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Further, we notice from (3.4) that for odd p there is a single factor in the central
position of the factors of A, . In case p is even there will be two factors in this
central position and the result (3.7) will be slightly changed.

Cask 2. For k and p both even the terms of the second factor of (3.2) may be
grouped two by two by applying the duplication formula for the Gamma func-
tions and the case reduces to Case 1.

Caske 3. For k even and p odd the terms may be grouped two by two as in
Case 2 and the last term may either be expanded by a known formula (see,
e.g., [10], p. 260) for the expansion of T'(z + r)/T'(z) when  is not an integer,
or else it may be approximated by the formula

(3.8) T(z +7r)/T(x) =

and the case reduces to Case 1.
We wish to consider the computational aspects of the result (3.7) in a future
communication. :
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ON THE PARAMETERS AND INTERSECTION OF BLOCKS OF
BALANCED INCOMPLETE BLOCK DESIGNS

By KurLEnprRA N. MAJINDAR
Delht University, India

1, Summary. In this investigation we derive a few properties of the intersec-
tion of blocks in a balanced incomplete block (b.i.b. for conciseness) design with
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parameters v, b, r, k, N and discuss the divisibility of » by k. The last section
deals with certain characteristic properties of symmetric and affine resolvable
b.i.b. designs.

2. Divisibility of » by k£ in a b.i.b. design. Let v, b, r, k, X be the parameters
of a b.i.b. design. We will suppose here and below that it is a nontrivial design
sov >k = 3andr > X = 1. One knows that the parameters are subject to
the arithmetical constraints vr = bk and A(v — 1) = r(k — 1). A well known
inequality due to Fisher states that we must also have b = v. It is easy to de-
termine five positive integers v, b, r, k, A withv > k = 3,7 > A = 1 and satis-
fying the arithmetical constraints given above and simultaneously having b < v.
Fisher’s inequality then guarantees the nonexistence of a b.i.b. design with
these parameters.

Concerning the divisibility of » by k& we establish the following theorem.

TuEOREM 1. A necessary and sufficient condition for v to be divisible by k in a
b.i.b. design with parameters v, b, r, k, N is that b = (v — 1)m + r where m s a
positive integer and r — m s divisible by \.

Proor. More generally, let v, b, 7, k, A with » > k be any five positive integers
satisfying the conditions (i) vr = bk and (ii) A(v — 1) = r(k — 1).

First, suppose that » is divisible by k. Let v = nk, n an integer. As v > Fk,
r > A by (ii). Since v = nk, by (ii) we haver — A =7k — A = (r — n\)k =
mk (say) where m is an integer and it is positive as r > A. From (i) we have
b=wr/kandsob=v(mk+N)/k=vm+nmrx=m+r—m= (v — 1)m-+r.
Clearly r — m is divisible by A.

Next, suppose that b = (v — 1)m + r where m is an integer and r — m is
divisible by A. Put r — m = n, n an integer. We have now, using (i) and (ii),
bk—b=vr— (v—1)(r —n\)—r =n\(v — 1) = nr(k — 1); consequently
b = nr and then by (i) v = nk. Plainly m is positive as (v — 1)m = b — r =
(n—1r,n>1.

On remembering the arithmetical constraints on the parameters of a b.i.b.
design, the theorem follows immediately from the preceeding. This completes
the proof.

One sees from the above theorem that, for the type of b.i.b. designs in which
v = nk with » an integer, we must have b = (v — 1)m 4+ r, m a positive integer.
Trivially then b = v 4+ r — 1. In fact the above proof shows that it is not possible
to determine five positive integers v, b, r, k, A satisfying the relations » > F,
vr = bk, A\(v — 1) = r(k — 1),and v = nk with n an integer and simultaneously
having b < » + r — 1. The inequality b = » + r — 1 for this type of b.i.b.
designs was obtained by Roy [1] (and independently by Mikhail [2]). As re-
solvable b.i.b. designs constitute a subset of this type of designs, the same in-
equality holds for them. This inequality for resolvable b.i.b. designs was estab-
lished by Bose [3].

