-
mation to order O(N™*) given by

(N - 2)7!'1 e
(N —1(@2 —m — m)
where h is given by (4.1.17) and K; by (4.1.24). Since the last two terms in
(4.1.25) are O(N~ *), we obtain to order O(N~?) the simplified formula

N (N — 2)mim,
(N - 1)(2 - m — 7I'2)

(4.125) Pp = 1 —h?+ 307 — 2K, h (N —2)Y,

(4.1.26) P (1 —n?).

We now apply two checks to verify, independently of the arguments given in
Appendix I, that the remainder terms p, » and p’ do not contribute to P to
order O(N*), and that all terms to order O(N~ ‘) are retained in (4.1.25)
above. The first check is the special case when all =; are equal to 2/N so that
Sz = 0and A~ = 0, and (4.1.25) reduces to 2/N(N — 1) which is the correct
probability for units 1 and 2 to be both in a sample of size 2. However, this
check tests only the leading term in (4.1.25) since B = 0 so that the coefficients
of the remaining terms in (4.1.25) are not affected by the check. A more search-
ing check which takes account of all the terms in (4.1.25) is provided by testing
the order to which the equation

N
(4.1.27) }; Piw = (n—1m
is satisfied. It is shown in Appendix II that (4.1.27) is in fact satisfied to order
O(N™? if (4.1.25) is substituted in (4.1.27) which confirms that (4.1.25) is
correct to order O(N*).
4.2. Variance formulas to orders O(N ) and O(N®). In Appendix II we have
simplified (4.1.25) to the following expression:

Pir = dmimoll + 3(mi + m) + 3wl + w4 2mi i)
N

(4.2.1) — mimy ; il + #(mi + 7)) + 3l + mi7l)
N 2 N
+ T (; 7"?) — FWiTe <21: 1rf>

to O(N™*), where the subscripts 1 and 2 are replaced by 7 and ¢’ respectively.
Substituting (4.2.1) in the variance formula (1.2) we obtain after considerable
rearrangement of terms

—.-N . _1._1: &—YZ
v(F) = ;W’( 5) <7n- 5)
_1iy 3._12.N2. y"_YZ (S N2.2

(422)
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correct to O(N°®). If only terms to O(N') are retained in (4.2.2), we obtain
N 2

(4.2.3) V() =S m (1 - 1) (y_ - Z)
1 2 ™ 2

correct to O(N'). For the special case of equal probabilities =, = 2/N, (4.2.2)
reduces to the well known variance formula in equal probability sampling with-

TABLE 4
Data for population of size N = 20
1= 1 2 3 4 5 6 7 8 9 10
Yi 19 9 17 14 21 22 27 35 20 15
s 18 9 14 12 24 25 23 24 17 14
1= 11 12 13 14 15 16 17 18 19 20
Yi 18 37 12 47 27 25 25 13 19 12
zi 18 40 12 30 27 26 21 9 19 12

out replacement to O(N®). In sampling with replacement the variance of ¥ is

N Y 2
(4.2.4) V(D) =2 m (y— - _>

1 (L 2
which is of order O(N?). (4.2.3) when compared with (4.2.4) clearly shows the
characteristic reduction in the variance through the ‘finite population correc-
tions” (1 — im;).

4.3. Numerical example. Horvitz and Thompson [4] give an example of N = 20
blocks in Ames, Iowa. The data are reproduced in Table 4 below where y; de-
notes the number of households in 7th block and x; denotes the eye-estimated
number of households in 7th block. The probability =; for the sth unit to be in
the sample is taken proportional to the eye-estimated number of households
x;, i.e., m; = 2z;/X. In Table 5 below we give the evaluation of the variance
of ¥ from formulas (4.2.2), (4.2.3) and (4.2.4). Also shown in Table 5 are the
evaluations of the variances of alternative estimators which are described by
Horvitz and Thompson.

