SOME PROPERTIES OF THE LEAST SQUARES ESTIMATOR
IN REGRESSION ANALYSIS WHEN THE PREDICTOR
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1. Introduction and summary. In the classical linear estimation set-up, we
have

1 Ey = Xo,

wherey = (41, -+ * , Y») is a random vector whose components are uncorrelated
and have equal variance, o = (6, 01, -, 0,) is a vector whose elements are
unknown constants and X is a matrix of n rows and p + 1 columns, n = p + 1,
which has full rank and whose elements are known constants. Plackett [2] gives
a historical note on the least squares estimator § = (X 'X)"'X'y of 6 for which
the following property is well-known,

(I) Each component 8; of 8 is the estimator with uniformly minimum variance
among all unbiased linear estimators of the corresponding component 6; of 6.

It can also be easily seen that

(II) For a quadratic loss function for the estimation of each component
9; of 0, the least squares estimators have uniformly minimum risk among the
class of all linear (in y’s) estimators with bounded risk.

Properties (I) and (II) hold for model (1) with uncorrelated and homo-
scedastic 41, - -+ , Yn . Hodges and Lehmann [1] have shown that if we do not
restrict ourselves to estimators which are linear in y’s, then the least squares
estimators have the following weaker property:

(III) If the loss in estimating the true vector 6 by another g is (6 — 8) "(6 —B),
then the least squares estimator is minimax among the class of all estimators of 0
if there exists a number » such that Var y; < »,7 = 1, - - - , n, and the family of
distributions § of (y1, -*-, ¥») contains the sub-family %, of all independent
normal distributions of (y1, -+, ¥») Which satisfy (1) for some 6, and have
Varys; =v,2=1,---, n.

In many situations, however, (y, z1, -, z,) follows a (p + 1)-variate
distribution on which observations are made and the method of least squares
is applied to estimate the linear regression of y on zy, -, ¥,, regarding the
z-observations to be non-stochastic. This problem differs from the classical
problem of linear estimation because instead of (1) the model is Ely | X] = X®,
where the elements of the X matrix are stochastic.

For reasons given in Section 2, the loss in estimating the true regression func-
tion ¢(x1, -+ , #p) by another function ¢ (2, + -+ , ,) is considered to be of
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the form,

f[¢(xl, ""xp) _\b(xly "'1xp)]2dF(x17 e 7:”1’)1

where F is the distribution function of (z,, - -+, z,).

For the above loss function, it is shown under certain conditions that if the
class of estimates which are linear in y’s and have bounded risk is non-empty,
then the estimate obtained by the method of least squares belongs to this class
and has uniformly minimum risk in this class. A necessary and sufficient con-
dition on F(x;, ---, x,) is obtained for this class to be non-empty, which un-
fortunately is not easy to verify in particular cases. However, by a sequential
modification of the sampling scheme, this condition may always be satisfied at
the cost of an arbitrarily small increase in the expected sample size. It is also
shown under certain further conditions on the family of admissible distributions
that the least squares estimator is minimax in the class of all estimators.

For the case of multivariate normal distribution of (y, z;, - - -, z,), Stein [3]
has considered this problem under a loss function similar to the one given above.
He has shown the minimax property of the least squares estimates (which also
happen to be the maximum likelihood estimates in a multivariate normal model)
for the regression coefficients, and has raised many interesting questions about
the admissibility of these estimates.

2. Formal statement of the problem. Let y, 21, - - - , z, be real-valued random
variables with joint distribution function G. We assume for simplicity that G
is the product of a completely specified distribution F of 21, -+, x, with an
unknown conditional distribution of y given z1, ---, z,. Let G belong to a
family of distributions G. We further assume that F and G satisfy the following
conditions:

ConprtioN (i). F is such that

(a)? for every non-null (ay, a1, -+, @),

Prlap + a1 + -+ + apx, = 0] = 0.

(b) E(x?) < oo’j =1-:-,p

Conprrion (iia) For every Ge G, Eoly | x1, -+, x,] is a linear function of
Ti, cc, Tp, SBY ¢(T1, -+, Tp) = 6 + 61y + -+ 4+ 0,x,, the row vector
o = (6, 6., -, 0,) depending on G.

Conprtion (iib) The set of all 8 corresponding to all G € G, equals the (p + 1)-
dimensional Euclidean space.

