LOCATION AND SCALE PARAMETERS IN EXPONENTIAL
FAMILIES OF DISTRIBUTIONS

By Tromas S. FErRGUSON
University of California, Los Angeles

1. Introduction and summary. Location and scale parameters, on the one
hand, and distributions admitting sufficient statistics for the parameters, on the
other, have played a large role in the development of modern statistics. This
paper deals with the problem of finding those distributions involved in the
intersection of these two domains.

In Sections 2 through 4 the preliminary definitions and lemmas are given. The
main results found in Theorems 1 through 4 may be considered as a strengthen-
ing of the results of Dynkin [3] and Lindley [8]. Theorem 1 discovers the only
possible forms assumed by the density of an exponential family of distributions
having a location parameter. These forms were discovered by Dynkin under the
superfluous assumptions that a density with respect to Lebesgue measure exist
and have piecewise continuous derivatives of order one. Theorem 2 consists of the
specialization of Theorem 1 to one-parameter exponential families of distribu-
tions. The resulting distributions, as found by Lindley, are either (1), the dis-
tributions of (1/v) log X, where X has a gamma distribution and v 0, or (2),
corresponding to the case v = 0, normal distributions. In Theorem 3, the result
analogous to Theorem 2 for scale parameters is stated. In Theorem 4, those k-
parameter exponential families of distributions which contain both location and
scale parameters are found. If the parameters of a two-parameter exponential
family of distributions may be taken to be location and scale parameters, then
the distributions must be normal.

The final section contains a discussion of the family of distributions obtained
from the distributions of Theorem 2 and their limits as vy — == . These limits
are ‘“‘non-regular”’ location parameter distributions admitting a complete suffi-
cient statistic. This family of distributions is a main class of distributions to
which Basu’s theorem (on statistics independent of a complete sufficient statistic)
applies. Furthermore, this family is seen to provide a natural setting in which to
prove certain characterization theorems which have been proved separately for
the normal and gamma, distributions. Concluding the section is a theorem which,
essentially, characterizes the gamma distribution by the maximum likelihood
estimate of its scale parameter.

2. Definitions. Throughout this paper we shall be dealing with distributions
on the real line only. The real line will be dendted by R, the Borel s-field over R
by ®, and a family of distributions over (R, ®), indexed by a parameter 6 in a
parameter space ©, by Py, 6 ¢ ©. The corresponding cumulative distribution
functions will be denoted by F(z | 6).
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DeriNITION 1. A real parameter, 6, is said to be a location parameter of a
family of distributions over (R, ®) if F(z | 6) is a function only of z — 6.

DErFINITION 2. A positive real parameter, 6, is said to be a scale parameter of
a family of distributions over (R, ®) if F(z | 6) is a function only of z6".

If a density, f(x | 8) with respect to Lebesgue measure exists, then 6 is a loca-
tion [scale] parameter if, and only if, f(z | 0) = g(z — 0)[f(z|6) = 6 'g(x67")]
almost everywhere for some function g. In terms of random variables, 6 is a loca-
tion [scale] parameter of the distribution of a random variable X if, and only if,
the distribution of X — 6 [X67"] is independent of 6.

ReMARK. If 6 is a location parameter of the distribution of a random variable
X, then ¢ is a scale parameter of the distribution of ¢*. In fact, every scale
parameter family of distributions can be constructed as follows. Choose random
variables X and ¥ whose distributions both have 6 as a location parameter, and
choose three non-negative numbers p; , 2, ps , whose sum is one. Then, disa
scale parameter of the distribution of the random variable Z, defined to be equal
to ¢* with probability p, , —e” with probability p, and zero with probability p; .
Conversely, if 0 is a scale parameter of the distribution of a random variable Z,
then log 6 is a location parameter of the conditional distribution of log Z given
Z > 0, and of the conditional distribution of log(—Z) given Z < 0. This remark
will be useful in passing from problems involving location parameters to those
involving scale parameters.

For simplicity, exponential families of distributions will be defined over (R, ®),
although any measurable space would do as well. The notation » < u, where »
and u are measured over (B, ®) is used to denote the statement “» is absolutely
continuous with respect to u.”

DeriniTION 3. A family Py, 6 ¢ O, of probability measures over (R, ®) is
said to constitute a k-parameter exponential family of distributions in 6, if

(1) there is a o-finite measure, g, on (R, ®) for which Py < u for all § ¢ O,

(2) the densities, p(z | 6), of Ps with respect to u may be chosen of the form

k
1) (e 10) = e {Tu(a) + Q0) + 3 @00
where the T;(z) forj = 0, 1, - -+ , k are measurable functions and where To(z)
may assume the value — oo,
(8) the functions {1, Th(z), ---, Tw(z)} are almost surely [uo] linearly inde-
pendent, where duo = €™ du, and
(4) the functions {1, @,(8), ---, @:(6)} are linearly independent.