A comparison of the variances in Table 5 shows that sampling with p.p.s.
is vastly superior to sampling with equal probabilities. It must not be forgotten,
however, that there are other devices of decreasing the variance in the latter
case with the help of the known z; values, e.g., ratio and regression methods of
estimation. Among the procedures of p.p.s. sampling there is little to choose in
this example except that about 7% (235/3241) is gained in precision through
our procedure of sampling without replacement as compared to sampling with
replacement. It is of interest to exhibit the nature of convergence of the various
approximations to V(Y¥) by regarding the variance formula for sampling with
replacement as an approximation to O(N?) as set out in Table 6. The con-
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TABLE 5
Variances of various estimators of the total of the yi;-population shown in Table 4

Sampling Procedure Form of Numerical Value of
Estimator Variance of Estimator

Equal probability sampling without replacement Nj 16,219

p.p.s. with replacement Zn: Y/ 3,241-Eq. (4.2.4)

* Horvitz and Thompson procedure 1 i yi/P; 3,095

Horvitz and Thompson procedure 2 fn_‘, yi/P; 3,075

Present procedure; sampling without replacement zn: yi/m 3,025-Eq. (4.2.3)
and p.p.s. 3,007-Eq. (4.2.2)

* For a description of these procedures and definition of the P; see Horvitz and Thomp-
son [4], Tables 2 and 3.

TABLE 6
Approzimations to V(Y¥) for population of Table 4
Order of Formula V(Y) Difference
Approximation Used
O(N?) Eq. (4.24) 3,241 216
O(NY) Eq. 4.2.3) 3,025 18
O(NY) Eq. 4.2.2)

vergence in this example appears to be satisfactory although the population
size (N = 20) is much smaller than those encountered in survey work.

4.4. Estimate of the variance. Horvitz and Thompson [4] give an unbiased
estimate of V(Y) that seems to be unsatisfactory since it may take negative
values. Yates and Grundy [9] propose an alternative unbiased estimator of
variance which is believed to take negative values less often, and is given by

Py = o mme = Pu'(y _ yrY
(44.1) o(Y) = 1; P, (m Wi') ’

where »(¥) denotes the estimator of V(¥). For the case n = 2, (4.4.1) reduces
to

2
(4.4.2) o(9) =TT = Pu <y_ _ ?/_) ,

P T m

where the units numbered ¢ and ¢’ are included in the sample of size 2. Sub-
stituting for P;» from (4.2.1) in (4.4.2), we find after some simplification

o®) = [1= Grobm) + 300 = 364wy = 3 ()

N N . 1"2
+i<m+w>zw‘;’-+%z,¢](&_ J_,)
1 1 )

(44.3)

s mwir
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to order O(N°®). If only terms to order O(N") are retained in (4.4.3), we get the
simplified formula

N 2
T R R D3] [CE

1 ur s
For the special case of equal probabilities 7; = 2/N, both (4.4.3) and (4.4.4)
reduce to the well known formula for estimator of variance in equal probability
sampling without replacement.

In this connection, it may be worth while to point out an important aspect
of Yates and Grundy estimator of variance for the case n = 2. Narain [7] has
shown that a necessary condition for a sampling procedure without replacement,
for which r; = np; , to be more efficient than sampling with replacement is

(44.5) P < ?S”n;l)

wi Wit

for all © and ¢’. For the case n = 2, (4.4.5) reduces to
(4.4.6) Pii < mimir .

Therefore, using (4.4.6), it immediately follows that Yates and Grundy’s esti-
mator of variance (4.4.2) is always positive. That is, if there is a sampling
procedure without replacement for which the variance is smaller than the vari-
ance when sampling with replacement independent of the y,’s, which is the case
we are interested in, then Yates and Grundy’s estimator of variance is always
positive. It may be noted that this result is true only for n = 2, since conditions
(4.4.5) are not sufficient to show that (4.4.1) is always positive when n > 2.
(4.4.1) is always positive if conditions (4.4.6) for all 7 and ' (¢ 5 ') are satis-
fied. However, conditions (4.4.5) do not imply (4.4.6) except when n = 2.

