A MATHEMATICAL THEORY OF PATTERN RECOGNITION'

BY ARTHUR ALBERT
The Arcon Corporation, Lexington, Mass.

1. Summary. Let X, and X; be (unknown) disjoint subsets of a Hilbert
space H, such that the convex hulls of X, and X are a positive distance apart.
Suppose that samples are drawn independently and at random from X, U X; .
After the nth sample, Z, , it is required to guess whether Z, came from X, or
X, . After each guess, we are told whether we were right or wrong.

In this paper, a decision procedure is exhibited, having the property that the
probability of making an error on the nth trial converges to zero with increasing
n. Furthermore, the guessing rule used on the n + 1st trial depends on the past
data only through the rule used on the nth trial, the value of Z, , and whether
or not the guess about Z, was correct.

The application to pattern recognition problems of a dichotomous sort is
immediate when we identify X, and X; with two classes of patterns which are
observed in temporal succession. The rules for membership in X, and X; are
not known, but we (or a machine) are/is told to which class each pattern be-
longs, after making a guess about that pattern. As the “training period” in-
creases, errors are made with ever decreasing frequency.

2. Mathematical formulation. Representative samples are to be drawn in-
dependently and at random from each of two classes (call the classes “class
zero” and “class one’’). Associated with each phenomenon to be classified is a
measurable attribute. The set of attributes corresponding to members of ‘‘class
zero” will be denoted by X,, while those corresponding to members of “class
one” will be denoted by X; . Suppose for the moment that X, and X; are non-
overlapping sets and that there is a real valued function defined over X, U X,
having the property that, for some constant, c,

infeex, f(2) > ¢ > supgex, f().

If we did not know the rule for membership in X, or X; , but we did know
f and ¢, we could still carry out the decision procedure viz: After each observa-
tion, apply f to the attribute z. If f(z) > ¢, decide x ¢ X, (and thus the phe-
nomenon belongs to “class zero’). Otherwise, decide = ¢ X, .

Suppose f and ¢ are not known: If we are told after each decision whether
the attribute really belonged in X, or X;, it seems reasonable to hope that,
under certain circumstances, this information can be utilized in some way to
make estimates of f and ¢. If we are clever enough to construct estimates of
f and ¢ that converge, in an appropriate sense, to the true values as more data
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accumulates, we could base our decision on these estimates and make errors
occur with ever decreasing frequency.

The key to the whole problem then, centers upon finding an iterative scheme
for estimating f and ¢. Of course, in order to do so, we must add some structure
to the problem.

We do so by assuming that X, U X is a subset of a finite dimensional Euclidean
space. Let H (X, U X;) be the smallest subspace containing X, U X, . Assume
further, that the function f, which serves to separate X, and X , is a continuous
linear functional over H (X, U X;).

It should be clear by now that the phenomena can be identified with their
attributes, insofar as the classification problem is concerned, provided we have
been smart enough (or lucky enough) to pick the proper attributes.

A brief word should be said about the nature of the functional f. Defined®
over H(XoU X;) ® H (X, U X,) is an inner product (-,-) taking on real values,
satisfying the following conditions:

(1) (1, 22) = (22, 21),

(2) (x,z) > O unless z = 0,

() (amy + By, 25) = al(zr, x5) + B(xe, xs).

The inner product induces a norm (or distance function) over H (X, U X;),
viz: |21 — ol = (@1 — 22, 21 — @)°

There is a well-known result of analysis called the Reisz Representation
Theorem. As applied here, we find that for every continuous linear functional
fover H(X,U X;), thereisa & ¢ H (Xo U X1) such that for every z ¢ H (X, U X,),
f@) = (&, ).

In short, every continuous linear functional can be represented as an inner
product with respect to some fixed element of H.

For our purpose then, it suffices to try to find a £ ¢ H and a constant ¢, such
that

(a) infoex, (& 2) > ¢ > supeex, (§ 7).

The set of points in H for which (£ z) = ¢, is a hyperplane. When £ and ¢
are such that (a) holds, we say that there is a hyperplane which strictly sep-
arates Xy and X;. When we formulate our iterative scheme, we will want to
include an assumption strong enough to guarantee the existence of a hyper-
plane which will strictly separate X, and X .

3. The assumptions. The assumptions are divided into three groups. Assump-
tions A; and A, are there to guaranteé the existence of a hyperplane which
strictly separates X, and X;. Assumption B merely eliminates some trivial
cases from consideration while C; and C, guarantee that errors will occur with
ever-decreasing frequency.

2 We assume for simplicity that H (X, U X)) is real. The results we obtain are all true
in the complex case.
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AssumpTioN A;. X, U X, is a subset of a finite dimensional Euclidean space
with an inner product defined over it.

