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Introduction. In a recent paper of Keilson [7], the term skip-free was intro-
duced to describe a subclass of random walks X (¢) on an ordered set of states x.
A walk X (¢) may be said to be skip-free in the negative direction for example if,
in going from x; to 2; < x,, the walk must pass through all intervening states
at least once. A variety of birth and death processes, queuing processes and
diffusion processes have this property in one or both directions.

For the description of bounded skip-free processes, employment of the Green’s
function for the associated unbounded process and a technique of compensation
as described in the paper cited, is often advantageous. (A comparison of the
compensation technique with Wald’s identity is given in Section 6.). We will
employ this procedure to demonstrate a simple and very useful relationship
between the first passage time density and the Green’s function for a broad
class of additive skip-free processes. The processes are those in continuous time
on the continuum —» < z < «, homogeneous in space and time, and having
the skip-free property in the negative direction. Contained within this class are
the homogeneous diffusion processes, the homogeneous Takécs type processes
with negative drift and positive increments (cf. Takdes [15], Kendall [11])
and mixtures of the two types. The Green’s function G(z, t), a probablhty density
in the generalized sense of L. Schwartz, defined by

(1) G(z,t) = (d/dz)Pr{X(t) = z|X(0) = 0}
has the characteristic function
(2) gk, t) = F{Q(z, t)} = exp{—Dkt — iakt — [l — a*(k)]}.

In (2), D, o, and » are non-negative constants, and
(3) ath) = [ o™ aru@)

where F,(z) is the distribution governing the finite jumps. The characteristic
function of (2) is seen to have infinitely divisible form (cf. Gnedenko and
Kolmogorov, [5], Section 16).

For the process X (#) commencing at X (0) = z, > 0, let 7 be the first time at
which X (0) = 0, and let the corresponding first passage time density (gener-
alized) be denoted by S(z,, 7). The basic result of interest is that this density
takes the simple form

(4) S(xo ’ T) = (xo/T)G(—xo, 7')~
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A relationship equivalent to (4) but of slightly different form has been given
by Kendall [11] for the Tak4cs process in a dam context. The familiar result
for the diffusion process with drift (see Section 3) is also of this form. Aside
from its theoretical interest, the result is of practical value in that from (2)
one may exhibit S(zy, 7) directly (cf (4.3)). With the aid of the conjugate
distributions of Khinchin [12], one may also deduce the asymptotic behavior
of S(xy, 7) with r from the infinitely divisible character of G(z, t) (cf. Section 5).
The saddlepoint methodology developed for statistical application by Daniels
[3] and Richter [14] is of direct interest.

A relationship identical in structure to (4) has been exhibited [8] for the cor-
responding class of homogeneous walks N(¢) on the lattice in continuous time
with a skip-free property in one direction. If a process sample at n with jump
rate » has probability per unit time ve; of jumping to n + k, with ¢ = 0 for
k < —1, and e; ¥ 0, then for a system at no > 0 at ¢ = 0, the first passage
time density for arrival at » = 0 is given by

(5) 8(ne, ) = (ne/7)T(—no, 7)

where TI'(n, 7) is the Green’s function for the unrestricted walk defined by
I'(n, 7) = Pr{N(t) = n|N(0) = 0}.

1. The process. Consider the additive process X(f) characterized by prob-
ability », per unit time of an increment s and dX (¢)/dt = —o between increment
epochs. The increments are independent and governed by the distribution
F4,(s) with generalized density Ao(s). The process is defined by X (¢) = X(0) —
at + Zw s; where s; is the 7th increment occurring at time ¢;. The density
(generalized) of X(¢) denoted by W(z, t) is found from continuity considera-
tions to be governed by the equation

(11)  aW(a, £)/ot = a(8/0x)W — oW + v f W', ) As(z — &) dz’

and initial condition
(1.2) W(z, 0) = 6(x — ).

When Equation (1.1) is Fourier transformed and (1.2) is employed, we find,
denoting transforms by lower case letters,

(1.3) w(k, t) = exp(ikao)exp{ —vit[l — ao(k)] — takt}.