Note that 6 does not have to be a k-dimensional parameter. In this paper we
shall deal only with parameter spaces, ®, which are subsets of Euclidean spaces
of one or two dimensions. In part (2) of this definition, To(z) is allowed the
value —  in order that the density p(z | 6) may be zero on a set in R which is
independent of . Parts (3) and (4) of this definition are required in order to
insure that the value of k¥ cannot be made smaller by a simple change of functions.
As an example of the flavor of definition 3, the normal distributions with mean
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0 and variance ¢* would be considered as a one-parameter exponential family in
0 (or in ¢*), as a two-parameter exponential family in (6, o), and as a two-
parameter exponential family in o, if « = 6 = .

We collect here a few facts about exponential families of distributions to be
used later. For proofs the reader may refer to the excellent book of Lehmann [7].

a. If To(z), Ti(x), -+, Tk(x) are the functions of = in equation (1), the set
of points 7 = (m, -+ - , m), for which
' k
@ 0 = [ o {Tua) + 3 10} dut)
=

is finite and positive, is called the natural parameter space associated with the
exponential family.The natural parameter space, II, is convex and, thanks to
parts (3) and (4) of definition 3, contains an open set in k-dimensions.

b. The functions, Qo(7), and

(8)  E(g|m) = [ #(2) exp {To(w) + Qulr) + X m; T,(x)} du

are analytic functions of m , - -+ , m , at all interior points of II, for all bounded
measurable functions, ¢. '

3. Dominated location parameter families. In this section we shall prove a
few lemmas concerning location parameter families of distributions which are
dominated by a single o-finite measure. In Lemma 2, it will be seen that the
dominating measure may as well be taken to be Lebesgue measure.

Let us denote Lebesgue measure by [, and let P and u denote arbitrary meas-
ures on (R, ®). Let 6 denote a real number, and let 4 denote an arbitrary set of
®. .

Lemma 1. If u is o-finite, and if I(A) = 0, then u(4A + 68) = 0 for almost all
6 (with respect to 1).

Proor. We may write u = 2 oy ui, where the u; are finite measures. Let
v; = u; * [, where * denotes convolution. Then »;(A) = 0 since »; < I. But since
vi(4) = [ui(4 — 0) d6 = 0, we have that u;(4 — ) = 0 for almost all 6, and
all 7. Hence u(4 — 6) = 0 for almost all 6.

LemMA 2. If u is o-finite, if Po(A) is defined to be P(A — ) for all 6, and if
Py KL pfor all 9, then P < 1.

Proor. Suppose not; then there exists a set 4 such that 1(4) = 0, and
P(A) > 0. Define Ag = A + 6. Then Py(A4s) > 0 for all 6. Since Py < u, this
implies that u(As) > 0 for all 6. Thus u(4 + 6) > 0 for all 6 and I(4) = 0,
contradicting Lemma 1.

The implication of Lemma 2 is obvious. If Py is an exponential family of dis-
tributions in a location parameter, 6, then, since we have assumed that our ex-
ponential families are dominated by a o-finite measure, x, we may as well assume
that u is Lebesgue measure. Henceforth, in dealing with location parameters in
exponential families, we shall take u to be Lebesgue measure. In dealing with
scale parameters in exponential families, the remark of Section 2 shows that the
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distributions may have a mass at the origin independent of 6. However, except
for this mass at the origin, these distributions are absolutely continuous with
respect to Lebesgue measure also.

Location parameter families of distributions are always stochastically continu-
ous in the parameter. In the following lemma, we obtain a much stronger type of
continuity in a location parameter when the family is dominated by a o-finite
measure.

LemMA 3. If Po(A) is defined to be P(A — 6), and if P < 1, then for every
measurable set A, Py(A) s a continuous function of 6.

Proor. If 6§ — 6, , then

[Po(4) — Pa(4)] = |P(4 — 6) — P(4 — 6)|
< P((4 — 0)A(A — 6)) < I((A — 0)A(A — 6)) — 0.

(See Halmos [5] pg. 266).

4. Location parameters in exponential families. We shall now combine the
hypotheses about a family, Py , 6 ¢ ©, of distributions, that 6 be a location parame-
ter, ® = R, and that Py be a k-parameter exponential family in 6. The resulting
distributions are described in Theorem 1, which has been proved by Dynkin [3]
under certain regularity conditions. The following lemma shows that these regu-
larity conditions are always satisfied.

Lemma 4. If Py is a k-parameter exponential family in a location parameter, 0,
then a density with respect to Lebesgue measure exists and may be written tn the
form of formula (1). In addition, all derivatives of the functions Q:(6), ¢ = 0, 1,
-+, k, with respect to 0 exist, and the functions Ti(z),7 = 0, 1, --- , k, may be
chosen so that all derivatives with respect to x exist.

Proor. That the densities p(z | 6) of formula (1) may be taken with respect
to Lebesgue measure follows from Lemma 2. Since, 6 is a location parameter we
may write

4) F(z —0) = [w exp {To(y) + Qu(8) + ]=21 T,-(y)Qj(O)} dy,

for all z and all 6, for some function F. Since the proof is rather long, we shall

break it into several pieces.
1°. Continuity of Q;(6). Suppose that 6, — 6, . We must show that

Q](on) - QJ(GO) for .7 = O) 1, - ) k.