ConprTioN (iii) There exists a constant ¢° such that Vely [z, -+, 2, = ¢
for all G g and for all (z1, ---, z,).

In the statement of the above conditions as well as in what follows,
Eoly |, -+, ] and Vely | 21, -+, z,) stand for the conditional expectation
and the conditional variance respectively, of y given z;, - -+, z, under G.

2

2 This condition is satisfied even if z has a continuous distribution and z; = z7 or if
1, -+, Tp are sin 2z, --- , cos z, cos 2z, - -
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Now suppose (Yi, T1i, *** , Tpi), 2 = 1,--+,myn = p -+ 1, are mutually
independent observations on (y, z;, ---, z,). The problem is to estimate the
regression function

@1, -, %) = 6o+ Oy + cee A 0,7,,

or in other words the row vector ' = (6, 6y, - - - , 6,), where the loss involved
in estimating 0 by 8 is,

W8 = [1(6 + iz + -+ +6,3,)
— Bo+Brar+ o0 + Bpa )P dF (21, -+, )

(2) )
=2 2> wiy(8; — B;)(6; — Bi)
J=0 j’=0
= (6 — g)M(6 — ),
where
[ 1 pa o bop
M= "n_““' Bo t iy = B(zjz),5,7 =0,1, -+, p, 20 = 1.
Bop Bip  CCC Bpp
It follows from condition (i) that M is positive definite, and 0 < W (8, 8) < «
for all 8 = 0.

The loss function (2) is motivated by the following consideration. Suppose
we are required to predict the value of y associated with a random observation
made on (z;, -, Z,) sSubject to a quadratic loss. If the true regression function

¢@1, -, %p) = 6o+ Oz + - + 0,7,
were known, our prediction rule would be
Y@, 5 2p) = 00+ 0 + -+ + 0,2,

and the risk of the procedure would be o°. If however, we use the prediction rule
Y (@1, e, 25) = B+ B+ -+ + Bp2s,
then the risk is ¢ + W (6, 8).

3. Optimum property of the least squares estimator in the class of linear
estimators with bounded risk. In this section we shall restrict our attention
only to those procedures which are linear in %’s and have bounded risk. Let us
denote the class of all such procedures by @€,. Then an estimator t ¢ @, if and
only if

t = L
(3) (p+1) X1 (p+1)Xn 'gd

and p(0,t) = E[W (e, t)] is a bounded function of 6, 6;, -+ , 6, , where y’ =
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(1, **-, Yn), and each element I;; of L is a function of 2y, --*, Zin, - -,
Tpty **y Tpn. Let
1 T Tp1
X = 1 2 Tp2
1 Lin cer Tpn

Then the estimator obtained by the method of least squares is, t* = (X 'X)7'X'y.
Since » = p + 1, it follows from condition (ia) that the matrix X has rank
p + 1 with probability 1 and therefore t* can be uniquely determined for almost
all samples.

In what follows, E,.[U(z, y)] stands for E,[U (z, y) | z].

We shall first show that if an estimator t e @, then for almost all X, the
conditional expectation of each component of t given X should be equal to the
corresponding component of 6, whatever 8 may be. For any t e @, it follows
from (3) that

n b4
Eyx(t;) = ‘-21 Lis(6o + Ouss 4+ -+ + 0,7p0) = 0; + j;o h;j0; say,

where h;;» are functions of X. Let H be a (p 4+ 1) X (p + 1) matrix which
has hj; in its jth row and j'th column. To every t & €, there corresponds
such a matrix H, and to show this correspondence, we shall use the nota-
tion H;. Thus if te @, then

4) E;x(t) — 6 = H.

We now prove

LeEMMA 1. If t £ @, then Eyx(t) = 0 for almost all X.

Proor. By virtue of (4) it will be enough to show that if P[H: = 0] > 0,
then t £ @; . Let t satisfy (3); then we shall show that p(6, t) is unbounded.
We have

p(0,t) = Ex[(Eyx(t) — 0')M (Eyx(t) — 0)]
= Ex[0’'H{MH.0|.