Suppose further that two types of increments occur independently, the first
with frequency v’» and density yAi(ys) for which [sAi(s)ds = 0, and the
second with frequency ». and density A.(s), so that » = v + vsand Ao(s) =
{(721’1/1/0)‘)’1‘11(78) + (»2/%0)As(s)}. Then w[l — Ao(s)] = ’)’21’1[1 — ydi(ys)] +
vl — Aj(s)] and

(14) w(k, ) = explikey — okt — ¥'nt[l — ar(k/v)] — v tll — ax(k)]}.
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If we now let v — o, component 1 gives rise to a diffusive contribution and we
obtain in the limit

(1.5) w(k, t) = exp{ikz, — takt — Dkt — wi[l — a(k)]}

where » = 1, a(k) = as(k), and D = 31 [s’A1(s)ds. The corresponding equa-
tion (cf. Feller [4]) is

oW (z, t) /ot

(1'6) 7 7 4
= a(aW/0z) + D(3*W /0z®) — wW + » f W, D A(s — o) ds'.

Suppose further that F,(0+) = 0, i.e., that increments s, are positive. We
emphasize this character by employing a positive superseript, viz A(s) =
A™(s). The limiting diffusive process with positive increments for the second
component has the skip-free property in the negative direction, and the com-
pensation method [7] may be employed to determine the first passage time
density.

2. The first passage problem. Consider now Equation (1.6) for positive
increments modified by addition of an inhomogeneous source term localized at
z =0,

Wr _ Wr _ DS'We
(21) ot dz dx?

oW — v [ W, DA (@ — o) do’

- = C(1)5(x)
with We(z, 0) = 6(x — x) where zp > 0. When C(¢) = 0, the solution of
(2.1) subject to the stated initial distribution is the Green’s function

G(r — 3, 1)
(2.2)

= %r f exp {—ik(z — x0) — skt — Dkt — »t[1 — a*(k)]} dk.

For C(t) # 0, we have, denoting convolution by an asterisk,
(2.3) We(z,t) = Gz — 20,t) + C(t) * G(x, t).

"The compensating funetion C'(¢) will be chosen to be such that W(0—, t) = 0.
The structure of Equation (2.1) is such that this condition, together with the
boundary condition at infinity We(— », t) = 0, insures that We(x, t) = 0
for all z < 0, whence (0Wg/02)(0—, t) = 0. From (2.1) we have from integra-
tion over a vanishingly small interval about x = 0.

(24) C(t) = —D(dWg/oz)(0+, t) — aWg(0+, ).
We also have from integration over the interval 04+ < z < o«
_d [” _ _DoWe _
25)  —SG0,0) =% [ Wale,0) do = 2372 (04+,1) — aWs(0+, ).
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A comparison of (2.4) with (2.5) gives the identification
d 0
(2.6) cw =5 f0+ Welz,t) ds = —S(z0, t).

When D > 0, as we shall assume for the moment, it may be seen from (2.2) that
G(z, t) and all its derivatives are continuous in x for ¢ > 0. Wx(z, t) will also
be seen to be continuous for all  when ¢ > 0, but dW/dz will have a discon-
tinuity at # = 0. From (2.3), (2.6), and Laplace transformation, we obtain!

(2°7) S(xo, p) = S{G(—xo, t)}/*’B{G(O, t)} = 'Y(_xO’ p)/’Y(O’ p)

where
1 © '6—ik:c dk
(2.8) v(z, p) = 2‘—,",[°° p + tka + Dk + y[1 — at(®)]"

When Re(p) > 0, the integral is absolutely convergent, y(x, p) is analytic in
p and vanishes at «. To evaluate the integral, we observe that the denominator
of (2.8) has precisely one simple zero in the upper half-plane Im(k) > 0 when
Re(p) > 0. For consider the function

(2.9) ¥k, p) =1 — {v/(v + p + ika + Di*)}a’* (k).

