PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS

By Hans BUaLMANN! AND PETER J. HUBER®
Unaversity of California, Berkeley

1. Introduction. This paper is concerned with the following ranking
problem: n = 3 items are compared pairwise. The results of all comparisons
can be summarized in a preference matric A = (a:;) where a;; = 1, 0, or 4, respec-
tively, according as item ¢ is preferred to j, item j is preferred to ¢ or no preference
is expressed between ¢ and j, respectively. Which is the best method of ranking
all items in the “order of their preferences’ provided A is known?

In tournaments of chess, which represent a canonical model for the above
situation, it is customary to rank in descending order of the scores s; = D_; as;.
Since, however, other ranking procedures have been proposed, e.g., by Wei-
Kendall [3], the problem arises how to characterize the “goodness” of any such
procedure. In this paper we give such a characterization in terms of the “under-
lying probability structure’” and then exhibit a class of such structures for which
the usual ranking procedure by scores s; is optimal.

In order to keep what follows as intuitive as possible we shall from now on use
the terminology referring to chess tournaments, i.e., “‘player” for “item,” “game”’
for “comparison’ and “won,” “lost” or “drawn” for the possible results of any
comparison.

2. The underlying probability structure and the correct ranking.

2.1. In probabilistic terms a tournament can be described as follows. The
a;;’s appearing in the matrix A are considered as random variables which take
on the values 0, %, and 1. For the purposes of this paper we shall, however,
exclude draws, i.e., we assume for all ¢ = j

(1) [a:; = 1] with probability p:;,

(2) [a:;; = 0] with probability ¢:; = pji,
and

(3) pii + pi = L

The case where draws are permitted will be discussed in a forthcoming paper by
Huber [2] where our results are extended to more general random variables a.; .

If the results of all games are independent, then the probability matriz P =
(pi;) describes the complete underlying probability structure of the preference
matriz A, whose elements can then be looked upon as follows: (i) a;; for ¢ < j
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are independent zero-one trials each with probability p:; ; (ii) a:; for ¢ > j are
related to the set of the above random variables (i) by a:;; = 1 — a;; (iii)
a; = 3, i.e., constant for all <.

2.2. Suppose now that the matrix P is completely known; which would then
be the “correct ranking’’ of the players? The following principles seem feasible.

(a) Define m; = min;.; p:; and rank in descending order of m; .

(b) Define p; = > ; p:; and rank in descending order of p; .

(¢) Define p®™ = P* p and rank in descending order of p where p =
(Pryp2y - D) a8 defined in (b), p(N) = (p{N)7 péN)y ) p;N))-

Procedure (c) is derived from the method proposed by Wei-Kendall [2]. These
authors, however, apply this iteration procedure to the matrix 4, not to the
matrix P.

There is no doubt how the “correct ranking” should be defined in the following

special case:
(4) pi; = F(8: — 0;),

where {6;} are parameters associated with the players and F(t) is any symmetric
distribution function. Obviously the players should then be ranked in descending
order of the 6;. It is also easy to check that this ranking satisfies all three prin-
ciples (a), (b), and (c) mentioned above. (The reader may observe that the
special Case (4) arises if the performance of player  is of the form 8; + A;and ¢
wins over j if 8; + A; > 6; + A;, the fluctuation terms A; being independent and
identically distributed random variables.)

3. Formulation of goodness of ranking procedures.

3.1. The problem of ranking can now be described as follows: “Try to hit the
‘correct ranking’ (defined in terms of P) if you know the outcome of the tourna-
ment, i.e., the matrix 4.”

ReMARK. We may always assume that there is only one “correct” ranking; if
P should happen to admit two or more, we would arbitrarily distinguish one of
them, say d, as best (e.g., by considering P as a limiting case of suitable neigh-
boring matrices having d as unique correct ranking).