AssumprioN A,. The distance between the convex hulls of X, and X; is
positive. (The convex hull of a set, X, is the smallest convex set containing X.)

DerinITION. Let P; be the class of probability measures over the Borel sub-
sets of H (X, U X,) satisfying

(a) PriX,U Xy =1,

(b) Pr[X, Pr[Xi) >0,

(¢) Pr[B] > 0 for every open subset, B, of H (X, U X;) whose intersection
with X, U X; is not empty.

AssumpTioN B. Observations are chosen independently and at random in
such a way that the probability measure induced over the attribute space is
a member of P; .

This assumption (aside from the independence clause) excludes the trivial
case where all observations come from the same class. It also prevents some
needless confusion about certain sets of measure zero.

DEFINITION.

(@) Let U = {u e H(Xo U Xy): |u|| = 1 and infgex,,00ex, (¥, 2o — 21) = O}

(b) Let @ (u) = {z e Xy :inf, .x, (u, 2 — 21) = 0},

Qo(w) = {z & Xo : SUPagex, (4, © — o) = 0},
Q) = Qo(u) U Qi(u).

(¢) Let P, be that subset of P for which Pr{U,.; Q(u)} = 0.

Assumprion C; . Observations are chosen independently and at random in
such a way that the probability measure induced over the attribute space is
a member of P, .

Assumrrion Cp. X, U X, is bounded.

Assumption C, is a sort of absolute continuity restriction over the boundaries
of Xo and X; . Since U is the set of all hyperplanes which separate X, and X, ,
it is easy to see that Q (u) is the set of points in the closure of X, U X; at which
a supporting hyperplane with normal v ¢ U can be constructed. U .., Q(u)
can be thought of as a subset of the frontiers of X, and X; ; this set must have
measure zero. This condition will be satisfied in particular if the probability
measure on X, U X, is absolutely continuous with respect to Lebesgue measure
over H(Xo U Xl)

Assumption C, may not be essential, but is included for aesthetic reasons.

With all this behind us, we are prepared to reveal the estimation procedure,

4. The procedure. A sequence of real world phenomena occur in temporal
succesion in such a way that the associated sequence of measured attributes,
Zy, Z1, -+ can be thought of as independent stochastic variables drawn from
XU X;.

After observing Z;, we are to guess whether the associated phenomenon
came from class zero or class one, or equivalently, whether Z; came from X,
or X; . After each decision, we are told whether we were right or wrong.
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Let N be the smallest integer & for which the event [Z; ¢ X, and Z;y1 ¢ X5,
or Zy ¢ X; and Zj € Xo] oceurs.

The guessing rule.

(1) Decide Z, ¢ X, .

(2) If k = N + 1, decide that Z; comes from the same set as Z;,; . There-
after, the decision rule depends upon two variables, &, and w, , to be specified
shortly:

(3) Forj = N + 1,decide Z ;41 ¢ Xoif (¢, Zjp1 — w;) = 0, Z;11 € X, other-
wise. (Since we will be concerned with what happens for £ > N, we can assume
without loss of generality, that N = 0.)

The idea behind this rule is simple enough, once §; and w; are specified: If
Z i1 lies above the hyperplane with normal £;, passing through w; , we decide
Z i+ comes from X, . Otherwise, we decide Z,,; comes from X; .

The parameters £; and w; are defined recursively: If we guess correctly about
Ziw, we take £;41 = £ and w1 = w; . The hyperplane is left unchanged in
this case. If w; and 2,4, are in different sets and we guess wrong, £; is changed
to £;41 and the new plane passes through Z;; . If w; and Z;, are in the same
set and we guess wrong, the plane is translated till it passes through Z;,; .
This procedure can be stated formally as follows:

The estimation rule.

(w;if Ziyie X1and (8, Zia — w;) =0

Wip = or Zjue Xoand (&, Zjn — wj) = 0,

\Zj+1 otherwise.

w, = Zi.

£ — 2(Zi — wi, )G — wil/|Zim — wi’
fZpeXo,wjeXiand (§;,Z;41 —w;) <0

i = or ZjpeXy,wjeXoand (¢, Zj0 — wj) > 0,
£, otherwise.
_ Zy — Zo/||Zy — Zo|| it ZieXo,
8- {ZO — Zi/\Z, — Zy|| i ZieX;.

Denote by = (¢, w), the hyperplane with unit normal £, passing through w.