In order to simplify the notation, we shall assume, as we may by changing the
functions in the exponent of equation (4), that Q;(6,) = 0,forj = 0,1, --- , k.
With such an assumption, uw(A) = [4exp {To(y)} dy becomes a probability
measure. Since {1, Ti(z), ---, Tw(z)} are almost certainly [uo] linearly inde-
pendent, there exist & + 1 points (£?, £?, -+, #§?) ¢ = 1, .-+, k + 1, in R",
not all lying in one (k¥ — 1)-dimensional hyperplane, such that for all ¢ > 0 and
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all 4, thesets A; =f{z: D iy (Tij(z) — #{)* = ¢ have positive uo measure. But,
using the mean value theorem for integrals,

Po,(A3) = Pay(49) = [ lexp 1Qu6) + T T,0)Q0)) — 1] duoly)
= foxp {@u(0n) + T 87Q,(00)} — 11 (4

where > 5y (182 — £§)? < € (5 may depend onn). This converges to zero by

Lemma 3, yielding the fact that as n — «

(5)

k
(6) Qo(on) + ;t;z)QJ(on) '—’07 for¢ = 1) R k +1

When ¢ is sufficiently small, equation (6) will certainly be invertible for the
Q;(6,), showing that Q;(6,) — 0asn — «,forj = 0,1, ---, k, thus proving
continuity.

2°. Differentiability of Q;(0). The derivative F’(z) = f(x) exists almost every-
where, let us say except for x ¢ N where [(N) = 0. We shall express the distribu-
tion function as a function of the natural parameters F(z — 0) = G(z | Q(6)),
where Q(6) represents the vector (Qi(8), ---, @(8)). The function @, as we
mentioned in the remarks after definition 3, is an analytic function in

(Qla e >Qk)
Suppose that 6, — 6, . We may write, using the mean value theorem for deriva-
tives,
F(a: - 0,,) -_ F(x - 00) _ - a * (Q1(0n> - Q}(QO))
) 6, — 0o = Zag, O 190 =

where QF = aQ(6,) + (1 — a)Q(6,) for some 0 < a £ 1. Asn — =, the con-
tinuity of @(0) may be applied to prove that for all 7,

(8) (9/0Q;)G (x| Q) — (8/9Q,)G(x | Q(60))

for all 2. The left side of equation (7) will converge (to —f(x — 6)) for all
22N — 6. There exist @,, - -+ , 2, 2; 2 N — 6 for all §, for which the matrix
whose (7, 7)th element is

(9) (8/0Q;)G (x: | Q(6o))

has non-vanishing determinant. (This may be verified by induction. If the deter-
minant were zero for almost all z; , - - - , 2% , then, expanding the determinant in
its first row, we would obtain for fixed ., - -+ , 2x ,

(10) * ¢1(9/0Q)G(x | Q(6)) + -+ + c(9/9Qu)G(z|Q(6)) = 0

for almost all, hence all, z. By induction, x,, - -+ , 2z , may be chosen so that

¢ # 0. But equation (10) is equivalent to

@@ [ 561w+ 22) ew (Z 1,000) du = 0
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for all z. This would contradict the assumption that {1, T:(y), --- , Tw(y)} were
almost surely [uo] linearly independent.) Thus, when n becomes sufficiently large,
the k equations, obtained from equation (7) by replacing x alternately by 2, , 2. ,

-, Zx , will be invertible for the ratios (Q;(8,) — @;(60))/(6, — 6o) which will
then converge proving differentiability of @;(6) for 7 = 1, --- , k. Differentia-
bility of Qo(8) will follow from this, since Qo is analytic in @, - - , Q.

3°. Essential continuity of T;(x). The derivative with respect to 6 of the right
side of equation (4) exists everywhere thanks to the differentiability of the @;(6),
and is a continuous function of z. Since this derivative is equal to —f(z — 8),
we find that this density is a continuous function. Letting A(z) = log f(), we
find from equation (4) that

(12) h(z — 6) = To(z) + Q(8) + 25 Ti(2)Qi(8)

for all 6, and almost all z, say for x ¢ Ny where [(N;) = 0. By taking 6, , 6, -+ -,
641 so that the matrix whose (7, 7)th element is a;; where a;; = Q;(6;) for
1=j=kandt=1,---,k-+ 1,and wherea;; = 1 forj =k + landz = 1,

-++, k + 1, has a non-vanishing determinant, which may be accomplished since
{1, Q:(8), --- , Qi(6)} are linearly independent, we may solve for the T';(z)

(13) Ti(z) = 25Eia”(h(z — 6:) — Qu(6:)),

forj =1,2, -+, k + 1, (where Try:(2) is a notation for To(x)) where the a¥
are the elements of the inverse matrix of the a;; . Thus the T';(z) are equal almost
everywhere to continuous functions. We may therefore choose the T';(z) to be
continuous. Equation (12) is now valid for all 6 and all «.