When £ is real and Re(p) > 0, the expression in curly brackets is of magnitude
less than unity, and |a™ (k)| < 1, so that Re{y(k, p)} > 0. At infinity in the
upper half plane, ¥(k, p) = 1, a direct consequence of the half-line character
of A*(s). From the Principle of the Argument [2] we infer that ¢(k, p) has as
many zeros as singularities in the upper half plane. Since a*(k) is analytic in
the upper half plane and (v + p + tka + DK’) has precisely one zero in the
upper half plane, as may readily be seen, ¥(k, p) and the denominator of the
integrand in (2.8) have one simple zero there. If we denote this zero by «(p),
and the residue for z, = 0 at this zero by {(p), we have from (2.8)

(210)  y(—=2, p) = ¥ (p) exp(ic(P)2);  v(0, p) = % (p)
so that (2.7) becomes,
(2.11) s(xo, p) = exp(io(p)xo).

It follows that s(2o + 21, p) = s(xo, p)s(z1, p) as is required from simple prob-
abilistic considerations. Consider now the function

(2.12) HE) = G(—m, )/t

We note that G(—x,, 0) = 0 and that H(t) will have the Laplace transform,
h(p) = [3v(—z0,p)dp’, so that ' (p) = —y(—m, p). To achieve the identi-
fication

(2.13) Sz, 1) = ?G( —0, 7)

1 Because the walk has a skip-free character, Equation (2.7) may also be obtained from
a renewal argument,ie. G(—y, ) = S(x, t) * G(zy —y, {) when y = z, and 2.7 follows.
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we need only employ (2.10) and (2.11) and show that {(p) = —¢ (p). This
may be seen in the following way. The residue at ¥ = o(p) for the integral of
(2.8), when z, = 0, is given from L’Hospital’s rule by

¢(@) = limyoin(k — a(p))/(p + tka + DE* + #[1 — a™(k)])
= [ia + 2Da(p) — va* (a(p))] 7"

We also have, since ¢(p) is the root of the denominator, p + so(p)a + De*(p) +
y[1 — a¥(a(p))] = 0. If we differentiate the latter equation with respect to p,
we find 1 + [ia + 2Do(p) — »a™ (a(p))]e’'(p) = 0, whence ¢(p) = —d'(p)
as required.

3. Agreement with older results. Consider first the pure diffusion processes
with D > 0 and » = 0. If we subject the equation dW /ot = D(8°W/ox") +
a(8W/dx) governing the density W(z, t) to the transformation W(z, t) =
expl— (o*/4D)t — (a/2D)(x — )] W*(z, t), we find that W™ obeys the equa-
tion 9W*/ot = D(9"W™/dx"). The conditions W (x, 0) = 8(x — x,) and W (0, t)
= 0 become respectively W*(z, 0) = 8(x — 2,) and W*(0, t) = 0. Thereby
one finds the familiar results G(z, t) = (4xDt)™* exp{—(z + «t)’/4Dg, and
for the first passage process, Wg(z, t) = (4xDt)™t exp{—(a’/4D)t —
(a/2D)(z — wzo)}lexp{—(z — )’/4D8} — exp{—(z + ,)’/4D#}]. The first
passage time density is given by S(zo, 7) = D(0W#/0x))lsmo = (2o/7) (4xDr)~*
exp{ — (20 — ar)’/4D7} and Equation (2.13) is confirmed. :

As a second example consider the non-diffusive process with D = 0. This proc-
ess which may be regarded as a limiting form of the class of processes we have
treated, has been employed by Takdes [15] to discuss the virtual waiting time
of an arrival to an M/G/1 queue with service time density 47(s). If X(¢) has
the density A*(xo) at ¢ = 0, the first passage time density is given from (2.11)
by

(3.1) s(p) = f A*(m) exp (i0(p)xo) dzo = a*(a(p)).

a(p), however, is the limit approached by the root op(p) in the upper half plane
as D — 0, and satisfies the equation

(32) P + dac(p) + v — v (a(p)) = 0.
Consequently we have from (3.1), when o = 1 as needed for the Také4cs process,
(3.3) s(p) = a*(Glp + » = »s(p)])

and this is the transcendental equation governing the server busy period density
S(t). The basic result provides the alternate representation