In the case where &, = £,41, and Wpq1 5 W, 7 (§ny1 , Wayr) is obtained from
7 (. , w,) by a translation. If however, £, = £, , the estimation rule dictates
that £,41 be obtained by adding a multiple of Z,.; — w, to & . The multiple
is chosen so that ||&,41l| = [|£:]|. In this case, 7 ((s41, Wnis) is obtained from
(£, , w,) by first rotating &, , then translating = (¢,41, w,.) until it coincides
with 7 (441, Wrya). We will show that under the guessing rule and decision
rule stated above, the probability of misclassifying the nth observation con-
verges to zero as m grows large.
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The problem of finding an iterative scheme for separating two convex sets
has been treated by Rosenblatt, Block and Josephs in the Perceptron Papers
[3] for the case where the convex sets in question are generated by a finite num-
ber of points. Since assumption C; appears to restrict us to infinite sets, the
present method seems to be complementary.

The theorems proved in the following section depend, to various degrees,
upon a succession of lemmas. For the sake of the reader who is not primarily
interested in analytic acrobatics, these lemmas are proved in an appendix. The
logical dependence of theorems upon lemmas and lemmas upon theorems is
stated at the end of each proof. For example, if at the end of a proof we write
L3, 14, T2, it means that the assertion in question depends upon Lemmas 3
and 4 along with Theorem 2. If things were written in the proper logical order,
they would occur as: L1, L2, L3, L4, L5, L6, L7, T1, T2, T3, T4, T5.

6. The main results.

DeriniTioN. Let U = {u: |lu|| = 1 and inf,exy,0ex, (¥, ©o — 21) = 0}. (U
is the collection of unit normals corresponding to hyperplanes which separate
Xo and X;.)

TuroreM 1. With probability 1,0 = (u, &) = (U, fagn) = 1 forall u e U
and alln = 1.

Proor. By construction, ||£.|| = ||&ul for every n. Since ||&|| = 1, we see
that (&, u) = ||&|-|lul]] = 1 for all u e U. &,44 is always of the form:

Lapn = & — 28411,
where
(sp41,u) =0 forevery ueU.
Thus,
(Enpa,u) = (kn,u) foreverywu e U.

Since (£, ) = 0, the conclusion follows.
From the monotonicity and boundedness of the sequence { (£, , u)}, we deduce
immediately that:

THEOREM 2.
(a) For every w ¢ U, W(u) = lim,.e (&, u) exists with probability one.
(b) supyer W(u) < 1. (T1)
COROLLARY.

() SUPwer SUPs>o liMue Pr{supisn (o1 — &, u) > 8 = 0.

(b) Supuew SUPs>o imM SUPpse Pr{ (fnpa — &, u) > 8 = 0.

Proor. The monotone convergence of (&, , w) assures that (f,40 — &, , )
converges to zero with probability one. This is the content of part (a). The
second assertion followssince [(£41 — &, %) > 8] C [sUPrzn (Frpr — &, u) > 8.

In fact, &, converges to some element in U with probability one:

TaEOREM 3. (a) Prsupus W) = 1] = 1. (b) Pr{U.w[t. — ul} = 1.
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Proor. (a) Suppose not. Then for some ¢ > 0, and some ¢ > 0,
Prisupus W) £1— 0] 2 e
Thus,
Pritg,e V()] = ¢ forall n,
where
V(o) = (& €l = 1 and supww (4,8 < 1 — df.
From Lemma 7, @« > 0 can be chosen so that for some g,
3.1) Pr [(Zn41, Zn+2>€S* (& @) | & = & wo = w]
= Pr[(Zniz, Zns1)eS" (§ @) |fn = §wa = w] Z 0> 0

forall £ e V(¢) and all w ¢ Xo U X; and all n. (u does not depend upon n, w or
£. Here,

8*(k a) = (X1 ® Xo)
N{E2)e HXUX) @ HX UXy): z —2,8)/|lz = 2|I°> o}.)
Lemma 2 guarantees that for some «* ¢ U and some § > 0
infyexy zex, (', 2 — 2) Z 6.
Now we assert that if &, = £ ¢ V(o) and w, = w ¢ X;, then
(Zni1, Zni2) € 8*(5 )] C (G — Enia, w) > 9]
where
¥ = 208 infaixy gex,; |2 — Yl°/8UPsexy ez, & — ylI* > 0.