(4.2.3) and (4.2.4) imply that, to O(N %), our particular sampling procedure
without replacement is more precise than sampling with replacement inde-
pendent of the y,’s, so that (4.4.6) follows as a necessary condition to O(N ™~ Y.
Conditions (4.4.6) can, of course, be directly verified for our sampling procedure
using (4.2.1).

5. The general case n = 2 and N large. A striking feature of our sampling
procedure is that it permits an evaluation of Py , and hence of V( ?) and o(7),
for the casen > 2. It is interesting to note that most of the published literature
on this topic does not have anything to offer for n > 2, and deals only with
the case n = 2, due to difficulties in evaluating P .

The methods of attack for n > 2 are similar to those used for n = 2. How-
ever, the former case presents certain new features. Therefore, in this section

we give a brief derivation of P;» with details of the new features.
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Extending the arguments given in Sub-section 4.1, it can be shown that

Par = (N — 1>"l{i"fo"m<1+t—m> P (L4t — s —mi) dE A

v==()
(5.1) N—n+m L3
+ Z[o (Fom414t—m) —Fo(m+1+t—m—m)ldi+ -

N—2 L
+ 2 f [Fo(n — 1+t — m) —Fv(n—1+t—7rs—7rs')]dt},
v=n—2 J0
where, as before, F,(T) denotes the cumulative distribution function of the
total T, of the v values =;,

E(T,) = v(n — m; — m) /(N — 2),
and
V(T,) = vl — [v/(N — 2)]} S5+ .

It may be noted that (5.1) reduces to (4.1.4) when n = 2. Now it will be shown
that each of the (n — 1) integrals summed overv in (5.1) contributesidentically
to P to order O(N*), making the assumptions mentioned earlier in Subsection
4.1. Consider the mth integral summed over » (m = 0,1, --- ,n — 2) in (5.1),

m)

say P{? | given by

P(m)
(£
N—n+m

= (N — 1)_1 Z f ‘[F,,(m+ 14+t—m) — F,(m+1+4+1t —m—m')]dt,

v=m 0

and let 2 = 1 and ¢ = 2 without loss of generality. Proceeding now exactly as

in the case of » = 2, by expanding F,(T) in an Edgeworth series, applying the

Euler-Maclaurin formula (4.1.12), and approximating >, by [dv, we find
3

N—n+m
(m) _ _ -1 m™IT2  —4 (1) T2  —3(3)
P13 (N-=-1) fm [———S12 v1 PV (vam) + 5437, 1 P (vem)

(5.2)

3
TIT2 4@ _ kgm0 '
+ 545, " P (vom) 53 - P (vzm)] dv + pm + wm + pm

where
N = 1){1 - [v/(N - 2)]}'

v2=[m+1_‘n'1+1l'2_v(n—ﬂ'l—‘rz)]/(vl&z)

2 N -2

Pm , Wm and pm are the remainder terms similar to p, w and p’ for the case n=
2, P”(z) denotes the rth order derivative of the cumulative normal distribution
P(z), and k; is the standardized cumulant of the total T, given by (4.1.8). It
can be shown that pm, wm and pm do not contribute to P53’ to O(N*), using
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arguments similar to those employed for p, w and p’ in Appendix I. We now
evaluate the remaining terms in (5.2). The first term which involves P (vey)
will be called 4., . We make the transformation

(5.3) V— Cm = U,
where

Cnm _2(m+1)—-1rl—-1r2
N—2_ 2(7L—"l|'1—"l|'2) ’

Then, in terms of u, we have

T R b o
1)1=(cm—-N—Cm—2) 1+ 2— bl L 3 .
- Cm Cm
L (c'"_N—2> <N"2)<”"‘_N—2>

Expanding now the exponential in P(”(vzm) as well as the term vi? in powers
of u (justification of the expansion can be easily shown), and changing the
variable of integration u to p, where

