ASYMPTOTIC RELATIVE EFFICIENCY OF MOOD’S AND MASSEY’S
TWO SAMPLE TESTS AGAINST SOME PARAMETRIC ALTERNATIVES'

By I. M. CuakrAVARTE, F. C. LEONE AND J. D. ALANEN

University of North Carolina and Case Institute of Technology

1. Introduction and summary. In [2], the exact power of Mood’s and Massey’s
two-sample tests for discriminating between two populations was derived. Two
types of alternatives were considered—change in the location of an exponential
distribution and change in the location and scale of a rectangular distribution.
The asymptotic relative efficiency of Mood’s test based on the median against
an alternative of change in location of a normal distribution was shown ([1],
[8]) to be 2/x. A limited comparison of powers of the tests based on the median,
on the first quartile and the median and on the likelihood-ratio against the ex-
ponential alternative is given in [3].

In this paper, the asymptotic relative efficiencies of Mood’s test based on the
median and Massey’s test based on the first quartile and the median are shown
to be zero, when these tests are compared against the likelihood-ratio test
appropriate for detecting a shift in location of an exponential distribution.
Massey’s test is found to be about three times as efficient as Mood’s test, for
exponential distribution. But so also is the test based on the first quartile alone.
If the order of the fractile is lowered, the efficiency of the test based on it is
increased. Similar comparisons are also made for the normal distribution.

2. Mood’s and Massey’s test statistics and their limiting distributions.
Let X;, Xz, -+, X,,and Y, ,Y,, -+, Y,, be independently distributed with
continuous cumulative distribution functions (c.d.f.’s) F(z) and G(y) re-
spectively. Let n = n; 4+ ny = 4r 4 1 where r is an integer. Let Zgq) < ---
-++ < Z(») be the ordered combined sample and let Z, = Z;, and Z; = Zg,4y
be the first quartile and the median respectively of the combined sample. Let
U, and U denote the number of observations in the first sample, that are less
than Z, and Z, respectively. Then U, = U — U, is the number of observations
in the first sample that are greater than or equal to Z, but less than Z, .

Mood’s one-sided test based on U for the hypothesis

2.1) 3, :F(x) = G)

rejects 3¢, if U = u, where Pr (U = u4,]|3C) < eand 0 < a < 1 is a preas-
signed constant.
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The expression for the null distribution ¢,(u) of U

(22)  Pr{U =} = @) = (zu" )(Z + i) / (Zl)

as well as the non-null distribution of U and Z, , was first derived by Mood [8].
The limiting form of the joint distribution of U and Z, obtained by him is
bivariate normal.

Let H(z) = (m/n)F(z) + (ny/n)G(x) be the mixture of the cdf’s F(x)
and G (z). Also, let ¢; and ¢, denote the first quartile and the median of H (z),
that is,

(2.3) H(a) =1 and H(c) = %.

The derivatives F' (z) and @ (z) are assumed not to vanish at ¢; and ¢; . Then
the asymptotic distribution of V = ni[(U/n) — F(c;)] is normal. The ex-
pressions for the asymptotic mean and the asymptotic variance of U are

E(U) ~ u = m1 Fcs)

(24) , n e’ E
A(U) ~ o2 = [nlmF(w)(l —T@) T mm @@ = G<C2>)]

Massey’s extension [7] of Mood’s test, based on U; and Us alone, is considered
next. Let M denote the statistic

n’ [U§+(_I_§+(’ﬂ1—U1—U2)2_7_Li:|
T

(2.5) "M=nlm r 2r + 1 n
Then the test consists in rejecting 3¢, if M = m, , where Pr (M = m, | 3C,) < a.
The joint distribution of U; and U, under 3¢, was shown [7] to be

(2.6) oot , up) = (,:1) (1:2) (m irzj; —1- ug)/ (Zl> '

Hence, the distribution of }/ under 3¢, can be approximated by the Chi-square
distribution with two degrees of freedom.

The non-null distribution of U,, U, Z; and Z, was derived in [2].
Let P;j(uy, u2, 21, 2;) denote the joint probability density of U,, U, Z; and
Z; when Z, belongs to the sth sample and Z, to the jth sample, ¢, 5 = 1, 2. Then
the expression for P;; when F and @ are any two continuous cdf’s (given here
only as an example) is

nI! uy ’ ug—1
Py = wlws — DI — w1 — wa — 1)1 [F(21)][F(2,) — F(a)]

n1—u1—ug—l T2 !
27) [l = F)] r — ) r — uD)l(ns — 2r + ur + ).
dF (21) dF ()

JG (@) TG (2) — G(2) ™1 — G(zp)]r2rHurtee o da
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The probability density of the joint distribution of U,, U,, Z; and Z; is
(2.8) P(uy,us,2,2) = Pun+ Piy+ Py + Pa.

