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(—6, —3, 10, 11). Table II provides the necessary data. EM{ — EM3 = 3
= 8,/4. The computation for the right side of (4.2) gives (1/4) (21/1 + 33/2
+ 36/3 + 48/4) = 63/4 = EMY .
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DETERMINING BOUNDS ON EXPECTED VALUES OF CERTAIN
FUNCTIONS

By BErNARD HARRIS

Unaversity of Nebraska

1. Introduction and summary. Let F be the collection of cumulative distribu-
tion functions on (— «, ©) and F, 5 that subset of F all of whose elements
have F(a — 0) = O and F(b) =

Let G¥wer 40 (gliyhe ) be the class of cumulative distribution functions
on (—, ©) ([a, b]) whose first k¥ moments are w1, p2, * -+, us respectively.
We will suppose throughout that u1 , pe, - - - , uz is a legitimate moment sequence,
i.e., that there exists a cumulative distribution function F (z) & F (F(,5) whose
first £ moments are ui, po, * -, Mk -

Let g(z) be a continuous and bounded function on [a, b]. Then, we wish to
determine F*(z) & Fyi> ¥ with

b
(1) [ 9@ ar*@) = min (max) [ (e aFa).

“3:%#1 i‘2 ~~~~~ nK) va

Any F* () satisfying (1) will be called an extremal distribution with respect to
g(z).

Let g[,, » be the set of continuous, bounded, and monotonic functions on
[a, b], whose first k derlva,tives exist and are monotonic in (a, b). In addition,
we further require that g contam only functions not linearly dependent on
the monomials 1, z, 27, - - , 2"

This paper characterlzes the extremal distributions for g(z) £G{s,, . The
results are extended to & {142 *¥ and F*1***¥ in that we investigate
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determining

inf (sup) om g(z) dF(z) and inf (sup) ) f_: g(x) dF (z).

Feff?‘l u)z ~~~~~ BE) FegBL B2 Bk

These results are then applied to the computation of bounds on the moment
generating function, knowing the first k¥ moments, in some specific cases. The
methodology is largely a straightforward extension of results in an earlier paper
by the author [1].

2. Moment inequalities. In order to apply the results of the author [1] and
Wald [2], it is convement to use the natural isomorphism obtained by replacing

S SRR f}f("”‘” , g(@) by gz — a), and F(z) by F(z — a), where

b* = b — aand

(2) ZO( 1)](>al"z—l, i=1’2""’k’
=

and o is taken to be unity.

Then, if (uf , u3 , -+ , ) is non-degenerate (see [1] or 2D, there are exactly
two extremal distributions with respect to g(z), for g(z) £g{¥,; , which are
elements of F{%%}?"**¥_ This statement is an immediate consequence of Theorem
5in [1]. By a stralghtforward extension of Theorem 7 in [1], the two extremal
distributions Fy (z) and F; (z) are characterized by

(a) if k= 29 + 1, ¢ a non-negative integer, then F1(z) has a saltus at each
of (k + 1)/2 points in (a, b) ; F3(z) has a saltus at each of (k — 1) /2 points
in (a, b) and at both a and b;

(b) if k = 2g, ¢ > 0, then F1(z) has a saltus at each of k/2 points in (a, b)
and at a; F5 (z) has a saltus at each of k/2 points in (a, b) and at b.

One of these two cumulative distribution functions will be the maximizing
dlstrlbutlon, the other the minimizing distribution. We note that whether
Fi(z) will be a maxmuzmg or minimizing distribution depends on the particular
choice of g(z) £ g%, .

We now show how the above characterization can be extended to F*i 2 #»,
The comparable result for F{&445" " *¥ is a straightforward extension of Theorems
8 and 9 in [1].