2 -3
_ — 9\ —_Om
(5.4) p = uh(N — 2) (cm o 2)
where
(5.5) h=(n—m—m)(N —2)787,

we find, after considerable simplification, that

(N = Dmm@n)™ [ [1 + ’ﬁ @ — p')

An = N =Dn = m — )

h"" (3p" — 6p' + p°) + % (3p* — 6p° + p°)

(5.6)
hlm}ﬁ

+ (15p" — 45p° + 15p° — p°)

hl’” (105p — 420p° + 210p° — 28p™ + p"*) + higher terms] dp,

where

(N — 2)8u (1 — _%n )

hlm = 3 3
(n —m — m) <cm - >
N —2

The limits of integration in (5.6) are
h(m — en) (N — 2)Hen — [2/(N — 27
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and h((N — n 4+ m — cn) (N — 2) Hem — [ca/(N — 2)]} 7, which are —O(N*)
and O(N*) respectively. Therefore, the integration limits can be replaced by
— o and + « apart from errors which are O(¢”¥N®). The main feature here is
the appearance of a ‘“non-centrality type” term h;, which is zero for the case
n = 2. Using now the first twelve standardized normal moments, we find that
the coefficients of all terms involving A, are zero, and that

(N - 2)1!'11!'2 (
N —1m —m — m)
to O(N™*). Since & does not depend on m, A, also does not depend on m.

By a similar analysis, it can be shown that the first of the two terms in (5.2)
which involves P®(v,,,) and which we call B,, , can.be reduced to
c

(N — 2)#1’”3»5722 ——;( _ 3,. >_1
AN =D —m =) 2\ ¥ =3

(5.7) A, = 1 — k24307

B, =

—p?/2 hlm 5 3 __h_2 6 4 2
(58) - [ e (P — 1) + == (p° — 6p° + 3p) 7(1) 6p" + 3p°)

+ }%’." (p° — 159" + 45p" — 15p") + higher terms:l dp

while the other term involving P (v,,), which we call C,, , reduces to

(N — 2)1rf1r2(21r)_*

Cn = N — Dl — 1 — m)

—2
(5.9) . fe—P2/2 [(p2 _ 1) +h1m (p 4p3 +p) _ %_ (ps . 4p4 + p2)

hl"' (p* — 11p° + 21p* — 3p”) + higher terms] dp.

Using now the standardized normal moments, we find that the integral of the
terms retained in B, is zero and C,, is of order O(N~°), so that B,, and C,, do
not contribute to P{3” to order O(N™*).

Finally, the term D,, (say), involving k3 , in (5.2) is reduced to

2¢m
N <<-———*: __Zf__:‘zg[@a -
. ™ N -—2

h him K
> (9 — 6p' + 3p") — = (0" — 6p° + 3p)

h"" (p° — 13p" + 33p° — 9p°)

_ hn

1 (plO - 13p8 + 33p6 - 9p4)
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h"" g (P ® — 24p" + 150p° — 240p° + 45p4)]

2
_ —1 _ 3 _ Cm
AN —2) (c,,. - 2)

1 1
{E S e X

) h,,, R
(5.10) = (p' — 6p° + 3p") — 5 (p° — 6p° + 3p")

hlm ( 10 13p8 + 33p6 _ 9p4)]

2 3
2N — 9 _ o
+ (N — 2} (cm - 2)

1 1
' [0'3” (N — 2)° (1 - )3] [(p5 3
v=3)

1
' [;;; " (N —2)* (1 - 2)](” — 3

+ higher terms ‘ dp.