The joint distribution ¢g (uy, us) of U, and U, is obtained by integrating
P(u1, us, 21, 22) over the appropriate range of Z; and Z, . Defining

Vi = nl[(Uy/m) — F(c)] and Vi = nd[(Us/m) — F(eo) + F(e)]

and proceeding on the same lines and under similar regularity conditions as
Mood [8], the asymptotic distribution of V; and V, is found to be bivariate
normal. The expressions for the asymptotic means, variances and covariance
of U; and U are

EU) ~m=m F(Cl), E(Us) ~ p2 = m(F(c;) — F(er))

2 o G i "
7 () ~ou = [nlw(cou =T@) T mmGE - G@ﬂl]

. _ N2
(2.9) o (Uz) ~ o2 = [nln«z[F(Cz) — F(e)lll — F(co) + Flen)]

n -1
1 G = Gl = 6@ G(cl)]]
Covar (Uy, Us) ~ 012 = 3(02 — ou — om)

where o- has the expression of (2.4) and ¢, c; are as defined in (2.3). Under
the null hypothesis 3¢, , the expressions for o, , 11, 022 and 15 become

or = MyMa/4n, on = 3niny/16m, o = 3nmy/16m,

(2.10)
o1z = —Mny/16n.
3. Two-sample likelihood-1atio test for sh'ft in location of exponential dis-
tribution. Suppose X1, X, , - -+, X,, form a random samp! from the exponential
distribution F(z) = 1 — ¢ “*, ¢z =2 6,and ¥,, Y;, -+, ¥,,, a random
sample from the distribution G(y) = 1 — ¢ “ ™,y = 4,.

Consider the hypotheses

(a) 3C, : 6, = 6, against 3¢, : 6; = 6,

(b) 3¢, : 6, = 6. against 3¢, : 6; < 6.
Let X denote the minimum of the sample X; , X5, - -+, X,, and Y the minimum
of the sample Y1, Y, -+, Y,, and Z = min (X, Y). Then the likelihood ratio
statistic for testing the hypothesis (a) is

3.1) ¢ =mX + nY — nZ,

which can be also writtenas £ = n, (Y — X)f VY > X, =mX - Y)if X > Y.
The procedure for testing 3¢, in (a) is

reject 3¢, if E> &
accept 3¢, if £ = &,
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where £, is determined so that
(3.2) PI' {E é Eolgco} = ]- - Q,

or, alternatively, Pr {— (¢,/m) £V — X £ (&/n)} =1 — a.

For testing the hypothesis 3¢, against one-sided alternatives, as stated in (b),
the likelihood ratio test is based on the statistic W* which is defined as
W* =Y — Xif Y > X, = 0 otherwise. The procedure for testing 3¢, in (b) is

reject 3¢, if W* > ws,

(3.3)
accept 3¢, if W* < wy,

where w; is determined so that Pr {W* < wq |3¢,} = 1 — . The power function
C.(0) of the test of size a, based on W*, is given by

C.(0) = e if e = (ny/na)
=1— (n/n)e ™ (m/na)™™ if " 2 (m/na).

4. Asymptotic relative efficiency of Mood’s and Massey’s tests. Theorems
1 and 2 quoted below, on asymptotic relative efficiency and efficiency index,
are well known and in their present form are due to Hoeffding and Rosenblatt
[5].

Let B.(6) denote the power function of a test of the hypothesis 3¢, : § = 6,
against the alternative 3¢; : = 6, .

TaEOREM 1. Suppose that

(@) Ba(f0) = @, limp.eBn(6o) = a;

(b) for each n, 8, () is non-decreasing in 8 for 6 = 6, and continuous at 6 = 6, ;

) a>0,6>0,a+8<1;

(d) there is a positive r such that for any d = 0, the limit lim, .8, (6 + dn™") =
H (d) exists;

(e) H(d) s continuous and increasing for all d = 0 and limg, H (d) = 1.

Then

(I) the equation H(d) = 1 — B, has a unique positive root D;

(II) for any & > 0, we have B, (6o + 6) = 1 — B for some n;

(III) of N (8) s the least n, such that B, (6o + &) = 1 — B, then asymptotically
as & — 0;
4.1) N@) ~ (D/s)"".

THEOREM 2. Suppose that for a test based on the statistic t, from a random sam-
ple of size n, which rejects the hypotheses if t, exceeds a constant,

(@) Bn(60) = a, limu.uB,(6) = a;

(b) for each n, B.(6) is non-decreasing in 8 for 6 = 6, and continuous at 6 = 0, ;

(c) there exist a positive r and functions u(6) and o(8) such that for any real
z and any d = 0, the probability

lIA

3.4)

lim Py, {"r b — (6h) = x} = ®(x) = (2#)—}/ e dy,
n-»0 O’(on) |
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where 6, = 6y + dn™";
(d) u(6) has a derivative u' (65) at 8o and p’ () > 0;
(e) a(8) is continuous and positive at § = 6, .