Case 1. (Zny1 — w, £) = 0. In this case, no error is made on trial n + 1, so
Eopr = £n and Wpyg = Wa. Since (Znys, Zoyz) € ST(§ a), it follows that
(Znt = Znyay 60) = (Zna — Way &0) — (Znyz — Wa , &) = (Znt1 — Wa, &) —
(Znyz — Wni1, &) > 0. Hence, (Znya — Way1, &) < 0, so that a mistake is
made on trial n 4+ 2. Since Z,,» and w,, are in different sets, we must take
bnye = En1 — Z(Zn+2 — Wn, fn) [Zn+2 - wn]/“Zn+2 - 'wnHZ ThllS,

(bnts — Ent1, u”)

e Znst|® (Znts — wa ,u™) [
“Zn+2 - wn“2 ||Zn+2 - Z,,,_H”2

Since,
(Zny — wn, £n) =0,
(Bnte — Ensrs W) Z 208(Zus — Zusz, )/ Znss — Zngsl® Z 2pas,

(Zn+1 - Zn+2; En) + (wn - Zn+1; En)]
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where
0 < p = infrexy gex, ”x - yllz/squEXo,y8X1 “.’1) - yl|2 = 1

Case 2. (Znya — w, £) > 0. In this case, an error is made on trial » 4+ 1.
Since Z,41 and w, are in the same set, we take &1 = & and wopn = Zng .
On trial n + 2, (Zpnie — Wais, En1) = Znie — Zuya, £) < 0, since

(Znsa s Zusa) € S* (& ).

Thus, another mistake is made. This time,

a2 = bnr1 — 2(Znsz — Zuwry £ Znse — Zusil/ | Zngs — Znsal’
Whence, .

(bnt2 — Enpr, w")
=2Zn11 — Zny2, £) Znys — Znta, U/*)/”Zn-l-2 — Zn+1“2 = 2a6 = 2apb.

In either case, the assertion is true. Similarly, if £, = £ V (¢) and w, = w & X,
[(Zn+2 ) Zn+1> & S* (E) OL)] c [($n+2 - £n+1, u*) > 7]' From this and (31))
Pr{(fnse — Eng1, W) > v | & = & w, = w] = u > 0 independent of 7 for all
¢ e V(o) and all w. By assumption, 0 < ¢ = Pr (& ¢ V(o)], so that

Pri(fne — &npa, ) >y e V(@] Z 4 >0

independent of n. Hence, Pr [(£,12 — &nt1, u*) > y] = u'e > 0 for all n, so
that

lim SUPpeo PT [(Ene — Engr, u') > 7] > 0,

in contradiction to part (b) of the corollary to Theorem 2.
(b) Since (£, w) is a monotone sequence,

SUPwer liMpsee (§ny U) = SUPuer SUPnoos (§n , ).

Since £, is a bounded sequence, Lemma 3 guarantees that sup,_.. (§., u) is a
continuous function of u, and hence achieves its maximum over the compact
set U, say at %. Thus, lim, . (¢, , %) = 1 so that

i [|£0 — @]" = limpa [|&]" + [[@]* — 2(&, £) = 0.
This means that the event [sup.,.cW (u) = 1] is contained in the event

U, —ul  qed. (L2, L3, L7, T2).
uelU
Theorem 3 guarantees that the unit normal, £, , ends up pointing in the right
direction. Now, if we can prove that the distance between = (¢, , w,) and some
separating hyperplane, = (u, w), tends to zero, it will readily follow that the
probability of error converges to zero.



THEORY OF PATTERN RECOGNITION 291

DerinITION. (a) Let Qo(u) = {2 & Xo : sup..ex, (4, 2 — 2') < 0}
QI(U/) = {ZSXI :inlesxl (U/, g — Z/) = O}
Qu) = Qo(w) U Qi (w).

Since there can only be one plane of support to X; with a given unit normal «
passing through Q;(u), it follows that = (u, q) and = (u, ¢') are identical if w ¢ U
and ¢ and ¢’ are in the same Q; (u). Hereafter, we will denote by ;(u) the plane
of support to X; with normal u: 7;(u) = = (u, ¢) where q & Q;(u).

We will also have occasion to deal with the random variable

Di(u) = sup inf |z — 2|, (i =0,1),
zem (Epwp)NXy  zremg(u)
where we adopt the convention that D,;(u) = 01if 7 (& , w,) N X; = ¢. D,i(u)
is an upper bound on the distance between ;(u) and points in X; which lie on
the “wrong side” of 7 (£, , w,). In fact, an alternative representation for D, (u)
is:

Dyi(u) = sup{|(u, 2 — q)| 126 Xs&($n,2 — wa) (w,2 — q) < 0}

where ¢ € Q;(u). Let us denote max{Dyo(u), Du(u)} by D, (u).
The next theorem shows that for some we U, D,(u) — 0 as n — .
THEOREM 4.

Pr{ UU[Dn(u) — 0]} = 1.