3. An upper bound for the number of blocks disjoint with a given block. In
this section we give an upper bound for the number of blocks in a b.i.b. design
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each of which has no variety common with a given block. Our result is contained
in the following theorem.

TaEOREM 2. A giwen block in a b.i.b. design with parameters v, b, r, k, X\ can
never have more than b — 1 — (r — 1)’k/(r — X\ — k + k)) blocks disjoint with it.
If some block has that many, then (r — X — k 4+ kX)/(r — 1) s a positive integer
and each of the nondisjoint blocks has (r — X — k 4+ kX) /(r — 1) varieties common
with 4.

Proor. Take any block in the design. Let it have m blocks disjoint with it. We
are not supposing that these latter blocks are mutually disjoint. If the ¢th of
the remaining b — m — 1 blocks has z; varieties common with the arbitrarily
chosen block, then considering its varieties singly and pairwise we have

(3.1) Y= (r — 1k,
(3.2) 2wz — 1) = (N — 1) (k — 1)k,

where in these two sums and the sum below the index of summation runs from
1tob — m — 1. Now (3.1) and (3.2) give

(3.3) Sat=(r—\—k+ k.
Forming the ratio (>_z:)®/( > z%) and applying the inequality
(2 a)/ (X d) =,

wherein a; are real numbers, we get

(3.4) (r—D%/(r —XN—k+k) £b—m—1,
whence
(3.5) m=b—1—(r—1D%/(r—\—Fk-+ k).

If the equality sign holds in (3.4), all the z;’s are equal and then (3.1) gives
gi=(—A—k+m)/(r—1), =12 --,b—m— 1.

In this case each of the b — m — 1 nondisjoint blocks has (r — X — k + k\)/
(r — 1) varieties common with the arbitrarily chosen block. This completes
the proof.

As an application of this theorem consider Bhattacharya’s b.i.b. design, » = 16,
b=24,r =9k =6,N = 3. We infer that no block can have more than one
block disjoint with it. The solution given by Bhattacharya [4] for this design
has a block which is disjoint with another block.

A companion to Theorem 2 is Theorem 3.

TaroreM 3. If in a b.i.b. design with parameters v, b, r, k, N, v = nk (n denoting
an integer greater than 1) and b = v 4+ r — 1, and if there exists a block which has
n — 1 blocks disjoint with it, then k/n is an integer and each of the nondisjoint
blocks has k/n varieties common with it.
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Proor. Asb = v + r — 1 we have r = k& + X by virtue of the arithmetical
constraints on the parameters. Further A\(v — 1) = r(k — 1) givesA\(nk — 1) =
rk —r =rk — k — X\ so that nA = r — 1. Therefore

b—1—(r—=0D%/(r —N—k4+k\) =b—1—n\

Butb —1 —a\=b—1—n(r—1) =n — 1asb = nr. So Theorem 3 fol-
lows from Theorem 2.

Consider as an example the existent b.i.b. designv = 28,b = 36,r = 9,k = 7,
AN=2 Heren=v/k=4andv+r—1=28+9 — 1 = 36 = b. By Theo-
rem 2 no block of this design can have more than m = 3 blocks disjoint with it.
By Theorem 3 if there does exist such a block then k/n must be an integer whereas
k/n = I—a contradiction. Consequently in no solution of this design can there
exist a block which has as many as 3 blocks disjoint with it. A fortior: no re-
solvable solution can exist for this design. In a similar manner it can be shown
that the following b.i.b. designs cannot have resolvable solutions.