Then

limyaeBa (6 + dn™") = ®{d[u’ (60) /o (66)] — N}

when ®(—N.) = a. The efficiency index N (8) of the test based on t, , has the ex-
pression

1/r
(42) N(8) ~ [)‘“ :’ Ae :((";’3)] .

Let us define the hypothesis 3¢: G(y) = F(y — 0). Let ny = sin/(s; + s2)
and ne = sgn/(s; + s2) where s; and s; are two positive numbers.
For Mood’s test

. n(U/n, — Fc, 3 7 e
'Erg’ P"»;[ /(n2/4n)* ) =< x] = &(x) = (27) *j;we ¥ dt,
where 6, = dni* and 6, = 0. To show that condition (b) of Theorem 2 is satisfied
for the (one-sided) tests based on U (or U;), one might proceed as follows.
Assume G(y) = F(y — 0). Let Xp,0s = Y, — 6fori=1,2, ---, ny and
X =Xy, -+, Xu, ,Xn+n)- Then U can be expressed as a function G(8, X)
for 8 and X. It is easy to see that G (6, X) is non-decreasing in 8 for X fixed.
The distribution of X does not involve 8. Hence the probability of U = u, , that
is, Pr {G(8, X) = u.}, is a non-decreasing function of 4. This proof was suggested
by W. Hoeffding. It is easy to verify that the other conditions of Theorem 2
are satisfied for this test. Hence the limiting power function of the test is given
by

(4.3)  limp,owBs, (dn1?) = ®{— Ao + d[dF (c2) /d6) (4n/n2)Y} = A (),

where dF (c;) /df is evaluated at 8 = 0 and ®(—A,) = a.

For the test based on M, it is easy to verify that the conditions (a), (¢), (d)
and (e) are satisfied. Numerical calculations showed that condition (b) is not
satisfied. To compute the efficiency of this test relative to the other (one-sided)
tests, we appeal to a weaker version of the definition of relative asymptotic
efficiency es«,. of Hodges and Lehmann [4]. They require that the limit e, 4
be independent of « and B8 and of two sequences {6,} and {h(n)} which appear
in the definition [4]. In our case, as pointed out by W. Hoeffding, under condi-
tions (a), (c¢), (d) and (e) of Theorem 1, the limit e4+, 4 exists for the particular
sequences {6,} and {h(n)} implicit in condition (d) and is equal to the limit of
the ratio of the corresponding N () values as & tends to 0. All comparisons of
efficiency relative to the test M are thus subject to this definition.

Similarly for the test based on M, for the sequence of alternative hypotheses
{6,, = dnil}, it can be shown that the limiting power function will be given by

(4.4) B@) = [ 16, a9 ad.
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In the above expression my is the critical value of M at a preassigned significance
level . f(x3, A%) is the density of a noncentral chi-square with two degrees of
freedom. The non-centrality parameter A’ is given by

45) o' =T [(dF <cl>)2 + (dF(co _ dF’(61)>2 41 (dF(@))z]’

do do do 2\ df

where the expressions within brackets are evaluated at § = 0.
4.1. Exponential distribution. The alternative considered here is

3, :F@x) =1—¢"22=0, Gy) =1 —e¢“P2>0606>0.
The efficiency index for the test based on U, computed using (4.2) and (4.3), is

(4.6) N.(8) ~ [‘“ T s (81 + SZ)T = N.(8) (say).

o 82

Similarly, the index for the test based on U, , that is, the number of observations
less than the first quartile, is

(4.7) No(6) ~ [““ j M (s‘ :;; 82)*]2 = Fa(8) (say).

For the test based on U, and U,, the expression for the power function B (d)

defined in (4.4) depends on § through the non-centrality parameter A’ alone.
The expression for A® for the exponential distribution is seen to be

(4.8) A" = [Bsy/ (s + s2)] ',

where 6,, = dni® and 6, = 0.

If the null-distribution of M is approximated by the central x* distribution
with two degrees of freedom and « is the significance level, then my = —2 log, a.
It is also known [6] that [, f(x3 , A®) dx3 can be expressed as

(49) [ 164, ad = Pr (R = 5 = 0),

where R and S are independently distributed as Poisson variates with parame-
ters 3mo = —log, @ and 3A’ respectively. To find the efficiency index for Massey’s
test, one needs to solve the equation

(4.10) @) = [ TIGE, AN dd =1 — 8

for a preassigned power 1 — 3.