Proor. Let dps(u) = 1 — (£., u) + |(Wa, &) — (u, q)|, where q £ Q;(u),
(# = 0, 1). ds;(w) can be interpreted as a measure of the “distance” between
(% , wo) and m;(u). The first term measures the ‘“angle” between £, and wu,
while the second measures the difference between distances from the origin of
the two planes. If we denote min{d,o (%), du (u)} by d. (u), it is easy to see that
D, (u) — 0if and only if d,(u) — 0, so we will show that

Pr{ U [d.(u) - 0]} = 1.
uelU
The method of proof can be broken into two cases. In Case 1, £, = u for some
n and some v ¢ U. In Casge 2, &, 5% u for every w ¢ U and every n, but (&, ,uo) — 1
for some uo ¢ U.
Case 1. Let A = [£, = u for some n and some u ¢ U]. Then

0

4 = U1 (Ao U A,)

where
A= U U 4, w) (z=0,1),

uelU weX;
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and
An(uy w) = [Ear 2 U, &0 = u, wa = w].
Notice that (1) for each 2, A,;N A = ¢
(2) for each n, ApoN Apy = ¢
and for each u ¢ U and w ¢ X,
(3) An(u, w) N A, (u, w) = ¢.

If £, = v e Uand w, = w £ X, , then under the estimation rule, w; ¢ X, for every
k = n and di(u) = |(wx — qo, u)| (where go & Qo (%)) is non-increasing for
k= n.

Since the observations Z; are statistically independent, the monotonicity of
the sequence dy (u) leads us at once to the conclusion that
Pridio(u) - 0 |4 (u, w)] < Pr{U g Fo(w))

€0 kzn+t
< Z Pr{ N [Z; £ Fy;(u)l},
J=1 k>n

where F.(u) = {zeXo:|(2 — @, u)| < ¢. By assumption B, Pr[F.(u)] > 0
for every ¢ > 0, and since the Z;’s are independent and identically distributed,
Pr{N>s [Z1 2 F1;;(w)]} = O for every j and every n. Thus,

Pr{ UU [dro(w) — 0] | An(u, w)} =1
for every w &€ Xoand every u ¢ U. Consequently, Pr{U ,.; [dio(u) — 0] | Ano} =1
for every n. In the same fashion, Pr{U .o di,1 (u) — 0] | 4,1} = 1 for every n.

From these results it is a routine matter to verify that

Pr{ UU [d.(u) — 01N A} = Pr{A}.
We leave Case 1 for the present and now examine

Case 2. Let B(u) be the event [(£,, u) = 1 & (&, u) < 1 for every n]. If
B(u) occurs, then given ¢, (0 < ¢ < 1), 1 — ¢ < (£, u) < 1 for some n.
Furthermore, for some finite integer s, (£445,4) > (42, w). We will show that
di(w) £ 8r 4+ 1) for all & > n + s (where r = SUpsx,xu, |||
and so, B(u) C [d.(u) — 0].

Let m be the largest integer for which (£, , ) < (é44s, w). Since (&, u) is
monotone, n < m < n + s. Furthermore, if Z,4, ¢ X1, then w, ¢ Xy and if
Znys € Xo, then w,, € X; . In either case, (Znts — Wi, £m) (Znts — Wm, u) = 0.
Since

l(Zn+3 = Wn, U — Em)l =2r ”u — &n ” = (87‘25)%7
the relation

(Zngs — W, u) = (Znys — Wmy Em) + (Znys — Wm , U — &m),
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implies that both | (Z,4s — Wm , &m)| and | (Zn4s — W, u)| are no greater than
(8%¢)*. In particular, if Z,4s € Xo,

0 < (@1 — Wags, W) = (@1 — Zngs, W) S (Wn — Znys, u) = (87'26)%

for every g1 £ Q; (w) ; similarly, if Z,4s e X1,0 = (g0 — Ways, u) = — (8%)* for
every qo € Qo(u). Since

Aoys,i(W) = 1 — (Gngo,n) + | Enrs s Wnrs) — (4, )|
S e+ [ Envs — % Wats) | + | (U Wais — ¢0)|
< e+ rlgars — uf + (&%)}
S e+ @+ @t = (6r + 1)é

when Z,,, ¢ X;, we conclude that d,..(w) = (6r 4+ 1) é.Let Ny < N, < ---
be the times at which mistakes are made after the (n + s)th observation. Let
Ni, < Nj, < --- be the times at which the normal £y, # £y,_, . Then, if a
mistake is made at time N», (Ny; < N» < Ny,;,,), &, is left unchanged. In
particular, £y, = &y, where o = k; and Zy, = wu, , so that:

=0 if wwy, eX;

(wy, — wx, , &n,) .
=0 if wwy,eXo.

