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1. Introduction. In this paper tests and confidence intervals based on a metric
similar to that used in the Kolmogorov-Smirnov tests are introduced. While
the tests are slightly more difficult computationally, they have somewhat bet-
ter discriminating power against certain alternatives. The confidence intervals
for probabilities of intervals have the advantage over those given by the Kolmo-
gorov-Smirnov statistics, of shorter maximum length for the same sample size.
The statistic studied here was investigated by Kuiper in [4].

2. Definition and properties of d». Let D be the class of one-dimensional
distribution functions, and for F, G in D, let

do(F, @) = SUPzy>qy |[F(22) — F(z1)] — [G(22) — G(20)]].

THEOREM 2.1. d; 7s a melric, di < d» < 2d,, where dy is the uniform metric,

dz(F, G) = SUPr an interval |PF(I) - PG(I)|7
d(F, @) = sup, [F(z) — G(z)] + sup. [G(z) — F(x)].

The proof is a straightforward consequence of the definition of d;, and also
appears in Brunk, [1].
DEeriNITION. For F,e®, ¢, k[0, 1], let

Ceor, ={FeD:Fo(zx) + ¢ —k = F(x) < Fo(x) + ¢, all }.

THEOREM 2.2. U.cr0s1Ce.r, = {F € D: do(F,, F) < k}.

Proor. Suppose G ¢ Cy . r, for some € ¢ [0, k). For I = (2, 5] the maxi-
mum probability that G can assign to I is [F,(22) + €) — [Fo(x1) — e —kl =
F,(x2) — F,(x1) + k, while similarly the minimum probability G can assign to
Iis Fo(x3) — F,(x1) — k. Hence

Pr,(I) — k = Po(I) £ Pr,(I) + k.
This holds for each interval I, and since it is true for each ¢’ £ [0, k], we have
UewosiCok,r, € {F e D:do(F,, F) < k.

Now suppose G ¢ {F ¢ D: do(F,, F) =< k}. Let sup, [G(x) — F,(2)] = S £ K,
sup; [Fo(x) — G(x)] =t < k — 8. Then clearly

G e Css4t,r, € Coory © UaeoaCont,r, -
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Hence
(FeD:do(Fo, F) £k} € UetosiConir, -

3. Definition of null hypothesis and some properties of d. related to this
definition. In this section it is assumed that F, is some given distribution func-
tion.

Fork ¢ (0, 1) let

Hor = {F £ D:do(F,, F) < k}.

It is desired to test the hypothesis that the distribution function of the inde-

pendent random variables X , - - - , X, is in 3C, % , where k is chosen on the basis

of some realistic considerations.
DeFINITION. For F e D,0 £ e = k < 1, let

Fo(x) — k+ e if F(z) < Fo(z) — k + ¢,
F¥(z) = {F(x) if Fo(x) — k+ e < F(z) £ Fo(x) + e,
F.(z) + e if F(z) > F,(x) + e.

TareoreMm 3.1. For F ¢ D
infuege, , do(F, H) = infeepo do(F, FY).
Proor. From Theorem 2.2
infree, , do(F, H) = infeepo infuec,, r, do(F, H).
Thus it need only be proved that for each ¢ ¢0, k]

(3.1) infrec,. , p, do(F, H) = do(F, F7').
To accomplish this it will be shown that for each G € Cy 4, r,
(3.2) d(F, F7\) = do(F, @),
which will imply (3.1) because F7 & Ce x.r, . We can show (3.2) by showing
(3.3) sup; [F(z) — F(2)] < sup. [F(z) — G(x)]
and
(3.4) sup. [Fe'(z) — F(x)] £ sup. [G(z) — F(x)],

as is seen from the last part of Theorem 2.1. To prove (3.3) we need only con-
sider those z for which F(x) > G(z), since because F and G are distribution

functions, sup, [F(z) — G(z)] = 0.
Thus suppose F(z') > G(2'). Then since G & Cor .5, , either

F(z) = F5(') > g(a’), or F@&) > F. (') +¢ = Q(z'),

which proves (3.3). Similarly to prove (3.4) we need only consider those x for
which G(z) > F(x).
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TuEOREM 3.2. For each distribution function F g 3C,, , and each H* & 3¢, for

which inf.g, , d2(F, H) = dy(F, H*), we have
do(F, H*) + do(H* F,) = do(F, F,)  and  &(H* F,) = k.