4°, Infinite differentiability. The function h(z — 6) in equation (12) is differ-
entiable with respect to 6, and therefore with respect to z. From equation (13),
each T;(z) is therefore differentiable. Hence, & is twice differentiable. Since we
can solve equation (12) for the Q;(8) as we solved it for the T';(z) in equation
(13), we may continue inductively to show that ~ and each @; and T; have in-
finitely many derivatives. This completes the proof of the lemma.

We shall now state the following theorem.

TuEOREM 1. An exponential family of distributions in a location parameter has
o denstty with respect to Lebesgue measure of the form

(19) @) = e {F e pio}
where oy , a3 , * ** 5 am are complex numbers and pi(x), + - , Pn(x) are polynomials
in x with complex coefficients.

Naturally, if f(x) is to be a probability density, the complex constants in (14)
must be chosen so that the function f(z) is real, positive, and satisfies the con-
dition [%, f(2) dz = 1. Under these conditions, formula (14) is, conversely, the
density of an exponential family of distributions in a location parameter.

The theorem above was proved by Dynkin [3], under the assumption that the
density with respect to Lebesgue measure exist and have a piecewise continuous
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derivative of order one. Lemma 4 implies that a density with respect to Lebesgue
measure exists and has continuous derivatives of all orders. Therefore, we refer
the reader to Dynkin’s paper for the completion of the proof of Theorem 1.

5. A one-parameter generalization of the normal distributions. The main result
of this paper is the specialization of Theorem 1 to one-parameter exponential
families of distributions. This result, found in Theorem 2 below, strengthens the
result of Lindley [8], proved under the assumption of the existence of two deriva-
tives of the density. We prefer, however, to state this result in a more compact
form which will emphasize the fact that the distributions involved are stochas-
tically continuous in the parameters. For this reason we shall develop some
notation to describe the resulting family of distributions. :

If a random variable, X, has a gamma distribution with density

{[I‘(oz);6"‘]“le_(””””ac"'_1 if >0

1 () =
(15) Fx(z) i 20

where @ > 0 and 8 > 0, the density of the random variable Y = (1/v) log X,
fory # 0, is ’

(16) fr(y) = lvla®/T(a)] exp {—ae”®™® + av(y — 6)}

where 6 is a location parameter related to 8 by the formula v6 = log 8. The mean
and variance of Y are 6 + (1/v)[¥(a) — log o and (1/4°)¢/(a), respectively,
where ¥(a) and ¥/(a) are the digamma and trigamma functions (the first and
second derivatives of log T'(a)). We shall use the notation N (6, ¢*, v) to denote
the above distribution of Y, where ¢ is the variance of ¥ and is related to a by
the formula,

(17) 7 =¥ (a).

The symbol N (6, ¢°, v) is defined for all 6, ¢* > 0, and v # 0. We will now show
that N (6, ¢*, v) converges as v — 0 to a normal distribution with mean 6 and

variance o”.
With o fixed and ¥ — 0, formula (17) implies that & — o ; but ey/(a) — 1
as a — «, 5o that as’y® — 1. From Stirling’s formula, as « —

T(a)e®a "ot — (2m)}
so that ‘
Fr(y) ~ [(lvled)/(2m)Y exp {—ale”®™® — v(y — 0) — 1]}
(18) ~ [(2r)i] ™ exp {— (™) "™ —v(y — 0) — 1]}
— [(27)%] ™ exp {—(26") 7 (y — 6)}.

Thus, we may define N (6, ¢°, v) at v = 0 as the normal distribution with mean
6 and variance ¢°, and the distributions will be stochastically continuous in the
parameters.
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Now we shall extend the definition of N (6, ¢°, v) to the case where v is allowed
to assume the values 4+ «© and — . As y — ==, formula (17) implies that
a — 0; but &’¥/(a) — 1 as @ — 0, so that a’c™y* — 1. Since, as o — 0, both

al'(a) — 1 and a®* — 1, we have, as y — — =,

Fr(y) ~ vla exp {—ae™ ™ + ay(y — 0)}

(19) ~ (1/a) exp {=(aly)'e" ™ + (lvl/ov) (y — 6)}
—*{(1/6) exp {—(1/a)(y — 0)} i y>0
0 if y=e.
Similarly, as y — + «,
(1/0) exp {(1/0)(y —6)} f y<éo
(20) fr(®) —»{0 £ o6,

We now define N(6, ¢*, — @) and N (6, ¢*, + =) to be the limiting distributions
of formulas (19) and (20) respectively.