(34) 8t) = [ A (20)G (=20, ) (20/r) dzo

which may be reduced to the form given by Takécs on p. 58 of his recent book
[16]. A slightly different form of Equation (4) has been given by Kendall [11]
for the Takéics process.
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4. The Green’s function. The simplicity of the unrestricted process permits
an immediate evaluation of the Green’s function. When D = « = 0, go(k, t) =
exp{—»[l — a*(k)]} = 2o{e”[(»t)"/nllla*(k)]"} and

L

(4.1) Goz, ) = 2o {7 ()"/n AT (2) + ¢7'6(x)

1

where A7™(z) is the n-fold con\;olution of A*(x) with itself and 8(z) is the
Dirac delta function, i.e., the density associated with the improper distribution
about z = 0. The distribution is given by

el

(4.1") . Fo(z, t) = ;{e"”[(vt)"/n!]}F(")(x) + ¢"'U(x).

The convergence of (4.1") is assured since ™ (z) < 1.
When « > 0 and D = 0, we have the Takéics type processes with g.(k, t) =
exp(—iakt) exp{—w»t[l — a*(k)]}, for which
Go(z, t) = Go(xz + o, t)
(4.2)

Z.::{e_”[(yt)"/n!]} AT (z + at) + ¢7'%(x + at).

For 2the diffusive processes with D > 0, we have from (1.5) that g(k, ¢) =
—Dk2 ¢

e 9.(k, t) whence
(4.3) G(z, t) = {exp[—a"/(4D1)]/(4wDt)*} * Gu(z, 1)

the asterisk denoting convolution.

The formal solutions given in (4.1), (4.2) and (4.3) may not afford rapid
convergence. The infinitely divisible character of the unrestricted process lends
itself, however to asymptotic study as we will now show.

6. Asymptotic behavior of the first passage time density. The central limit
behavior for the infinitely divisible processes has been thoroughly explored,
and a summary may be found in Gnedenko and Kolmogorov (1954). Such
behavior however is associated with deviations of the process X(¢) from its
mean. For the first passage density S(x,, 7) = (2o/7) G(—2o, 7), one is in-
terested in the asymptotic behavior of G(, t) for z fixed as + — . A preliminary
conjugate transformation of the type introduced by Khintchine enables one,
however, to employ the ordinary central limit theory, when A(x) has suitable
convergence properties.

Consider the process X () of section one with initial process density W(z, 0)
= Wy(z), and consider the conjugate density

(51) Wz, t) = &W(z, 1) / [ew, 0 de.

The c.f. for this density is given by
(52)  w'(k, t) = {g(k — it 8)/g(—1E, O} {wo(k — 7€) /wo( —5£)}
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where g(k, t) = exp{ —Dk’ — iakt — »t[l — a*(k)]}. From (5.2) we then have
(53)  w*(k,t) = exp{—Dk't — i(a — 2DE)kt — »*1[1 — o™ (k) JJwi (k)

where wi(k) = wi(k — 2)/w(—3k), »* = vat(—ig), and o™ (k) =
at(k — 4t) /at(—4t). We see that (5.3) corresponds to the density for a con-
jugate process X™*(¢) of the skip-free homogeneous type with D* = D, o* =
a — 2D, v* = va(—if), and A™(z) = A (z)/{ [*A™ (x)dx}, ete., provided
only that the integrals defining a*( —4¢) and wq ( —1¢) converge. When Wy(z) =
8(z), Wi(z) = 6(z) and only a*(—4f) is of concern. For the asymptotic be-
havior of interest, one wants X*(f) to have zero mean, so that a real value £
is needed for which [(d/dk)w*(k, t)]ieo = 0. This may be seen to be equivalent
to the requirement that

(54) f(¢§) = 2Dt — a + yfo+(x)e"dx =0

for some real & lying in the convergence strip of [A(z)e*dx. Since f(£) is a
monotonic function of £ we require that the singularities £_ and £, defining the
strip be such that

(5.5) lime: f(]) S 0 < lime., f(2).