Proor. Since F £ 3C, . , we may assume
(3.5) do(F,,F) =k + I, >0
All we need show is that for some ¢’
(3.6) d(F, FY) = L.
This follows since by (3.5), the triangle inequality, and the fact that
3.7 do(H*, F,) £ F,

we must have dy(F, H*) = 1.

To prove (3.6) we note that by (3.5) there is an interval, [z, , z,], such that
without loss of generality Fo(z:) — F(x1) = 8 = sup.[F.(z) — F(z)] and
F(xy) — Fo(xs) = k+1— 8 = sup, [F(z) — F,(z)]. (Here x; may, for com-
pleteness, stand also for x; +. This does not affect the arguments.) If ¢ is
chosen such that k — S < ¢ = k 4+ | — S, then dy(F, F¥) = I, since clearly

sup, [F¥(z) — F(z)] =8 — (k—e¢’)  and
sup, [F(z) — Ff(x)] = (k+1—8) — ¢,
because both suprema are achieved at the same points as the suprema of
[F(z) — Fo(x)] and  [F,(x) — F(x)].
Note that from (3.6) and the fact that F. e 3¢; we know that there is an
H* £ 3, for which dy(F, H*) = infuue,, do(F, H), namely F .

4. Formula for the limiting distribution of the statistic on which the tests
and estimates are based. For F ¢ D continuous let U; = F(X,),z2 =1, ..., n.
Then if F is the distribution function of the X, the U; are independent random
variables with common uniform distribution on [0, 1]. Let the random process
G.(u), u €10, 1], be defined by G,(u) = proportion of Uy, -+, U, < u, and
let F.(x) = proportion of Xy, -+, X, = z. (F.(-)(w) is the empirical dis-
tribution function based on the observed values Xi(w), - -+, Xa(w) of Xy, -+,
X..) Then

n} do(F, , F) = SUPogu;gussi |n§[G"(u2) — ug] — n%[G"(ul) - ul]l
= SUPyero, 7 [Ga(u) — U] + SUPuero, 7l — Ga(u)] = D} + D5 .

In [3], pp. 202-203, the limiting distribution of 2(D} + D7) when the U; are
independent with the uniform distribution on [0, 1] was computed. From it we
find that for continuous F

To(2) = liMpow Pr{n} do(Fn, F) S 2} = 1 4+ D [2 — 8m%" exp [—2m*),
m=1
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the justification for using the limiting stochastic process to find the limiting
distribution of (DY + D) being due to Donsker [2]. It can be shown that for
z > 1.5 an excellent approximation to T:(2) is furnished by using but one term,
1 + [2 — 8] exp [—2¢"], of the above series. For example T5(1.65) = .905,
and T2(2) = .99. Tables of T are given in [5], Table 15.7.

5. The proposed tests and their properties. 1The proposed test is: Reject
3Co.x when X;(w), * -+, Xa(w) are observed & n’ do(F, , F,) (w) > 0’k + ha,a,
where T2(h2,) = 1 — a. Since by the triangle inequality for F ¢ 3C, , if

dy(Fn,F,) >k + hao/n'  then  do(Fn, F) > hyo/nt

we have
THEOREM 5.1. For F £ 3C, 4, , lim supy.c Pr{rej 3¢, s} =< a. It should be noted
for computational purposes that

ds(Fn, F,) = maXieq,...n [Fo(X—) — (2 — 1) /n]
+ maxi.,...n [i/n — Fo(X1g)],

where X;;(w) is that X;(w) which is jth in order of magnitude.

Let [[r]] denote the greatest integer less than or equal to r. Then from con-
siderations similar to those in [6], we can easily prove

TuroreEM 5.2. If n is any integer for which

n

inf )p’(l —-p)"z1-8,

[[n (p+1)—nlhy4]] (
»e[0,1-1] v=0

4

then
Prirej 3,4} = 1 — B forall F suchthat infue,, do(F, H) = L.