A few words about this family of distributions are in order. The symbol
N(6, ¢, v) is now defined for all finite 6, all positive finite o>, and all v on the
extended real line. This family of distributions is stochastically continuous in
these three parameters, and is, furthermore, a one-parameter exponential family
in 6, a one-parameter exponential family in ¢°, and a two-parameter exponential
family in (6, ¢°). The parameter o” represents the variance, and 9 is a location
parameter. Given a sample of size n, X1, Xz, ---, X, , from the distribution
N(6, ¢, v), a sufficient statistic for # may be found in the mean of order v of
X1, -+, X, to be denoted by M,(X;, ---, X,). More precisely, for fixed o
and v the statistic

(l/v)IOg{(l/n) zem} 9 5 0 or oo
i=1
@1)  M(X,-,X)={ X ify =0
max; X; fy=4w
min; X; 1f"y = — ®©

is sufficient for 6, and is, in fact, the maximum likelihood estimate of . For fixed
Xy, -, X,, M(X1, -+, X,) is a continuous strictly increasing function of
v between — « and + « inclusive, except in the trivial case where all the X;
are equal, when M, (X, ---, X,) is a constant.

Several other notations are possible to describe this family. One notation worth
considering is to let N*(6, ¢°, v) be defined as N (6, o*, v/c). For the distributions
N*(8, ¢*, v), which are still continuous in the parameters, the coefficient of skew-
ness is a function of v alone, and takes values from —2 to +2. Furthermore,
(6, ¢*) are location and scale parameters for all values of v, and o is still the vari-
ance of the distribution. However, with N* one loses the property of being a two-
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parameter exponential family in (6, ¢*). Another advantage of N (6, o*, v), ex-
ploited in Theorem 5 below, is that the maximum likelihood estimate (21) of 8
is independent of ¢°.

TaEOREM 2. The parameter of a one-parameter exponential family of distribu-
tions can be taken to be a location parameter if, and only if, the family of distribu-
tions is N (8, o*, v) for some fived positive o° and finite .

Lemma 4 above implies that the density with respect to Lebesgue measure is
infinitely differentiable. The reader is therefore referred to Lindley’s paper for the
completion of the proof. Of course, this theorem is also an immediate consequence
of Theorem 1.

The author conjectures that Theorem 2 can be strengthened and extended to
allow infinite values of v; namely, that the distributions N (6, ¢°, v) are the only
distributions, dominated by a o-finite measure u, independent of the location
parameter, 6, which have a complete sufficient statistic for 6 for any sample size
2 2. One can easily prove a theorem parallel to Theorem 2 to the effect that the
only “non-regular” distributions of Pitman [10] with a one-dimensional sufficient.
statistic for a location parameter, 6, are the distributions N (9, ¢*, &= ). In fact,
Theorem 8 of Dynkin’s paper [3] contains such a theorem. Whether or not there
exist distributions other than N (6, ¢°, v) having a complete sufficient for a loca-
tion parameter 6 for a sample size =2 in the dominated case, is an open problem.
In the non-dominated case, the author has been able to find only one other such
example, that being the geometric distribution with a probability mass function
on the points 6, 6 + 1,6 + 2, - --

P(X=x|0)=(1_p)pz_0; x=06,60+1,- -

For a sample of size n from this distribution, min X; is a complete sufficient
statistic for the location parameter 6.

6. Scale parameters in one-parameter exponential families. To describe the
result for scale parameters corresponding to Theorem 2, we introduce some more
notation. We shall use L(8, ¢°, v) to denote the distribution of the random varia-
ble X = e’ where Y has the distribution N (log 6, ¢°, ¥). The parameter 0 is a
scale parameter of the distribution L (6, ¢°, v). This class of distributions contains
certain well known distributions. Of course, L(6, ¢°, 1) are just the gamma dis-
tributions, and L(8, ¢*, 0) are the lognormal distributions. In addition,

L(6,¥'(3), —1)

are completely asymmetric stable distributions with characteristic exponent %,
L(8, (1/4")¥'(1/v), v) are the Weibull distributions when vy > 0, L(6, 1, 4+ =)
is the uniform distribution over the interval from zero to 6, and L(6, 3¢¥'(%), 2)
are half-normal distributions.

If X has a distribution L(6, ¢°, v), the distribution of —X will be denoted by
—L(8, ¢°, v). The distribution degenerate at zero will be denoted by D(0).
Finally, we shall denote mixtures of distributions by the sums of the correspond-
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ing symbols. For example pL(6, o°, v) + (1 — p)D(0) represents the mixture
of a distribution L(6, ¢*, v) at proportion p, with a distribution of mass (1 — p)
at the origin, 0 < p = 1. '

TaeorEM 3. A scale parameter family Py of distributions s also a one-parameter
exponential family of distributions in 6, if and only if, Py is, for fixed 6 (6 = 1, say),
the mizture piL(6;, o*, v) + p(—L(6, o, v)) + psD(0), for some finite ,
o > 0,0, > 0and 6, > 0, where p; , ps , Ps are non-negative constants whose sum
18 one.