The monotonic behavior of f(£) assures that & when available will be unique.
When A¥(z) has finite support, the two limits are — « and -+ respectively
and the existence of & is assured. From (5.3) we find that for X*(0) = 0,

(56)  (t) = E{X}¥ (1)} = 2Dt + ot fo ) A*(z) exp (fz)2’ d
whence
(5.7) Gh(z, 1) ~ exp{—3"[a™ ()]} /[2wa™(2)]}
and, from (5.1) and (1.5)
exp {—asot + D&t — ot [1 - f At (z)e™" dx]
(5~8) — on _ %x2[0*2(t)]—1}
G, 8) ~ [2wa*2 ()]t

Superior approximations to G(z, ) may be obtained via the saddlepoint pro-
cedures developed by Daniels [3] and Richter [14]. An account of the applica-
tion of these procedures to the walks in continuous time arising in the theory
of queues may be found in Keilson [8].

6. The compensation method and Wald’s identity. A proof of Equation (4)
of the introduction may also be obtained from Wald’s identity (cf. Bartlett [1],
Kemperman [10] and Miller [13]). As normally employed on a semi-infinite
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interval, however, this identity requires that a system ultimately be absorbed
with probability one. The compensation method does not require this. It permits
discussion moreover of nonstationary versions of our basic skip-free process
leading to a Volterra integral equation for the first passage time density (cf.
Keilson [9]) and is in this sense, a more general procedure. Wald’s identity for the
finite interval and discrete time may be related to the compensation method by
an argument similar to that of Miller in the following way.

Let X; be a sequence of independent identically distributed random variables
with probability density A(z) and let S, = S, + > X; where S, lies in the
closed interval [a, 8]. Let W,(x) be the joint probability density that S, = =
and that the boundaries of the interval have neither been reached nor crossed.
Let B.(x) be the joint probability density that absorption occurs at 7 and that
S, = z. Then for all z, on or outside the interval, continuity of probability gives

(6.1) Wo(z) = 6(x — S) and Wy(z) = fﬂ Wna(@)A@ — ') dz’ — Bu(z).

Let the gf. of W,(z) be G(u, z) and the gf. of B,(z) be B(u, z). If Fourier
transforms are denoted by lower case letters, (6.1) becomes

(6.2) o(u, WL — wua(k)] = exp(ekSy) — b(u, k).

If X has a finite non-zero 2’nd moment the function g(u, k) is an entire function
of % and an analytic function of u, for w inside a circle about zero of radius B > 1.
As proof we note that [W.(z)dx < 6" for some 6 less than unity and n suffi-
ciently large (cf. Lemma I, Section 2.1 of Bartlett), whence

B
(63) <P f Wa(z) dz < 6" 7",

8 o
fW“(x)ez(tl+1V)zldx

The analyticity follows from the uniform convergence in k& in any bounded region
for [u] < R < 6. Suppose now that a(k) has continuation into a convergence
strip for which |a(k)| > 6 for some k. For such k and u = [a(®)], (6.2) gives
exp(ikSo) = b([a(k)]™, k) = 2n [la(k)] "Ba(w)e™dz; ie.,

(6.4) E{¢™a(k)]™ = exp(ikSy).

Equation (6.4) is Wald’s identity. The densities B,(x) play the role of compen-
sating functions. If the walk is skip-free in one direction, the functions B,(z)
at the corresponding side of the interval become localized at the boundary.

In the above, the distributiorf of X must be non-singular but may have a
discrete component. The discussion carries through if the probability densities
are regarded as generalized fuhctions. The derivation of Wald’s identity for
continuous time is similar. It may be noted that the differentiability of Wald’s
identity follows from the analytic structure of (6.2). In particular differentiation
at uw = 1 and & = O gives rise to the moment formulae of Johnson [6].

I would like to thank Professor H. E. Daniels for his interest and support,
and Dr. 8. F. Neustadter for helpful comments.
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