Using (4.9) and a normal approximation to the Poisson, a first approximation
to the solution of (4.10) might be obtained. For several sets of values of (a, 8)
correct solutions of (4.10) were computed. These are shown in Table 1.

If A’ is a solution of the equation (4.10) then the solution in terms of d* is
D? = [(s; + s2)/3s:]A%. Hence the efficiency index N3(3) of Massey’s test based
on the first quartile and the median, is
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(4.11) Ns(8) ~ [(s1 + 2)/38:](8/8)* = N3(5),

where A’ is a solution of (4.10) for preassigned « and 8.

For the likelihood-ratio test based on W* described in Section 3, let 6,, =
60 + dni' for some d > 0. Under 3¢,, §, = 0. Hence substituting the value of
0n, in @, (0) defined in (3.4), one gets

Cn(6n,) = aexp (s2d/s1), if exp (s2d/s1)) < si/a(si + s3)
=1— [so/ (s1+ s2)] exp (—d) (s1/a(s1 + 8:))*'*%, otherwise.

Hence, the above defines the limiting power function H(d) as n — . This
function is continuous in d and lim,.. H (d) = 1. Hence the conditions of Theo-
rem 1 are satisfied. For this test then, if D* denotes the solution of H (D* =
1 — B the efficiency index N* (8) is

(4.13) N*(8) ~ (D*/8) = N*(5)

since r = 1.

Then it is easily seen that the asymptotic relative efficiency of the tests based
on the median, the first quartile and both the first quartile and the median,
computed as N*(8) /N:(8), s = 1, 2, 3, tends to zero as & tends to zero.

On the other hand, the asymptotic relative efficiency of the test based on the
first quartile, computed relative to the median test is

(4.14) e(Uy, U) = N1(8)/N,(s) = 3.

The asymptotic relative efficiency e(M, U) of Massey’s test based on the
first quartile and the median, relative to the median test is

(4.15) e(M, U) = N1(8)/N3(8) = 3[(A\a + g) /A%

For several sets of values of (e, 8), e(M, U) is tabulated in Table 1. Here a
Massey’s test of size 2a is compared against a median test of size .

(4.12)

TABLE 1

Asymptotic relative efficiency e(M, U) of Massey’s test (M) relative to Mood’s test (U) against
shift in location of exponential distribution

2a B A? M, U)
.01 .01 27.4142 2.630
.01 .025 23.6613 2.608
.01 .05 20.6498 2.588
.05 .01 21.3958 2.576
.05 .025 18.0788 2.550
.05 .05 15.4432 2.524
.05 .10 12.6539 2.491

.10 .10 10.4579 2.457
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As seen from the table, the test based on M which is a quadratic form in U,
and U, is asymptotically about twice as efficient as the one based on
U = U, + U, but is less efficient than the test based on U; alone. This is ex-
pected because the test based on M rejects values of U; and U, which are either
too large or too small, whereas the test based on either U, or U rejects only large
values as significant and the alternative considered to compute the efficiency
index is one-sided.

4.2. Normal distribution. The alternative considered here is

x

50, : F(x) = (2#)—5[ et dt, G(y) = (21)—*[ PR dt, 6>0.
It is known ([1], [8]) that the asymptotic efficiency of the median test relative
to the normal deviate test, which is the most powerful, is 2/x. To evaluate the
efficiency of the test based on the first quartile relative to the median test, the
approximate solutions for equation (2.3) in the neighborhood of § = 0, are
required. These are

(4.16) ¢ = neb/ (n1 + ng) — 6745, c2 = M0/ (N + ny)

and also the value of (21r)"‘}e"*‘2 at ¢ and ¢; for § = 0 are .31778 and .39894.
Using (2.10), (4.2) and (4.3), the value of ¢(U,, U) for normal alternatives,
works out to be

(4.17) €Uy, U) = N:(8)/N.(6) = (4/3)(.31778/.39894)® = .846.

To evaluate the efficiency of the Massey test relative to the median test, it
seems reasonable to compare a median test of size o against Massey’s test of
size 2a. :

From (4.5), the expression for A’ for normal alternatives reduces to

(4.18) AP = [4sy/ (s + 82)] d*(.187148)

where 0,, = dni}. For 2a = .05 and 8 = .01, the solution to (4.10) is A® =
21.3958. Thus

s1 4 s 1 21.3958

Ni®) = =3~ 5 Ts71a8
and the corresponding
W) = Qe MPsitse 1 st+s] 183698
82 4s, (.39894)? 4s, 6% (.39894)2
Hence, for these values of «a, 8, the value of
(4.19) e(M, U) = N,(8)/N,(8) = 1.010.

Computations for other values of @, 8 show that the value of ¢(M, U) is very
close to 1. The two tests, then, asymptotically, are equivalent for normal al-
ternatives.
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