Proor. The “if” part of the theorem is easy to check, so we can restrict our
attention to the “only if”’ part. We know from a previous discussion that in a
scale parameter family there may be a mass, p; , 0 < p; = 1, at the origin pro-
vided it is independent of the parameter. Subtracting this mass from the dis-
tributions will make them absolutely continuous with respect to Lebesgue meas-
ure. The conditional distribution of ¥ = log X, given X > 0, is a one-parameter
exponential family in a location parameter 4 = log 6, where X has the distribu-
tion Py . Hence, the conditional distribution of ¥ given X > 0 must be for fixed
4, N(us, o1, v1) for some p; , o1 > 0 and finite v1 , so that the conditional dis-
tribution of X, given X > 0, must be for fixed 6, L(6; , o1 , 1) where u; = log 6, .
Similarly, the distribution of X given X < 0 must be for fixed 8, —L(6. , o3 , v2)
for some 6, > 0, o3 > 0 and finite v, . Therefore, the logarithm of the density,
h(x), has the following form: for z > 0,

either h(z) = ax” + blog z + ¢, v # 0,

(22) :
or h(z) = a(log )" + blogx + ¢,

and forx < 0

(23) either h(z) = a'[z|" + b’ log [a] + ¢’ A =0,

or h(z) = a/(log |z|)* + ' log || + ¢'.

Now we shall combine these two parts. If A(z) = az” 4+ b(log ) + ¢ for z > 0,
then, computing h(x/0) — log 6, we find that @,(6) = ¢:6™7, and

Q(8) = —(b + 1) log 6.

Since the @; must be the same whether z is positive or negative, we may deduce
that for x < 0, h(z) = o'|z|" 4+ b log |z| + ¢’. If, on the other hand,

h(z) = a(log z)* + b(log z) + ¢ for z > 0,

then @:(0) = c;(log 6) + ¢; and Qo(8) = a(log 8)* + cs(log ) + ¢4 . From this,
we may deduce that for z < 0, h(z) = a(log |z])* + v’(log |z|) + ¢’. Thus,
either

_Jaz" +blogz 4+ ¢ for = >0
(24) h(z) = {allxl‘)‘ + blog |z| + ¢ for <0
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or

(25) h(z) = {a(log ) +blogz + ¢ forz > 0

a(log |z|)* + b log |z| + ¢ for z < 0.

It is clear that the same value of ¥ must be used for the negative and positive
parts of the density. The fact that the coefficients of log |z| must be the same
in equation (24), and the coefficients of (log |z|)* must be the same in equation (25),
is equivalent to the fact that the same value of the parameter o° must be used
for the negative and positive parts of the density. This completes the proof of the
theorem.

This class of distributions contains the normal distribution with mean zero
and variance 6°:

3L(0, 1¥'(3),2) + 3(—L(6, 1¥'(3), 2));
and the Laplace distribution centered at the origin:
3L(6,¥'(1), 1) + 3(—L(6,¢¥'(1), 1)).

A generalization of Theorem 3, allowing infinite values of v would be to char-
acterize p1L(6:8, 0", v) + p2(—L(8:8, o*,v)) + psD(0) as that class of distribu-
tions for which there exists a complete sufficient statistic for a scale parameter, 6,
in the dominated case, irrespective of the sample size. However, as in the corre-

sponding statement involving location parameters, it is not known if this gener-
alization is true without added regularity conditions.

7. Location-scale parameters; a characterization of the normal distribution.
To complete our study, we present a theorem describing those k-parameter
exponential families which contain both location and scale parameters. We shall
use the following definition of parameters which are jointly location and scale
parameters.

DerintTION 4. A two-dimensional parameter (u, o), with ¢ > 0, is said to be
a location-scale parameter of a family of distributions, F(z | u, o), if F(z |, o)
is a function only of (x — u)/o.

If a density, f(z | u, o), with respect to Lebesgue measure exists, then (u, o)
is a location-scale parameter if, and only if, f(z | u, ¢) = (1/0)g((x — u)/0)
for some function, g. In terms of random variables, (u, ¢) is a location-scale pa-
rameter of the distribution of X if, and only if, the distribution of (X — u)/c
is independent of u and o, when p and o are the true values of the parameters.

It is important to notice that if (u, ¢) is a location-scale parameter, then u
is a true location parameter (i.e., the distribution of X — u does not depend on
u, for each fixed ¢ > 0). However, ¢ does not satisfy our definition of a scale
parameter of the distribution of X unless p = 0.

The following theorem also has been proved by Dynkin [3] under the assump-
tion that the density has a piecewise continuous derivative. Since Lemma 4 im-
plies that this assumption is automatically satisfied in the present context, we
present this theorem without proof, referring the reader to Dynkin’s paper.
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THEOREM 4. If (u, ¢) is a location-scale parameter for a k-parameter exponential
family of distributions in (u, o), then k is even, and the logarithm of the density is a
polynomial of effective degree k. _

CoroLLARY. The only 2-parameter exponential family of distributions in a loca-
tron-scale parameter is the family of normal distributions.