THEOREM 1. Let {a, , ba} be any sequence with a, — — © and b, — «, and
let Fi.(z) and F. 2,,(1:) be the two extremal distributions on [a, , b,), then there exzsts
a distribution FY (x) on (— o, ©) andfor k=294 1,921, {F.(x)} converges

in distribution to Fy (x) and ffwx dFf(x) = p;,j = 1 2, ,2¢ — 1; k = 2,
g=1,{Ff, (x)} and {F3,(x)} converge in distribution to F1 (a:) and [2a? dF1 (z) =
Kj ).7 =1, 2 2q - L

PROOF. p, < o implies a; = E|X|* < o. Then if there is a saltus at a or b,
we have [F(b) — F(b — 0)]|b* < o and [F(a) — F(a — O)]]al < a. Hence
F) — F(b —0) =00 and [F(a) — F(a — 0)] = 0(a™*), and for any
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e > 0, there is an n sufficiently large with Fin(ba — 0) — Fia(a.) > 1 — ¢
for all m > N, ¢ = 1, 2. In addition [’ dFi.(z) = nj,j = 1,2, -+, k. Let
An = Fin(by — 0) — Fi.(as) and

0, z = an,
Gin(@) = vaFfa(@), an<z <ba,
1, z = bn.

Then, by employing Theorems 5 and 7 in [1] and Proposition 12 in [2], it can be
shown that for n sufficiently large, |Gin(z) — Fin ()| < € and {Gin(z)} con-
verges in distribution to FY(z) computed for 2¢ — 1 moment constraints, when-
ever Fi, (z) has a saltus at a, or b, or both.

Note that as @ — — o, b — , it is impossible for g(z) £ %, to remain
bounded, however, in many cases of interest, sup(inf) regeum---up E{g(X)} exist.
This is summarized in the following theorem.

THEOREM 2. If p1, 2, -+ , Mk is non-degenerate and k = 2q¢ + 1, ¢ > 0,
one extremum of g(x) over F & F#1#2" ¥ 45 given by [2eg (x) dFF (z); 4 g(z) =
0@") as * — =, the other exiremum exists and is given by

b
lirr; g(z) dF5 (x).
If k = 29, and g(x) = O@G*) as x — — o, an extremum exists and is given by
1My [29(x) dFY(z), Fla(x) e S ™25 and if gl@) = 0(@") as z — «, the
other exiremum exists and s given by limy.. [ wg(x) dF3(x), F3p(z) & Fiagy "%,
Using the natural isomorphism described earlier, and the methodology of
Section 5 in [1], the extremal distributions with respect to g(x) ¢ gty , g,

and G «) can be computed. The reader is referred to [1] for details.

3. Some examples of extrema of the moment generating function.

1. Let wo = 0, p2 = 1, s = 0, s = 3, i.e., the first four moments of the stand-
ard normal distribution. Then infregco.10.0E{e*} = cosh . The supremum does
not exist. It is readily verified that cosh ¢ < exp{3t’} for all ¢.

2. Let yy = 0, us = %, us = 0; i.e., the first three moments of the rectangular
distribution on [—1, 1]. Then

0, z < —/3/3,
Fi(z) =<3 —3/3 =z <3/3,
1, V3/3 £ =z,
0, z < —1,
1, -1 é r < O,
Fi@) ={°

H 0=z2<1,

1=z,
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and
sup Efe'*} = 2 + (cosh t)/3 and inf  E{e”™} = (cosh /3t)/3.

(0,1/3,0) (0,1/3,0)
[-1,1] o1l

It is readily verified that (cosh /3 ) /3 < (sinh )/t < 2 + (cosh ¢)/3, where
(sinh £)/t is the moment generating function of the rectangular distribution
on[—1,1].

3. Let 3 = 1, u2 = 2, 3 = 6, i.e., the first three moments of the exponential
distribution with mean unity. Then

inf E{e™} = (34 2v/2) (4 + 2v/2)exp { (vV20) (1 + v/2)7}

(1,2,6)

(0,01
+ (4 + 2v/2)7 exp {2 + V24
0, z <201 +v2)7,
Fi@@) ={B+2v2) (4 +2v2)7, V20 +Vv2)7'=22<2+7,
[ 1, 2442 = 2.

The supremum does not exist.
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ON BOUNDS OF SERIAL CORRELATIONS
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1. Introduction and summary. The role of serial correlations in time series
analysis is well known. Considerable attention has been given to the derivation
of their sampling properties when the sample size is both small and large. In
all these discussions it has been tacitly assumed that these correlations are
bounded between —1 and 1. At least, no literature exists which considers it
otherwise. Whereas it is true that the serial correlations are all bounded it is
not true that the bounds are —1 and 1. In fact, in small samples these bounds
may very well be lower than —1 and higher than 1. To the best of the author’s
knowledge, this fact has not been mentioned anywhere. The purpose of this note
is to discuss this particular aspect.
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