In order to formalize this problem we define:d = (di,dz, -+, d») = ranking
vector, where d; = k means that player number ¢ has been assigned to the kth
place in the chosen ranking; L(d, P) = loss arising if ranking d is chosen and P
is the true underlying probability matrix; § = ranking procedure assigning to
each matrix A a ranking vector 6(A). § may be randomized. The risk of a given
ranking procedure § is then

(5) R(s, P) = E#[L(5(4), P)],

where E» = expectation if P is the true underlying probability matrix.
Different ranking procedures are then compared on the basis of their risk
functions; in particular we have
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DrriniTioN. The ranking procedure § is uniformly better than (dominates)
& for the class ® of probability matrices if

R(5, P) < R(8', P) forall P ¢ @.

4. Invariance.

4.1. Whenever we talk about ‘“invariance under permutations of the players”
it seems intuitively clear what this expression means, namely, that a renumbering
of the players should not matter. The following is a formalization of this intuitive
notion. We define

4.1.1. ® = {P}: space of probability matrices. In the special case [(4), Section
2.2] where p;; = F(6; — 0;) with fixed F, ® is in 1-1 correspondence with
® = {6} : parameter space.

4.1.2. @ = {A}: space of tournament outcomes (sample space).

4.13. ® = {d}: space of rankings (decision space).

4.2, Then the “permutation of players” ¢ operates as follows on these three
spaces:

4.2.1. On @: P 5 P’ defined by p?; = po(io(;y and similarly in the special case
on ©:0 % ¢ defined by 67 = 6, .

422 0n@:A->S A° defined by ai; = Geeiyois) -

423. OnD:d -5 d° defined by d? = do) -

We then define:

(i) L(d, P) is invariant under ¢ if L(d", P°) = L(d, P).

(ii) 8(A) is invariant under ¢ if 6(4) = d = §(4") = d°.

4.3. Technical remark. Observe that (P°)" = Q is defined by ¢:; = Dotr(iy) otrts) -
Hence we have (P°)" = P” and similarly (6°)" = 6", (A4°)" = A”, (d°)" =
d”. Thus, the group of all permutations operates on all these spaces from the
right.

6. Solution of the reduced ranking problem.

5.1. The reduced ranking problem is defined as follows: The class ®, consists
of a given matrix P and all matrices P’ obtained from P by permutations of the
players, i.e., pi; = Do(i) 05, Where o stands for some permutation of the integers
1 to n. In other words, @, is the orbit of P under the group of all permutations
of the players. The loss function is defined by

L(d,P) =0 if d is the correct ranking,
=1 otherwise.

Find 6(A4) which among all permutation invariant procedures is uniformly best
for @, (i.e., maximizes the probability of hitting the correct ranking).

5.2. Without loss of generality we can assume that (1, 2, ---, n) is the cor-
rect ranking under P [hence (¢(1), ¢(2), ---, o(n)) is the correct ranking for
P°].
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The probability Wr(A4) that the outcome of the tournament is A, P being
the true underlying probability matrix, can then be computed as follows:

WP(A) = H Dij H Pji = II (pij)aii — H (pﬁ)l—a.‘j
1<J 1<J i35 ity

a;j=1 a;j=0

[using (3) and the convention 0° = 1].

The maximum likelihood principle leads then to the following procedure.

REeDpUCED RANKING PROCEDURE. Determine the permutation o for which W pe(A)
s maximum. Then rank according to the true ranking for P’ that is, take the ranking
vectord = (a(1), 0(2), -+, a(n)). If the maximum 1is attained for more than one
o, then choose one of them in an invariant way (e.g., at random with equal prob-
ability) in order to make the procedure invariant under permutations.

The proof that the reduced ranking procedure minimizes the risk and hence
that it is a solution of the reduced ranking problem is similar to the first part of
the proof for Theorem 2 in Section 7. In fact, up to formula (18) it is identical
except for a change of notation (P instead of 6). In view of the special form of
the loss function, (18) is however just another way of characterizing maximum
likelihood procedures.

For later purposes we note that if p;; > 0 for all 7, 7, then Wr(4) can be
expressed as follows:

(6) W A)F = IL pis (pis/2i)* = C(P) I (is/ps0)*
or
(6" We(d) = C(P) exp {% ; ai,m,'}

with ¢;; = log(p.j/pj) and C(P) > 0 depending on P but not on‘4.