The generalization of this result to distributions having a complete sufficient
statistic for a location-scale parameter, will involve, in addition to the normal
distributions, two other distinct types of ‘non-regular’’ distributions. The ex-
treme type, involving sufficient statistics due to non-regularity at both ends of
the distribution, is the uniform distribution over the interval

(ke — V30, u + V/30),
having, for a sample, X;, --- , X, , a sufficient statistic of the form
(min; X; , max; X;)

for the location-scale parameter (u, o). The other type is mixed, having one of the
sufficient statistics due to ‘“‘non-regularity’’ and the other not. This type con-
sists of the exponential distributions N (6, ¢*, — © ) and N (6, ¢*, + « ). Whether
there are distributions other than N (6, >, 0), N(9, ¢*, — ® ), N(8, ¢*, + ), and
the uniform distributions, having a complete sufficient statistic for a location-.
scale parameter in the dominated case is an open problem.

8. Applications. The author’s motivation for investigating location and scale
parameters in exponential families was to obtain an idea of the generality of
Basu’s theorem on statistics independent of a sufficient statistic, [1]. This the-
orem states that if T is a (boundedly) complete sufficient statistic for a parame-
ter 0, and if a statistic U has a distribution which does not depend on 6, then the
statistics T and U are stochastically independent. The main classes of distribu-
tions for which a k-dimensional sufficient statistic exists for a sample size greater
than k, in the so-called “regular’’ case, are the k-parameter exponential families.
(For a proof and a statement of the regularity conditions see Dynkin [3].) Fur-
thermore, when the parameter space has the same dimensionality as the suffi-
cient statistic, the sufficient statistic is complete (see [7] p. 132). On the other
hand, the main families of univariate distributions for which it is easy to find
statistics whose distributions are independent of the parameter(s) are the loca-
tion and/or scale parameter families. Given a sample X, , --- , X, from a dis-
tribution with a location parameter 6, the joint distribution of the differences,
X — Xp, -+, X1 — X, , does not involve 6. Thus, if there is a complete
sufficient statistic, T', for 6, T will be stochastically independent of any function
of the differences of the X, . Similarly, the joint distribution of the ratios of the
X does not depend on any scale parameter, and the joint distribution of the ratios
of the differences does not depend on any location-scale parameter. Thus, the
main, ‘“regular,” univariate applications of Basu’s theorem involve location
and/or scale parameters in exponential families of distributions, in which the
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dimensionality of the parameter space is equal to the dimensionality of the suffi-
cient statistic. The resulting distributions are found in Theorems 2 and 3.

It should be pointed out that there are, of course, other applications of Basu’s
theorem. First, there is the “non-regular” case of sufficient statistic, as, for ex-
ample, N (8, ¢°, =) and L(6, ¢°, &= ). Second, there are applications which,
strictly speaking, do not involve location or scale parameters. For example, in a
sample from the lognormal distribution L(1, ¢*, 0), > (log X;)® is independent
of any function g(X, - -+, X,) for which g(Xy, --- , X,) = g(X3, -+, X%)
for all \. Actually, this is just a restatement of the fact that ¢ is a scale parameter
for the N(0, ¢°, 0) distribution. Third, R. G. Laha [6] mentions that for the
N (6, 1, 0) distribution, he has found statistics independent of X which are not
location invariant.

As an example of the use of these results, consider the two theorems proved
by Laha in [6]; these state that when X, ---, X, is a sample from a normal
{resp. gamma] distribution, then X and g(X;, - -+, X,) are stochastically inde-
pendent if, and only if, for every \ [resp. A > 0lg(X;, --- , X,) and

g(>‘ + Xl y T A+ Xn)[respg()‘Xl y " )‘Xn)]

are identically distributed. These theorems follow immediately from Basu’s
theorem and its converse, [2]. But these theorems may be generalized to samples
from any of the distributions of Theorems 2 and 3. Furthermore, these two the-

orems may be combined into a single theorem as follows: whenX; , - -+, X, is a
sample from N (6, o*, v), then M,(X;, ---, X,) (see formula (21)) and
g(Xl’ ’Xn)

are stochastically independent if and only if g(X;, ---, X,) and

are identically distributed for every A. This contains Laha’s result for the normal
distribution when v = 0, and his result for the gamma distribution when v = 1.
The importance of this extension lies not so much in the fact that a larger class
of distributions is involved. Indeed, the whole of this theorem, except for

Yy = oo,

follows immediately from Laha’s theorems. It is rather that this larger class of
distributions (1) constitutes a natural setting in which to prove many theorems
as one, and (2) provides a maximal class to which the extension can be made.
Two other examples of the way theorems involving normal and gamma dis-
tributions may be unified by the class of distributions N (9, ¢°, v) will be men-
tioned. The first example deals with the characterization of the normal and
gamma distributions by independence of certain statistics. The well-known Kac-
Bernstein-Gnedenko result, see [9], is as follows. If random variables X and Y
are independent, and if X + Y is independent of X — Y, then X and Y have
normal distributions with identical variances. A corresponding result on gamma,
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distributions stated by Lukacs [9] under the assumption that X and Y are posi-
tive random variables is: if X and Y are independent, and if X + Y is independent
of X/Y then X and Y have gamma distributions. These results can be combined
under one roof as follows. If X and Y are independent, and if for some finite v,
M.,(X,Y) isindependent of X — Y, then X and Y have N (6, ¢°,v) distributions.
Again, this theorem could easily be proved from the above results of Lukacs, and
Kac-Bernstein-Gnedenko. The above generalization is not true in the case
v = =4+ o, g counterexample being the geometric distribution, as is easily seen by
applying Basu’s theorem. The author intends to treat these problems in another
paper.