The proof is the same as that of Theorem 3.1 in [6], when one notices the facts
that do(F, F,) = k + I (from the triangle inequality), and the number of ob-
servations falling in (%1, y.] has the binomial distribution with parameter
n[F (y2) — F(y)]. ‘

Clearly n may be computed as in [6]. As to whether the n thus found is too
conservative, for « sufficiently small the results are similar to those in [6], since
after applying Theorem 3.2 the reasoning is the same as that of [6].

It should be mentioned that d; (the uniform metric) and d. are basically
different in the sense that there are some alternatives against which only one
will discriminate. To see this let F, be the uniform distribution function on
[0, 1], in which case 3C,,0 will consist only of F,. In order to keep the tests of
3C,0 based on d; and dy comparable, we let & = .05 and n = 1600 for both.
Then by, = 1.36 and hs,o = 1.75. Let

0 if <0,

F*(z) = |.025 if 0<z< .05
T if 05<z=1,
(1 if x> 1.
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It is easily seen that the test based on d. rejects 3¢, with probability one when
F = F* However with the aid of Uspensky’s result as given in [6], Equation
(8.28), it is easy to show that the probability of rejection when F = F* using
the test based on d is close to .05.

Similarly it can be shown that the test based on d; has better discriminating
power against alternatives of the form

0 if z<0,

T if 02z .53,
F**(z) =45 -6 if 5—d<z=.5+48

T if 5+8<zg1,

1 if z>1.

The suggested tests are certainly not the only desirable ones. For example it
can easily be shown that if we define 3¢5 as in [6], Definition 2.1, Fi as in [5]
Definition 2.3 with @ = F,,, then

infaege,s do(Frn, H) = dy(Fn, F3).
In this case the test given by
Reject 3¢¥ when X;(w), -+, Xa(w) are observed < n! do(Fn, F¥)(w) > ha.a

satisfies Theorems 5.1 and 5.2, and » can be found in the same way as before.
In this case the alternatives against which there is good power are different
from those treated in [6], though the null hypothesis is the same.

6. Construction of simultaneous confidence intervals. It can be seen from
Theorem 2.1 that ds(F,, F) £ he,o/n’ if and only if for all intervals I

—hgo/n} < Pr,(I) — Pe(I) £ hyo/nl.

Thus simultaneous asymptotic 1 — « level confidence intervals for probabilities
of intervals I are given by

[Pr,(I) — ho,/n}, Pe (I) + hg,o/n].

Here if I = (a, b] then Pp,(I) = F.(b) — F.(a), with the usual modifications
if I is for example closed.
Such intervals could be constructed using d;, but the intervals given here
have the advantage of smaller maximum length for given « than those from d; .
It seems worthwhile to examine the advantage of the ds confidence intervals
over those from d; . The asymptotic 1 — a confidence intervals from d; are

(Pr,(I) — 2hy,o/0}, Pe,(I) + 2hyqo/nl).

Hence for given « the ratio

maximum length of d» 1 — o asymptotic confidence interval _ ks, o
maximum length of d; 1 — « asymptotic confidence interval 2k, o
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For a = .05 this ratio is 1.75/2.72 = .64, (i.e. for large n the d. interval is ap-
proximately 64 per cent as long as the longest d; interval), while for « = .01
this ratio is 2/3.3 = .61.

In particular the above can be used to obtain simultaneous asymptotic 1 — «
level confidence intervals for the parameters p;, - - -, pr of a multinomial dis-
tribution by letting X.,, be a random variable which has value j if the mth
observation is in the jth class. Then

Fx,(\) = 2 p;.
FESN
Letting J,(j) be the jump of the empirical distribution function at j, we have

pie[Ta(f) — ha,a/nt, Ju(G) + ho,a/n]

with asymptotic probability at least 1 — «, simultaneously forallj = 1,2, --- , k.
This method can be made exact for finite samples by replacing hz,« by hs,a,% ,
where for F continuous Ps{n} do(Fn, F) > hyam} = a.
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