’“m (»° — 6p° + 3p“)] W (N — 2>*<

Using now the standardized normal moments, the integral of the terms retained
in (5.10) reduces to
- (N - 2)1!'1 e K3

N =D —m—my" ¥ —2

D,, =

(5.11)
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Further simplification of (5.11) results in

_ 2<N - 2)1!'1 ™ K3
(N - 1)(n — T — 7I'2)

(5.12) D, = KN —2)7

which is of order O(N™*) and does not depend on m. Adding now the expressions

(5.7) and (5.12) for 4,, and D,, respectively, we obtain for PP an approxima-
tion to order O(N~*) given by

(N - 2)1I'1 me

N -4 —3 oyt
(N =10 —m—m) [ h™ + 3h 2K; h (N — 2)7°.

(5.13) P =

Since (5.13) does not depend on m, it follows that
(N — 2)mim
N —1Dm —m — m)
— 2K, (N — 2)7
to order O(N™*). For the special case n = 2, (5.14) reduces to (4.1.25). The

two checks mentioned in Section 4 for the case n = 2 are also satisfied by (5.14).
Expressing h and K; in terms of the 7; we obtain from (5.14):

n—2

12 — Z P(m)

(n —1) 1 —nr?+ 30"

(5.14)

P@'i'i(nzl)ﬂ'im"—l‘(n 1)(7"1,7"1 + m; i)
N
—<”;31)m-m,2121r?+ 2n 1)(11r1 + mwh 4+ 7
(5.15) N N 2
_§_(nn7_1) (7} wor + miws) Z mv(?ﬁ)

2<'ﬂ_1) d 3
—T“m';m

to O(N™*), where the subscripts 1 and 2are replaced by ¢ and 4’ respectively.
Substituting (5.15) in the variance formula (1.2) we obtain

i

(5.16) ; 27!'7, 71: - 5 17,; ;’{—-
2(n —1) (& Y & LY
e TR S

correct to O(N’). If only terms to O(N") are retained in (5.16), we obtain

(n —1)
n

(5.17)

V(y) = 21:)7:.. [1 -

-
ur

Y 2
)
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correct to O(N'). The variance of ¥ in sampling with replacement is

(5.18) VI(P) = zfjm (y— _ Z)Z

5 n
which is of order O(N?). (5.17) when compared with (5.18) clearly shows the
characteristic reduction in the variance through the “finite population correc-
tions” {1 — [(n — 1)/n]7j}.
Substituting (5.15) in Yates and Grundy’s estimator of variance (4.4.1), we
find

w9 = =07 1= (et + (375 /)

<7

N 2 N
(5.19) — % (r} + 7)) — %(; Wf) + hl—z (i + mr) Z s

] (-5

correct to O(N®). If only terms to O(N") are retained in (5.19), we obtain the
simplified formula

i<i’

correct to O(N'). For the special case of equal probabilities =; = n/N, both
(5.19) and (5.20) reduce to the familiar formula for estimator of variance in
equal probability sampling without replacement.

6. A comparison with ratio method of estimation. Cochran [2] makes a com-
parison of the variance of Y in p.p.s. sampling with replacement with the variance
of the ratio estimate, Yz = (§/£)X, in equal probability sampling without the
finite population correction factor. Since a compact expression for the variance
of ¥ in p.p.s. sampling without replacement is obtained in this paper, it will be
of interest to compare this variance with the variance of the ratio estimate not
ignoring the finite population correction factor. (5.17) can be written as

5 1< 1 —1) <
61 V() =13 L - vpyt - =D S (g - vp?
n-i1 Pp; n 1
to order O(N"). The variance of the ratio estimate ¥z for large samples is
. N?

Since N — 1 = N[1 — (1/N)], expanding (N — 1) binomially we obtain
from (6.2),

©63) v =Yy - v - DS - vy
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to O(N"). Since the correction factors in (6.1) and (6.3) are exactly the same,
the comparison of V(¥) with V(¥%z) reduces to the comparison of the variance
of ¥ in p.p.s. sampling with replacement with the variance of the ratio estimate
without the correction factor. Cochran, assuming the model y; = Yp; + ¢; where
E(e;| p:) = 0and E(é; | p:) = ap?, g > 0, a > 0, has shown that the variance
of ¥ in p.p.s. sampling with replacement is smaller or greater than the variance
of the ratio estimate without the correction factor according asg > lorg < 1
respectively. If g = 1, the variances are identical. It is also stated that in practice
g usually lies between 1 and 2, so that the p.p.s. estimate is generally more
precise.