The final example is that of characterizing distributions involving location
parameters by the functional form of the maximum likelihood estimate. A theo-
rem exists, due originally to Gauss [4], which states that under the assumption
that the density has one continuous deviative, if X; , - - , X, is a sample from a
distribution with location parameter, 6, and if for some n = 3, X is the maximum
likelihood estimate of 8, then the distribution is normal. A proof under very weak
conditions, provided that X is the maximum likelihood estimate for n = 2 and
n = 3, may be found in Teicher [11]. This theorem can be extended to the class
N(9, &*,v) for v finite, as follows.

TaeoreM 5. Let X, , X, , -+ , X, bé a sample from a distribution with unknown
location parameter, whose density admits one continuous derivative. If for every n
the maximum likelthood estimate of the location parameter exists and is equal to
M, (Xy, -+, X,) for somey 5% = o, then the distribution is N (6, *,v) for some
o* > 0.Fory = 0, one value of n = 3 suffices for this result.

Proor. The likelihood function is L = J]%if(z: — 6), where f admits one
continuous derivative. The maximum likelihood estimate, §, satisfies the equa-
tion > i g(x; — 8) = 0, where g(z) = f'(x)/f(x), for x for which f(z) > 0,
and is undefined otherwise. For v 5 0, we have that

(26) > [x ~ (/) log (1/m) 3 ew'] —0

for all m and all @y, - - - , z, . If we let h(z) denote g((1/v) log z) for x positive,
equation (26) is equivalent to the equation

(27) - 2; h(z:) =0
for all n, and all positive 2, , - - - , 2, for which ZI‘ z; = n. Noting that
h(zr + €) + h(ze — €) + Zajh(zi) =0

provided in addition that —2; < e < 2;, and subtracting (27), we find that
(28) ‘ h(zl + 6) - h(zl) = h(Zz) - h(22 - e).
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When n = 3, this implies that h(z + €¢) — h(2) is a function of € only, provided
0 <2z<mnand0 < z+ e < n. This, continuity of &, and the fact that (1) = 0,
imply that h(z) = a(z — 1) for 0 < z < n. Since true for all n, this equation
is true for all z, and

(29) log f(y) = a((1/v)e” — y) + ¢,

for all y. This with @ = 1/¢% is the logarithm of the density of N (0, o°, 7).

For v = 0, the same method will arrive at the equation, > 1 g(z:) = 0, for
all z; for which >_ z; = 0, similar to equation (31), without the restriction that
the z; be positive. Continuing as before, we will conclude that g(xz) = az for all
z, implying normality, and completing the proof.

This theorem can as easily be stated in terms of scale parameters for distribu-
tions on the positive real line. The resulting set of distributions are, naturally,
L(6, ¢*, ) for finite v. In such a form, Theorem 2 of Teicher’s paper [11] is con-
cerned with the case ¥ = 1, under a different set of regularity conditions, one of
which rules out values of ¢* other than ¢° = y/(1), thus yielding a characteriza-
tion of the exponential distribution, when, in fact, X is the maximum likelihood
estimate of 6 for all the gamma distributions L(6, ¢, 1).

We see from the proof of Theorem 5 for the case vy # 0, that if the hypotheses
are valid for just one n = 3, then the logarithm of the density has the form (29)
at least for those y for which vy < log n. That it is not necessary that it have this
form for all y is seen by considering the N (6, ¢*, 1) distribution truncated at
B+ 6.LetY,,Y,, -, Y,bea sample from a distribution with density

{6(0) exp {—(1/0)’"™ + (1/0)*(y — 0)} if y—6<B

(30) f(y|e6) = if y—60>B.

Then, 6 is a location parameter whose maximum likelihood estimate is
(31) 6 = max {M,(Yy,---,Y,), max; ¥; — B}.

But whenever B > logn, § = M,(Y,, ---,Y,) irrespective of the values of the
Y. Although the density (30) does not satisfy the differentiality assumption of
Theorem 5, it can be patched up easily, by letting the density come down to zero
after B + 6, smoothly and quickly enough.

Finally, we show by a counterexample, why nothing similar to Theorem 5 can

be proved for the distributions NV (6, o, +=»).Let X, - -+, X, be a sample from
a distribution with density of the form
gz — 0) if z<46
32 z|0) =
(32) f(z|06) { 0 d 50

where g(z) is a strictly increasing function of « on (— «, 0) (as for formula (30)
with B = 0). Then, the maximum likelihood estimate of the location parameter,
0, is always max; X; = M (X1, -+, Xa).
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