Remark. In Bayesian terminology the above maximum likelihood method
amounts to choosing a ranking with maximum a posterior: probability given the
outcome A4, for the uniform a prior: distribution on @, .

6. The general ranking problem.

6.1. In the previous section we solved the ranking problem for a very restricted
class of probability matrices. In general, of course, we are interested in much
larger classes. Still it seems reasonable to postulate, in the general case too, that
the optimum ranking procedure be invariant under permutations of the players,
since any procedure which does not have this property would not qualify as
being fair.

Hence we define the general ranking problem: Given a class ® and a loss func-
tion L(d, P), find a ranking procedure 6(A) which for @ is uniformly best among
permutation invariant procedures.

As the following example shows, there is no such procedure unless the class ®
is quite restricted or the loss function is very unrealistic.

6.2. EXaMPLE. ® contains the following two matrices P and P’ and their
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respective orbits, i.e., all matrices P°, P’° obtained from P, P’ by permutation
of the players
05 09 09 09 1
01 05 08 08 1
P=101 02 05 07 1
01 02 03 05 06
0O 0 0 04 05

P’ = (pi;) where pi; = 1/(1 + ¢ %) with fixed 6, > 6, > --- > 65.
As in the reduced ranking problem, we take the loss function

L(d,P) =0 if d correct,

=1 otherwise.

Both matrices P and P’ are such that the true ranking isd = (1, 2, ---, 5)
[whichever of the suggested principles under (2.2) is used to define ‘““true rank-
ing”].

Observe that if we restrict our attention to a single one of the two orbits, we
are exactly within the setup of the ‘“reduced ranking problem.” In order to
prove that there is no uniformly best ranking procedure for ® we have to show
that the reduced ranking procedure leads to different results on the two orbits
or more specifically, we have to exhibit a matrix A which on the orbit of P leads
to a different ranking than on the orbit of P’. For example, this matrix can be
chosen as follows:

05 0 1 1 1

1 05 0 0 O
4 =10 1 05 0 1

0 1 1 05 0

0 1 0 1 0.5

According to the “reduced ranking procedure” we find that the best choices
for the ranking vector are as follows:

On the orbit of P the best choice is any of the following three vectors: (4, 5, 1,
3,2),(4,5,2,1,3), (4,5, 3,2, 1) [this means that player number one is always
placed fourth (see (3.1)].

On the orbit of P’ the best choice is any of the following six vectors: (1, 5, 2,
3, 4)) (1’ 5’ 2’ 47 3)’ (1’ 5’ 3; 27 4)) (1; 57 4’ 2’ 3)’ (1’ 5, 3’ 47 2)’ (1, 57 4’ 3, 2)
(i.e., player number one is always placed first) which clearly shows that the
optimal ranking procedure on each orbit leads to different results.

7. Optimum properties of the usual ranking procedure.

7.1. Since there is no uniformly best procedure for all classes @ (see Example
(6.2) in the previous section) it is natural to ask the question, what is the class
®, for which the usual ranking procedure by scores s; = 2 a; turns out to be
uniformly best? The following two theorems answer this question.
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TaEOREM 1. Assume that P is a probability matriz such that pi; # 0 for all
i, j. Then Wp(A) depends on A only through the score vector s = (81,82, *** , Sa)
if and only if P = (ps;) s of the form

(7N pi; = F(8; — 6;)

where {0} are constants and F(t) = 1/(1 + ¢ *) (logistic function).
Proor. (a) Let pij = 1/(1 4+ ¢ %), then

cij = log (pij/pss) = 0: — 6;
and

12 aie =% ,Z, aii(0; — 68;) = Zi:‘sioi -3 26,

hence by (6)
(8) We(A) = c(8) exp{)_ s:6i.

Thus, s is sufficient for 8. This result can also be inferred from formula (1) of
Bradley and Terry [1], since their model p;; = mi/(w: -+ 7;) corresponds to the
above with 6; = log = .

(b) To show the converse we observe, that

(9) Ccij = 0; — 0; & pij = 1/(1 + e—(oi—oj)).