(This is proved by an easy induction argument; wy, always lies on the “wrong
side” of 7 (¢w,_, , Ww,_,), and wy,_, lies in the same set aswy, for o < v < kjy1.)
It is easy to verify that dy,(u) < (6r + 1)¢ and that

0= (wy, — Qo,u) = &%)t if Zy, e Xy,
0= (wy, — qu,u) = — 8%} if Zy, e X; (where ¢ = k;).

(Use the same argument that was used for d,s(u).)

Now suppose Zy, € X : then, 0 £ (wy, — ¢, %) = (Wy, — Wx, , ¥ — £n,) +
(wy, — w, , £x,) + (wy, — o, u). The first term is no greater than (8’¢) 5
the second is negative and the third is no greater than (8%)*. Thus

|(ww, — g0, w)| £ (320°¢)* if Zy, e Xo.
Similarly | (wy, — g1, w)| £ (32%) ¥ if Zy, & X, . Thus,
du,i(u) = e+ | (&, — u, wy,)| + [ (u, wy, — ¢)|
St @ 4320 s G+ 1

if Zy, ¢ X;. (¢ =0, 1). In any event, dy, (u) = (8 4+ 1) ¢. Thus, whenever a
mistake is made, dy, (u) = (8r 4+ 1) é. Since d.(u) does not change unless a
mistake is made, dm(u) < (8 + 1) forall m = n + s. Thus

B(w) C [ limy,wd, () = 0],
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so that
B=UB®w) c U [dn (w) — 0].

uelU

Since Pr[A U B] = Pr{U..v [(¢., u) — 1]} = 1, (Theorem 3), it then follows
that Pr[D] = Pr[DN (A U B)] = Pr[D N A] + Pr[D N B], where

D= U[d,(w) —0].

uelU

But we have shown in Cases 1 and 2, that: B D and Pr[A N D] = Pr[4],
so that

Pr[D] = Pr[A U B] = 1. q.e.d. (T3)

Thus we see that the “empirical’” hyperplane, 7 (£, , wa), “converges,” in some
sense, to one that separates X, and X; . What does this tell us about the asymp-
totic behavior of the error probability? Recall, that Z,,; is misclassified if and
only if the event

“+1 = [Zn+1 & Xo and (En , 7,+1 bl ’U)n) < 0]
U [Zn+1 £X1 and (sn ) Zn+1 - wn) g 0]

occurs. We state as our main result
THEOREM 5.

limn,o Pr[E,] = 0.

Proor. If E,; occurs, then (4., Zya — wa) (U, Zny1 — q) = 0 for every
g € Q(u) and every u ¢ U. Hence for every w e U, |(4, Znt1 — ¢i)| = Do (u) if
ZopneXiand i e Qi(uw), (6 = 0,1). Thus Epys © Mooy (Fao() U Foy (u)) where
Fri(u) = [Znyn e Xi] N [[ (4, Zaa — ¢0)| < Du(w)], (@ = 0, 1).

Since the Z,,; are identically distributed and Z,; is independent of D, (u),

PriEnu] = Pr{N (Fro(u) U Fri(w)) }
uelU
where Fri(u) = [Z XN [|(u, Z — ¢;)| < D.(w)] and Z is a r.v. with the
same distribution as Z,.1, and is independent of D, (u). Let
D = U [D,(u) — 0].
uelU

Pr[D] = 1 by Theorem 4, so
Pr{E..i] < Pr{N Fi(u) N D} + Pr{N Fii(w) N D}.
uelU uelU

Hence
lim sup Pr[E,.i] < lim sup Pr{ﬂ Fio(w) N D} + lim sup Pr{n Fii(w) N D}

Pr{hm sup () Fao(w) N D} + Pr{lim sup N Frii(u) N D}

uelU uelU
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where

hmsupA =N U4,

n mxn
is the event: “A, occurs for infinitely many . Suppose the event

lim sup N Fri(uw) N D
uelU
occurs. Then for some u , the event [D,, (o) — 0] and lim sup, Fi;(u) occurs.
But this implies that the event: “D,,(w) — 0 and | (w, Z — ¢;)| < D, (u,) for
infinitely many n” occurs, which implies the event [Z ¢ Q;(%)]. (¢ = 0, 1). Thus,

limsup N Fy:;(u) N D C [Z e U Q:(w)],
so that
lim sup Pr{E,] < PriZ ¢ UQw)] = q.ed. (T4)

n->00 uelU

We wish to point out that the restriction to Euclidean spaces can be weakened
slightly. The results hold as long as Xo U X, is a subset of a finite dimensional
Hilbert space.