If P[H, = 0] > 0, some element of H; is non-zero with positive probability.
Let that element be one in the jth column of H;. Let

Ao =1{00,=0 for j=jo and 8; = 0}.
Then for 0 e 4, ,
OHMH® = 6},9(X)

where Plg(X) = 0] = 1 and P[g(X) > 0] > 0, since M is positive definite.
Hence there exists 8 > 0 such that P(8) = Plg(X) > 8] > 0. Thenfor0e Aj,,

p(8,t) = Ex[0'H{MH®] = 63,8P(5),
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and for any given ¢, p(0, t) can be made greater than ¢ by choosing 6 in A4 j,
with |0;] > [c/6P(8)]}. This completes the proof.

The following corollary is immediate.

COROLLARY. If te @, then

P D 7
(5) p(8,t) = ’Ex ,Zo‘ f s ;_l Ly

where 1j; are the elements of the matrix L through which t is defined and they satisfy
©®  Xlwi=1, Llay=0 for j#j=01,--,p,

for almost all X.

It follows from the above corollary that for t e @;, p(0, t) does not depend
on 0. Therefore, if we minimize the right side of (5) with respect to I;;’s subject
to the conditions in (6), the resulting matrix L = (X'X)™'X’ will define an
estimator t = Ly = (X'X) X'y for which p(8, ) < p(8, t) for all 6 and for
arbitrary te €. But t = t* a.e.

It can be easily seen that unless @, is empty, t* ¢ €;. We thus have

THEOREM 1. If @, 7s non-empty, then the least squares estimator tYee,, and
p(8, t*) = p(8, t) for all 8 and for arbitrary t & @, with a strict inequality holding
if Pit = t*] < 1.

If we denote by @, the class of estimators which are linear in y’s, then the fol-
lowing corollary is immediate from the fact that (8, t*) is a constant for all 6.
- COROLLARY. If @, is non-empty, then the least squares estimator t* is the unique
minimax estimator in Cs .

The optimum property of t* thus depends on the non-emptiness of €; which
can be characterized in terms of F(z;, -+, ,). We have seen that €, is non-
empty if and only if p (8, t*) is finite. Clearly,

p (8, t*) = #Ex tr [(X'X)'M].

Hence a necessary and sufficient condition for @; being non-empty is

Conorrion (ic). E tr [(X'X)7'M] < .

This is a condition on the marginal distribution F of (z;, ---, x,), and it
implies condition (ib). Thus under conditions (ia), (ic), (iia), (iib) and (iii),
we can state Theorem 1 and its corollary without the qualifying clause “if €,
is non-empty’’.

4. Minimax property of {* in the class of all estimators. In this section we
assume F to satisfy conditions (ia) and (ic) and the family G to satisfy condi-
tions (ila) and

ConprtioN (iv). There exists a number » such that Ve[y |21, -+, 2] = v
forall Gegand forall z;, -+, z,.

ConprTiON (V). G includes the class G, of all G obtained by taking the product
of the distribution F of (z;, ---, x,) with a conditional distribution of y given
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Zi, -+, p which is normal with mean satisfying (iia) for some 6 and with
variance v.

Under these conditions we shall prove that t* is a minimax estimate for 0.
We shall require the following lemma to prove the minimax property.

LemmA 2. Let A (2) be a mapping from an arbitrary space Z to the space of all
k X k non-singular matrices such that ||A (2)|| and ||A (2) " are both uniformly
bounded. Let U be a fixed k X k mairiz and {bm} a sequence of real numbers con-
verging to zero. Then,

(a) Det [A(2) + bmU] converges to Det A () uniformly in 2.

(b) There exists an integer my such that [A (z2) + bnaU] " exists for m = my
and for all ze Z.

() I[A@) + buU™" — A7 converges to zero uniformly in z, where
[4(2) + b,UJ" is defined arbitrarily when Det [A (z) + baU] = 0.

Proor. Suppose max [Sup..z |4 (2) [, Sup.ez |4 (2) 7Y, |U[]] = c. Then (a)
follows from the fact that

|Det [A4 (z) + bmU] — Det A(2)| < [bmlc"(2° — 1) -k, if |bm| < 1.
Since |Det A(2) 7| < ¢k, |Det A(z)| = 1/c* k!l Also, it follows from (a)
that there exists an integer my such that for m = m,

Det A(z) — 1/2¢"-k! < Det [A(2) + bnU] < Det A(z) + 1/2¢"k!

for all z ¢ Z. Hence for m = my and for all z ¢ Z,

|Det [4 (z) + b.U]| = 1/2¢"-k!,

and therefore (b) follows.