APPENDIX I
The order of magnitude of the remainder terms p’, w and p

p’ denotes the remainder when approximating >, by [ dv. It involves the
terminal differentials of the integrands at the end points of integration » = 0
and v = N — 2 which become zero since v, is infinite at these points and since
the integrands involve the term exp (—v3/2). o’ also involves the remainder
term of the Euler-Maclaurin formula which is of the form

(N = 2)Bonf (N — 2)6x]/(2m) ,

where Bs. is the Bernoulli number, f®™ is the (2m)th derivative with regard
to v of any of the integrand functions involved in (4.1.13) and 0 < ¢ < 1 while
the order of the remainder term, 2m, is at our disposal.

The relation between the v argument of (N — 2)6y and the corresponding
v, argument, from (4.1.14), is given by

= [1 — 3(m + m)1(1 — 26x)[0x(1 — 0TS (N — 2)7%.

We now separate the values of 8y between 0 and 1 into two groups. In the first
group, Oy is equal to 3 or the leading term of the difference between 6y and 3 is
proportional too N~ with ry > 0. The remaining values of gy fall in the second
group. It is easily seen that for the values of 6y in the second group v, is O(N®)
with s > 0 since Sy is of order O(N™"), and the argument to be used for the
remainder term in case (b) below also applies to the values of 8y in this group.
For values of 8y in the first group, either v, is zero or is of order O(N*™). We
now distinguish the two cases (a) r» = % and (b) r» < 3. Consider first the
case (a). Introducing the variable u given by (4.1.15) in (4.1.14), we find

v = const. (N — 2)7}Siull — (2u/N — 2)4™*

= const. (N — 2)7%Sw > <_z%> (—1)(2u/N — 2)*,

=0
Therefore, by repeated differentiation, we have that for the largest value of [u],

dtvz _ dtv2 _ “aTh—t
o = aw = 0T
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The repeated differentiation of f(»;) with regard to » or « will now be seen to
have a leading term of the form (d'f/dvs) (dvo/du)* which is of order O(N~*?%).
Therefore, from the Leibnitz formula of differentiation of a product which is of
the form v7’f(s,), b > 0, as evident from (4.1.13), it is seen that the remainder
term is O(N ) with & > 4 provided 2m is chosen sufficiently large. In case (b),
the remainder term goes down as O(¢ ™" 'N®) where s = 1 — 2ry > 0, and hence
is smaller than O(N*). Therefore, the remainder term p’ does not contribute to
P 12 to O(ZV_‘1 ) .

We consider next the magnitude of the remainder w arising from the application
of the Euler-Maclaurin formula (4.1.12) to the differences P(z) — P(z) and
P®(z)) — P®(z). The first of these is of the form c(z1 — 2)°P® (2) where
2 < Z < z;. Now from (4.1.10), (4.1.15) and (4.1.18) we have

2 — 2 = 2m(N — 2)7ISH[1 + 0(p*N Y],

from which it appears that the leading term of 2z, — 2, is of order O(N™?) and
that Z = v, + O(N?). Therefore, a contribution w, (say) to wis given by

w=®-1"% [ " (o — 2)'PO () dt

= (N = 1)7m2me(N — 2)785T 2 [1 4+ 0(p'N )PP () + ONTH).
Now because of the properties of the normal differentials, Y., P‘”(vs) is
O(e™™N*) and, since dv/dv, = O(N*) and dp/dv, = O(N®), all terms in w; are
seen to be of smaller order than O(N ). Similar arguments apply to the differ-
ence P®(z;) — P®(2) as well as to the remainder terms arising from applying
Euler-Maclaurin formula to the integration [§' dt of the retained terms in P®,
P(3)’ P(A) anva(G).