~The extension of these results to infinite dimensional Hilbert spaces is un-
questionably a worthy venture. Since U and V (¢) are no longer compact in any
useful topology, (specifically the weak topology, the norm topology or any
topology between the two), and since their compactness appears to be crucial
to the present method of proof, a different method of proof will have to be found.

- Finally, a word about Assumption C, : It seems a pity that the results of
Theorem 5 rely upon the fact that Pr{ U..; Q(u)} = 0, but this is indeed an
essential assumption if the simple geometric procedure proposed here is to work.
To see that this is so, consider the following example where points are chosen
independently and at random from certain subsets of the plane: let z; = (0, 0),
2y = {0, 1), 23 = {0, 2) and 24 = (1, 1). Let X, = {1, 2} and X, = {3, 24},
and let Pr{z;} = $forj = 1,2, 3,4.

It is easy to verify that all assumptions except C; are satisfied and that the
sequence of observations Zy = x3, Z; = 1, Z» = % will occur with positive
probability. Thereafter, an error will occur whenever x4 occurs. Apparently, no
simple modification of either the guessing rule or the estimation rule will permit
us to deal with situations of this type unless more detailed information about the
structure of X, and X; are known a-priors.

6. Acknowledgments. I would like to thank Prof. Herman Chernoff for
reading and commenting upon an early version of this manuscript. His sug-
gestions lead to a substantially more direct proof of Theorem 4 than was
originally comtemplated.
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APPENDIX—Lemmas

This section is devoted to the proof of lemmas required by the theorems in the
text. It should be pointed out that the lemmas are purely geometric or proba-
balistic in nature and do not depend upon the procedure set forth in Section 4.

DEFINITION.

(a) For any subset, A, of a real, finite dimensional Euclidean space H, let
H (A) be the smallest subspace of H which contains A.

(b) Let K(A) be the convex hull of A. (K(A4) is the smallest convex set
containing A.)

LemMA 1. a ¢ K (A) if and only if there are non-negatwe constants Ay, Na, + Mg
such that Y s_a\; = 1, and points a; , as, -+ - az in A such that a = Sk N

Proor. See page 31 of [1].

DeriniTION. Let X and Y be subsets of H. Define

Y —-X={22=y—mxyecY, zeX}.

LemMa 2. inf,.y_x (u, 2) > 0 for some u in the closure of K(Y — X) if and
only if

inf.eray—xx |l2]] > 0.

Proor. Necessity: Let ¢c; = infy.y (%, y) and ¢; = supz.x (%, ). By hypothesis,
¢; > ¢ . From Lemma 1, infy.xr) (4, y) = ¢z and suPazxx) (U, ) = ¢ . Thus,
inf.exr)—x (4, 2) > 0. The result follows from the Schwartz inequality.

Sufficiency: Notice that K (Y — X) < K(Y) — K(X), so that

inf,.x [lz]| > 0

where K is the closure of K (Y — X) in the norm topology. Let § = inf..x ||2| ,
and let 2, be a bounded sequence in K for which lim,., ||z, = 8.

We can pick a point % £ K and a convergent subsequence of {z,} so that the
subsequence converges to %; whence |lu|| = 8.

Let s be any point with (u, s) < &, and let f(\) = [As + 1 — Nul|® A
routine computation shows that

f ) =2(,s—u) <O0.

Since f(0) = #&°, there must be a value of u, (0 < p < 1), such that ||s| =
llus + @ — u)ull < 8. Thus, s is not a member of K. Since that set is convex
and contains u, it cannot contain s either. Hence, (u, z) = 8 for every
e KDY — X. (L)
LemMma 3. Let A be any bounded subset of H. The functional g (£) = supac.(a, &)
1s continuous in the norm topology.
Proor.

Q(En) - g(g) = SUPqes (En — ¢ + E; a) - 9(5) s SUPaea (Sn - E’ a’)
< ||t — £l @, where & = supa.. [l . Similarly, g(8) — g(&) = [t — &l e
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Hence,

lg€®) —g&)|—0

when [|&, — £ — 0.

LemMa 4. Let X and Y be subsets of H and let B; and By be open subsets of
HXUY) such that X € Byand Y C B, . If B is an open® subset of By ® Bs
and BN (X @ Y) is non-empty, then there are open subsets Bx and By of H(X U Y)
such that

Bx@BYcB,anX¢¢andBYn Y#(#.

Proor. Pick {xo, o) e BN (X ® Y) and construct an open sphere about
{zo , Yoy s0 that it is a subset of B. Let & be the radius of that sphere and let

Bx = {zeBy: |z — x| < 8/2%
By={yeBa:ly — ol < 8/2.