(c) is proved as soon as we apply (a) to the determinants of {4 (2) + b.U},
m = 1, 2, --- and all their cofactors.

THEOREM 2. Under conditions (ia), (ic), (ila), (iv) and (v), the least squares
estimator t* is minimaz for 0 in the class of all estimators.

Proor. We shall first prove that
) Supaeg, 7 (G, t*) < Supeeg, (G, t) for all t.

Since there is a one-one correspondence between Gy and the (p + 1)-dimen-
sional Euclidean space (in which 0 takes its values), we can write p(0, t) instead
of r(G, t) for each t where 8 corresponds to G. Also since for each 8, p(8, t) =
vE tr [(X'X) ' M], it will be enough to show that for all t,

Supg 0 (8, t) = vE tr [(X'X)M).
Suppose there exists { such that
Supe 0(8, t) = vE tr [(X'X)7'M] — &, e> 0.
We shall contradict this by showing that for any given ¢ > 0, we can make
8) p(Em, t) > vE tr [(X'X)7'M] — ¢
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by choosing m sufficiently large, where {£.} is a sequence of a prior: distribu-
tions of 0 defined as follows

dim(0) = (2rm) " exp [— (1/2m)6'0] I:IOdoj.

Choose and fix e > 0. Since E tr [(X'X) "M] exists, we can find a constant
c¢(e) such that

fx ( )tr[(X'X)’lM] ﬁldF(:vu, cee  Tg) — Etr [(X'X )"Mll < ¢/20,

where R (e) is the set {X:|(X'X)| £ c(e), |(X'X)7Y| < c(e)}. Now,

D = [ [ L[ 0 = #3160 - a3 1 )

T an [T aF G, -+, 20 | dn(®)

where go (y | X) = const. exp [— (1/2v) (y — X0)' (y — Xo)].
Since the integral in the above expression is non-negative, we get

ez [ | [ [ @ = 100 — 00(31 3) da.(o)]

I dys JT dF (s, - -+, 2p0).

Again if (X'X + (v/m)I)™" exists, go(y | X) dém(8) can be written as
const. fin (0 | X, ¥)fan (X, ¥) 1,1 de;,
where
fin@®] X, y) = exp[—1/(20){6 — (XX + (/m)])7 X'y} (X'X + (v/m)I)
40 — (X'X 4+ (/m)I)7'X'y}]
and
fem(X,y) = exp [— 1/2)¥y + (1/20)yX(X'X + (o/m)I)7'X'y].

But (X'X + (v/m)I)™" exists for all m greater than or equal to some integer
my, and for all X ¢ R(¢), since the hypotheses of Lemma 2 are ensured for
X £ R(¢). Hence we have

p(£m,t) = const. fm(e)fy[fo (6 —t)'M(6 — )fim(06] X,y)

yd n n
. IIO do]] f2m(X1 y) I Il dy% II] dF(xli y " xp")
= = =
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for m = my . Now since M is positive definite, for values of m = m, and for any
given X ¢ R(e) and y,

[ 0= 00— iinto] X, 3) 11 4,
> fo {0 — (XX + (v/m)I)' X'y}’

M0 — (X'X + (o/m))7'X'y}f1m(0] X, y) 1:10 de; .
Hence,

p(ém,t) = const.f /"[‘/; 0 — (XX + (v/m)) X'y}’

XeR (€)

M0 = (XX + (/mD X7)fun(0| X, 3) [T da,.]

fam (X, y) iIl dy; I::g AF (21, +++ , Tpi).
After some simplifications, the right side of the last inequality reduces to
v fxm(e) tr [(X'X + (v/m)I)"'M] ;[:]i'dF(xli, s, %) = Kn(e) say.
It follows from Lemma 2 that

litpw Kn(e) = v [

XeR (e

tr [(X'X)7MIT dF (i, -+ -, zp0).
) =1
Therefore, for sufficiently large m,

Kn(e) > v fx

> vE tr [(X'X)7'M] — «

Hence, for such large values of m, (8) holds. This proves (7). To complete the
proof of the theorem, we have only to note that since G, C g,

Supeeg, 7 (G, t) = Supeeg (G, t)

() ML dP e, - 2y0) — 2

eR (e

for arbitrary t, whereas
‘ SuPasg, 7 (G, t*) = vE tr [(X'X)'M] = Supeeg 7 (G, t*).