Finally, we turn to the discussion of the remainder p given by the sum (4.1.11)
with R(v) given by the double expansion (4.1.7) involving the cumulants k, and
higher differentials of the standardized normal P(z). It is necessary here to show
that k. (r = 4) is of order O(N °) with ¢ > % provided that

0<g=svyN=1—-¢g<1

as N — «. We have shown that , is of order O(N*"*') when the K, are bounded
and v/N satisfies the above condition.? However, we shall not give this discussion
here. Instead, we use a formula recently employed by Barton and David [1]
who show that, if the set of finite populations of size N are assumed to be random
samples from the same infinite “‘super” population with cumulants «, , the rth
cumulant

ke = [(N — o/N)Y¥™ 4 (—1)"(o/N)"(N — ) F ),

which shows that k. is of ‘order O(N__”'H) provided we make the above assump-
tion which, although more restrictive than that by Madow, is adequate for our

3 This is also the assumption made by Madow [6].
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purposes. We should point out that Barton and David do not make the above
assumption since they use the above formula only as a step to proving another
formula which does not involve the . (see their equation (1)). We now split
the sum in (4.1.11) into two parts, viz., the central part where v/N is satisfying
the condition mentioned above and the remainder (tail) sum. It is easy to see
that the latter sum is of order O(¢ "N®) because of the asymptotic properties
of the standardized normal differentials. For the former sum, since k, is O(N "),
it can be shown by an analysis similar to the term D involving ks that for each
term of (4.1.7) when substituted in (4.1.11) there results a term of order smaller
than O(N ). The inversion of the double summation in (4.1.7) and the limiting
process N — o is not discussed here.

APPENDIX II
Verification of the order of magnitude of the probabilities Py
We have from (4.1.25) that P, is given by

Lo~ (N_2)7ri7r'i' 2 —4 -3 _ Y
P * =@ =y LT 3T — 2K (N —2)Y]

to O(N™*), where the subscripts 1 and 2 are replaced by ¢ and ¢’ respectively.
We now show that (4.1.25) is in fact correct to O(N ‘) by verifying that
> ¥ Pisv = m; to an order (N — 1ON™) = O(N®). Using (4.1.17) for b
and (4.1.24) for K; , the above expression for P, can be put in the form

. (N — 2)mima _( 1 6 )
P'i'_(N—l)(2—7r.~—1r,v)|:1 1+N—3+N_

N N 2
2 2 2. 2

> w; — i — w3 > mh—m — ma

1 1 1 3

@—m—my T @-m-my TN-3Tw-3

N N
\ 23 x} 63 ]
1 1

- (N — 2)? - Q2 — m — mr)? + N —-2)2 —m — m?)

which, to O(N™*), reduces to

N
2 2 2
. T — T —
. 1
Py = mmy

@2 - m — m) - 2 —m — m)?

(E) st ]

Q2 —m — m)® - Q2 —m — m)

+

Expanding all denominators binomially and retaining all terms to O(N™), we
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obtain

P,y = m;ri' 1+ 3(m + 7)) + (x4 7 + 2mamir)]

N
- mm (Z w?)u + #ms + )] + B + )

8
+ 31!',‘1!'1" <§: 7.-% 2 _ T’ <§: 1l'3:
32 T’ 8 T )

Summing the above expression for P;;» over 7' from 1 to N except 7/ = 7 and
noting that Y 1 m; = 2, we obtain

N N N
> P = 3m(2 —m) + 172 — m) + im <Z T - ‘n'f)

i 1

N N
+ ir} — 3} ; w; — 3mi(2 — m) ;rf

which, to O(N*), reduces to ; thereby providing the announced check.
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