DEFINITION.
(a) Let U = {fue HX, U X1): ||lul| = 1 and sup.ex,—x, (4, 2) < 0}.
(b) For every ¢ > 0, let

V(o) = {¢e H(Xo U Xy): ||E]] = 1 and supuer ¢, ) = 1 — d}.

(©) 8 a) = {{z,y) e HX:UXo) ® H(X,1UXo): (& —y,8)/llz — ylI*> of.

d) §* (¢ a) = (X1 ® Xo) N S ).

Lemma 5.

(a) U and V (¢) are compact.

(b) If ¢ > 0 is given, there is a positive value of o for which S* (¢, &) is non-
empty for every £V (o).

Proor.

(a) By Lemma 3, U and V (¢) are always closed subsets of the unit sphere
(L3-b), and so are compact.

(b) If not, then for some ¢ > 0, every sequence of positive constants o, which
converges to zero admits the choice of a corresponding sequence £, € V(¢) for
which U, 8* (., @) = ¢. It is clear that

h(é) = SUPzex;—x, (Z, E)/”zllz

is continuous and hence achieves its minimum (at &, say) in the compact set
V(e).If h(%) = 0, then we have £ ¢ U which is not possiblesince V(¢) N U = ¢.
Thus & (%) > 0.

However, if U, 8*(¢,, an) = ¢, this implies that

limy e inf 4 (£:) = liMpsew an = 0.

3 Open in the product norm topology: The open sphere of radius & (xo, yo) is given by
(@, v): llz 4 zoll 2 + lly — oll 2 < 8%}.




298 ARTHUR ALBERT

Since &, is minimal, (&) = 0 which is a contradiction.
(L3).
Lemma 2 and Assumption A, insure the existence of a u* ¢ U and constants
¢, > ¢ such that

infyex, (0¥, y) > 2 > ¢ > SUpPsex, (', 7).
Let
Bi={ze HX, U Xy): (u*,2) < ¢

By = {ZSH(XO U X1)2 (u*, Z‘) > 62}.

Clearly, X; € B, , X, C By and both B; and B, are open subsets of H (X, U X).
Thus, we obtain:

LemMA 6. For every £ ¢ H (X, U Xi) and every positive e, S(&, @) N (B1 ® Bo)
s an open subset of By ® By in the product norm topology.

Proor. Since

inf(z,v)6‘31®30 ”.’17 - y” > 07
the function h:(z, y) = (x — y, &)/|lz — yII is continuous over B; ® B, for
each £, so that S(£, ) N (B: ® B,) is open in the product norm topology.

LeMMA 7. If ¢ > 0 is given and two random variables Z and Z' are chosen inde-
pendently from Xo U X1, then

SUDa>o infeev oy Pr{(Z, Z') € S* (¢, @)} > 0.

Proor. Let G(¢, o) = Pr{(Z, Z') e 8*(¢, «)}. We will show that for each
a > 0, G(§ ) is lower semicontinuous and that for some « > 0, G (¢, «) is
positive for every £in V (o). Since V (¢) is compact, the two together furnish the
desired result:

Suppose £, converges to £ Then (z, &) — (z, £) for every z. In particular,
if D is any subset of H (X, U Xl) whose elements are bounded away from zero
in norm, we have (z, & — £)/|lz]|* — 0 for all z & D. Now, if (21, z2) € S* (¢, @),
then

(.’171 - X2, 5)/”“’1 - $2”2 > a,
and for some =,

@ — 2, &n) /|21 — @’ > @
for all m = n. Thus,

$Ea) U N 8, ),
so that S
G(E; a) = PI‘{(Z, Z’> & S* (5’ Ol)} = PI'{(Z, Z,> fnlil mrz]n S* (Em ) a)}

< lim inf Pr{(Z, Z') € 8*(¢n, @)} = liminf G(&, @).  ([3], p 150.)

n->00

Thus, G (£, ) is, for each @ > 0, lower-semi continuous.
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Now Lemma 5 guarantees that given ¢ > 0, (B; ® By) N §*(¢, a,) is non-
empty for some o, > 0, whenever £ ¢ V(o). Since (B; ® By) N S(£, a,) is open,
we apply Lemma 4 to assert the existence of open (in the norm topology) sets
0, and O in H (X, U X;) for which

0, ® 0o C B ® BoN S(¢, @), 00N Xy # ¢ and O; N X; 5 ¢.
From Assumption B, Pr[0o] > 0 and Pr[0,] > 0. Since
BN X; = BN Xo=¢,Pr{{Z,ZYe S(t, @) N B, ® By}
= Pr{(Z, Z') e 8" (3, o)},
so that G (¢, a,) = Pr{(Z, Z') 0, ® Oy} = Pr[0o|Pr[0] > 0. (14, L5).
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