5. Remarks.
(a) The results in the previous sections are proved under the assumption that
the marginal distribution F of (21, ---, z,) is completely specified. Now sup-

pose F belongs to a family § of p-variate distribution functions. Then the family
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¢ of distributions of (y, z1, -+, #,) can be expressed as the union of disjoint
sub-families G(F), F ¢ §, where each G ¢ G(F) has F as the marginal distribu-
tion of (x1, -+, zp). It can be easily seen that if conditions (ia) and (ic) are
satisfied by each F £ & and if conditions (iia), (iib) and (iii) are satisfied by G,
then Theorem 1 and its corollary hold. Also, Theorem 2 remains valid if
condition (ic) is replaced by

ConorrioN (id). Supres Er tr [(X'X) 7'My < «, where My is the matrix
defined in Section 2 in which ;7 = Er(zx;), and if condition (v) holds for
each G(F), F e4&.

(b) Condition (ic) is not satisfied in general and no simple way of verifying
this condition is known. When this condition is not satisfied, t* is not only inad-
missible but is the worst possible estimate. In such cases, or even when the con-
dition cannot be verified due to difficulties in analysis, it is very dangerous to
use the method of least squares. It is not known whether there exists an esti-
mator of 8 with bounded risk when condition (ic) is not satisfied. Even if such
an estimator exists, it has to be non-linear in ¥’s.

(c¢) Under the following sequential modification of the sampling scheme, con-
dition (ic) is always satisfied. The procedure given below is very crude but if the
loss function is the sum of two components, one given by (2) and another pro-
portional to the sample size, it has a bounded risk function.

Suppose (y, z1, - - - , Z,) follows a (p + 1)-variate distribution. Let us choose
and fix a constant ¢, however large. We then say the independent observations
i, T1i, ", Tpi), 2 =1,---,n=p+ 1,0on (y, 21, -+, xp) have risk of

order ¢ if || (X’X)™Y| = ¢. Then our sampling scheme is as follows:

Sampling Scheme. Choose and fix a positive constant ¢. Make n inde-
pendent observations on (y, 1, - - -, Z,). If the z-observations have risk
of order ¢, stop sampling; if not, reject the observations and repeat the
procedure till a set of observations having risk of order c is obtained, which
is called the set of effective observations up to a risk of order c.

For any c, the effective observations up to a risk of order ¢ can be considered
to be observations on a process (yi, Z1s, -+* , Zpi), ¢ = 1, --+, n for which
Yi, -, Yn given x1;, -+, Tpi, 4 = 1, -+, n, are mutually independent,
the regression function of ¥’ on z1, -+ , £p and the conditional variance of y’
given z1 , - - - , ©p are the same as those for (y, 1, - - , 7,), while the marginal
distribution of (z1, ---, xp) satisfies condition (ic). Hence if (y, z1, -+, =)
satisfy conditions (iia) and (iib), then (&, z1, -+, xp) also satisfies condi-
tions (iia) and (iib), and similarly for condition (iii} or (iv) or (v). It can also
be noticed that we have never made use of the independence of (z1:, -, Zpi),
i =1, -+, nin the course of our analysis; all that we required was the inde-
pendence of (y1, *++, ¥s) given (Ty;, +++ , Zpi), ¢ = 1, - -+, n and this property
is preserved in the process (yi, 1s, **+ , &pi), ¢ = 1, --- , n. Thus we see that
under conditions (ia), (ib), (iia), (iib) and (iii), the least squares estimator t*
obtained from a set of effective observations up to a risk of some order ¢ belongs
to @;, and is the unique estimator for 6 having uniformly minimum risk among
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all members of @€, obtained from the same set of observations. Also, under con-
ditions (ia), (ib), (iia), (iv) and (v), the above estimator is minimax for 0
in the class of all estimators obtained from the same set of observations. Under
this sampling scheme, the sample size becomes a random variable with expecta-
tion greater than n but since (X'X)™ exists with probability 1 by virtue of
condition (ia), the increase in the expected sample size over n can be made
arbitrarily small by taking ¢ sufficiently large.
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