We therefore have to show that if P(A) depends on 4 only through s, then
the ¢;; must be of the form 8; — 8;, or equivalently, must satisfy cx + c&r + ¢n =
0 for all triplets (I, k, r). (For then, one may find such §’s by putting 6, = 0 and
0i = Ci1, 7 # 1)

For the proof a contrario suppose that there exists a triplet, e.g., (I, k, r) with

(10) cw + cer + €0 # 0.

On the other hand, look at the following two matrices A and A': A with ay =
ar, = an = 1 and all other elements arbitrary but, of course, satisfying a:; +
Aj; = 1.
A" with an = @ = an =0
a = an = a, = 1

and all other elements the same as in A.

One then easily computes Ws(4) # W (A" because of (10). Since, obviously,
s; = s; for all 4, W5 depends on A not only through the scores but in a more
complicated fashion.

7.2. This theorem implies that, if we want to find the class @, , for which the
usual ranking method is uniformly best, we cannot hope that this class will
contain more matrices than those of the form (7) (class ®;). In fact we have the

following
CoROLLARY 1. Let ® be a class of matrices for which pi; # 0 for all 4, j and
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which, with each element P, also contains all matrices P° and let L(d, P) = 04f d
18 the correct ranking, = 1 otherwise. Then, if ® contains at least one element Po 2 @1 ,
the usual ranking procedure by scores s; = D ; @ is not uniformly best for ® among
mvariant procedures.

Proor. Take Py #z ®; and denote by @, the orbit of P, . By assumption @, C @
and, without loss of generality, let us assume that the vector (1, 2, 3, -+, n)
is the correct ranking for P, . On the other hand, we know by relation (10) that
for P, and some triplet (I, k, r)

(10) cw + cer + ¢ # 0.

Consider now a matrix A with the following properties:

() an = arr = an = 1,

(ii) ax; = ar;forallj = I, k, r,

(iii) the ones and zeros are distributed among the other games such that, if
we rank by scores, player [ may be assigned to the lth place, player k£ to the

kth place and player r to the rth place.
REeEMARK. Such a matrix always exists. Its construction is particularly simple
if the number of players is odd, n = 2m + 1. Then define a matrix A" by

fori <j: ai; =1 if 7 + 5 odd
=0 if 7 + j even,
fors > j: ai;=1— aj;.

We have

’ ’ !
Q13 = Qg3 = A3 = 1,

a{j = as;, forj = 1,23,
8 = Z a;i; =m for all ¢,
J#
hence, ranking by scores, any player may be assigned to any place. Then take a
permutation ¢ for which ¢(I) = 2, ¢(k) = 3, o(r) = 1 and define 4 = A",
which gives a matrix with the properties (i), (ii), (iii).
A similar, but slightly more complicated construction works if » is even, and
is left to the reader.
Provided the usual ranking procedure is uniformly best for @ [and hence for
®, , where consequently it has to yield a solution of the reduced ranking problem

(4)] we have
(11) ng (A) = max on @
for all those permutations o with the property that (¢(1), - -, o(n)) is a pos-

sible ranking vector by the usual ranking procedure.
Because of its special form, 4 will have in particular two permutations ¢ and

o', satisfying (11) and having the property o(1) = I, o(k) = k, o(r) = 1, d(l) =
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Lo (k) =rd(r) =k o(i) = @) fori =1,k r. Consequently
(12) Wes(4) = Wr' (4) >0
(since p;; 5 0 for all < and 7). But by (6)
log Weg (A) — log Wy (A)
= 3(cu + cxr + ¢1) — 3(cri + e + cr) = cu + cer + ¢ # 0,

which contradicts (12).

7.3. After having seen that essentially (i.e., if only strictly positive probability
matrices are under consideration) ®; D ®, we now want to prove the reverse
inclusion ®, D @; which, for all “reasonable’ loss functions is in fact guaranteed
by the following theorem.

THEOREM 2. Assume that (1) ® = @, (ii) L(d, P) = L(d, 0) s invariant
under permutations and L(d, 0) < L(d', 6) whenever dr < ds, di = d;, di =
di, di = d; for the remaining © and 6, = 0;. (This means that the loss does not
decrease if two players are “wrongly interchanged” in the ranking.) Then the usual
ranking procedure by scores s; = D a.;1s for ® uniformly best among all permu-
tation invariant procedures.