v = 6, b =10, r =5, k=3, A=2
v = 10, b = 18, r=9, k=25, A=4
v = 21, b = 30, r = 10, k=17, A = 3.
4, Characteristic properties of symmetric and affine resolvable b.i.b. designs.
Our next theorem gives a characteristic property of symmetric b.i.b. designs.
THEOREM 4. A mecessary and sufficient condition that a b.i.b. design be sym-
metric 1s that it has a block which has the same number of varieties common with each
of the other blocks.
Proor. Let the b.i.b. design have the parameters v, b, r, k, A. If it has a block

which has the same number, say ¢, of varieties common with each of the other
b — 1 blocks, then (3.1) and (3.2) (now with m = 0 and z; = ¢ for all 7) give

(4.1) cb—1) = (r — Dk
(4.2) b —1) = (r—\—k+ k\E.
These two relations directly give
(4.3) c=((r—-—0Dk/(b—1) = —-X—k+kN/(r —1)
and so
c=[r—10Dk—(—=XN—Fk+EN/I(b—-1) — (r—1)]
=[(k — 1r — (b —1)AN/(b —r)
=M@ —1) — (k= 1N/(r(v — k) /k)
= k\/r,

where we used the arithmetical constraints on the parameters. From (4.3) and
(4.4) we get

(4.5) (r—\—Fk—+k\)/(r — 1) = k\/r.

(4.4)
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From this we obtain (r — k)(r — A) = 0 and as r — X > 0, we infer that
r = k (and equivalently b = v) i.e., the design is symmetric.

Next, let us suppose that the design is symmetric, so that b = vandr = k. We
expand the expression

b-1 b—1 b—1
Silms — N = Dar — A+ (b — DA,
=1 ] ]

=1 =1

which by _(3.1) and (3.3) gives
b—1
Z(xi — N ==k —=XN+INk—2Mk(r — 1) + (b — 1)\

Applying k¥ = r and N(b — 1) = AMv — 1) = r(k — 1) to this expression we
quickly see that Y o1 (z; — A\)® = 0. So z; = X for all 7. Consequently if the
b.i.b. design is symmetric, any pair of blocks has \- varieties in common—a
property of b.i.b. designs due to Bose.

In an analogous manner the following property is true for affine resolvable
b.i.b. designs.

THEOREM 5. A necessary and sufficient condition that a resolvable b.i.b. design be
affine resolvable is that it has a block which has the same number of varieties common
with each of the blocks not belonging to its own replication.

Proor. Consider a block in a resolvable b.i.b. design with the parameters
v = nk,b = nr,r, k, \ so that each replication of the varieties consists of n»
mutually disjoint blocks. Let the ith of the remaining b — 7 blocks not belonging
to its own replication have z; varieties common with the considered block. Then

(4.6) 2 xi = (r — 1k,
(4.7) Saimi—1) = A — 1)k — 1)k,

where the index of summation here and below runs from 1 to b — 7. Suppose
that the design has a block which has the same number, say c, of varieties com-
mon with each of the blocks not belonging to its own replication. Assuming the
considered block to be this special one we get

I

(4.8) e(b—n) = (r — 1)k,
(4.9) (b —mn) = (r—\—k+ k\k.
From these

(4.10) c=(r—N—k4+E)/(r—1) = (r —1)k/(b —n).

Asb =mnr, (r — 1)k/(b — n) = k/nand thus (r — X —k 4+ k\)/(r — 1) =
k/n. From this we get

r=Dk=@—-—Nx—kn+xw=_F—-—rx—kn+rlk—1) 4+ A

thatis (n — 1)(r — X — k) = 0.Sor = k + A and equivalently b = » 4 r — 1;
thus the b.i.b. design is affine resolvable by definition.
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Suppose now that the design is affine resolvable. Onehasb = nrandr = k 4 A,
then nA = r — 1 as in Theorem 3. Using these and (4.6) and (4.7),

> (xi — k/n)? = N+ (b — n)/n’ — 2k(r — Dk/n
=I(m\ — (r — 1))/n = 0.

Thus any two blocks not belonging to the same replication have k/n common
varieties—a result due to Bose. This completes the proof.
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