Proor.

(a) Let ¢a(A) be a randomized ranking procedure invariant under permuta-
tions and D = {d} the set of all possible ranking vectors. Obviously
(14) > ea(A) =1, for all 4,

deD

(13)

and the risk function is computed as
(15) R(ea, 0) = 20 20 L(d, 0)0s(4) W(4)

where Ws(A) = Wp(A) as in the previous notation (5.1).

(b) Instead of minimizing R(¢,, 8) among all permutation invariant proce-
dures it is easier to minimize the Bayes risk R(¢a , ) with respect to the uniform
a priori distribution over all vectors obtained from 6 by permutation of its

components

(16)  Blpa,0) = (1/n) X X X L(d, 60z (4)Wer (4)

where 6° = (0‘{ y 0;, Tty 0‘,’,) = (0.,(1) , Os)y 0,(,;)). Write this as
(17) R(¢a, 0) = ;[Zd va (4)ga(4)]
with

qa(4) = (1/n}) ;L(d, 87 ) Woe (A).

Optimum procedures are therefore characterized by

(18) va(A) = 0 if d such that ¢gs(4) > infs g (4).
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(¢) It remains to be shown that the minimum of gs(4) is attained if d is
the ranking in descending order of the s;. More precisely, we shall show that

ga (A) S go (A)if 8 = 81,d < di,d = d" whered” = (df ,d7, ---,ds) =
(dyay , dy@ » -+ , dywy) and where the permutation v interchanges & and [ and
leaves all other integers at the same places.

We find

1) gi(4) — qa(4) = (1/n)) L(d, 67) Wer (4) — L(d", 6") Wee(4)]
19 7
= (1/n}) DL, 67 Wern(4) — L(@", 6) Warr(4)].

Using the invariance of the loss function: L(d, ) = L(d’, §") we obtain from the
last equation (observe that v = v,

(20) qa(4A) — ga(4) = (1/n)) ; L(d", 0")Weer (A) — L(d, 6°) Wyer (A)

and combining (19) and (20) we have
qa(4) — qa(4)
eV = (1/2n) UL, 0) = L(d, )] Wer (4) = Wors (4)]

Writing ¢ for 6° we have
Wi (A) — W (4) = ¢(6) [exp {2 s — exp{ 2 s:¢7}]

[}

= ¢(0) [exp{sits + st} — exp{sit1 + siu}] exp ;l 8ii}

ik,

For s, = s; we therefore have

(22) Wi (A) — W (A) 20 if Go=¢, 20 if =26

Our loss function L(d, ¢) has been defined (see assumption (ii) of the theorem)
such that

(23) Ld,¢) —LWd,5) 20 if n=¢, =0 if =&,

Combining (21), (22) and (23) we conclude ga(4) — gar (A) = 0if s, = s;and
d, d’ = d” as given at the beginning of (c).

8. Final remarks.

8.1. The two theorems in Section 7 can easily be extended as follows:

(a) They remain true if a fixed number k = 1 of games is played between
each pair of players, and if a;; is the number of games that player ¢ has won
against .

(b) Theorem 1 remains true also (with obvious modifications) if each player
does not play against every other one.

8.2. For more intricate generalizations of these results we refer the reader
to the following paper [2].



510 H. BUHLMANN AND P. HUBER

Acknowledgment. We wish to express our thanks to Professor E. L. Lehmann
for suggesting the problem to us and for his stimulating personal interest.

REFERENCES

[1] BrabpLEY, R. A. and TeRRY, M. E. (1952). Rank analysis of incomplete block designs.
Biometrika 39 324-345.

[2] Huskr, P. J. (1963). Pairwise comparison and ranking: Optimum properties of the row
sum procedure. Ann. Math. Statist. 34 511-520.

[38] KenpaLL, M. G. (1955). Further contributions to the theory of paired comparisons.
Biometrics 11 43-62.



