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0. Introduction. This paper compares the variance and generalized variance
of minimum variance (MV) and weighted least squares (WLS) estimates of
regression coefficients. Matrix inequalities originally developed to study the
rate of convergence of various iterative methods of solving linear equations
(cf. [4]) are used in making the comparisons. These inequalities are given in
Section 1 and applied in Section 2. In Section 3, attention is focused on diagonal
weight matrices, and an example is given in Section 4.

1, Matrix inequalities. Let A be a real positive definite matrix with
Ae; = Nigs 1=12 -,n
llefl = 1

and the eigenvalues \; satisfying \; = M= -+ = M > 0, and let «k = \y/\,
be the spectral condition number of A. For any non-null vector «, define

(1) we = m(z) = 2'A%.
Then
(2) 1 < prapr/pe S [(K* + K_i)/2]2~

For k = 0, the inequality on the right is the Kantorovich inequality [5], and
equality is attained forz = a(e1 = ¢,) (a # 0). This inequality was first derived
in order to determine the rate of convergence of the method of steepest descent
for solving linear equations [5]. Equality on the left is attained when
z =be; (b#0,1=1,2 ---,n).

Inequalities (2) can be generalized. Let

(3) ' M, = X'A*X and m(X) = det M.
If X has rank p, define the condition number by
(4) Kp = A1 *** Ap/Maept1 *** M

Inequality (2) becomes
(5) 1 £ mpa(X) - mr(X) /(X)) < [(Ki + K;a)/zlz-
Proofs for inequalities (2) and (5) are given by Schopf [8].
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Now let z and y be non-null real orthogonal vectors. Then

(6) (2’ Ay)*/ (s’ Az) (¥ Ay) = [(x — 1)/(x + DI
Equality in (6) is attained when
(7) T = 2_’(61 + en): Yy = 2—’(61 + en).

Inequality (6) is attributed to Wielandt and has been generalized by Bauer
and Householder [1].

2, Comparison of variances. Let y = ®a + ¢ where ® is an n X p matrix of
rank p; « is a vector with p components which is to be estimated; and e is a ran-
dom vector of n components with E{e} = 0 and covariance matrix C. The

minimum variance unbiased estimate of « is ([3], pp. 86-88) a* =
(¥'C7'®)7'®'C"y, and the covariance matrix of o™ is

(8) Zuy = (#C79)7
Frequently, C is not known or C" is not easily computed because 7 is very large,

and consequently o is estimated by its weighted least squares estimate
& = (¥'Wd)'®Wy. The estimate of & is unbiased and has a covariance matrix

(9) Swis = (3 W) & WCWD(@ W)™,

It is assumed that W is positive definite and symmetric so that W = FF’.
TueoREM 1. Let F'CFe; = Ne;, 1 = 1,2, - -+ , nwith the eigenvalues satisfying
M= 2M>0.Fort=0,le

(10) r(£) = [£Zwrst — £ Zmvtl/ESwrst.
Then
(11) 0=r() =[(x—1)/(x+ D

where k = Ai/\, . ,

Proor. The following computation is similar to one given by Bauer and
Householder [1]. Let 7 = F'®(@W®)™, and { = F'C"'®(3'C'®)"'t. Then
a short calculation shows 7(¢) = #'F'CF(q — ¢)/n'F'CFy.

Since
2 F'CF¢ = {'F'CF,
1F'CF(n —¢) = (n — ¢)F'CF(n — {),
then
0 = r(§) S WF'CF(n — OF/WF'CPn-(n — §)'FCF(n — 1))

Then since (n — ¢)’ # = 0, inequality (6) can be used, and the desired result

follows.
Magness and McGuire [6] have obtained a similar result for F'CF = R, the

correlation matrix.
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Now by (7), equality on the right of (11) is attained when n = 2_}(e1 =+ en),
and ¢ = 2%, . Then for p = 1, equality is attained for

® = a(F') Y[e1 £ end(a # 0).
CoROLLARY 2. Let
ofi = {Zmvlii, 65 = {Zwushi-
Then 1 £ su/ol < [+ /2l =1,2,--,p.

Proor. Let £; = 1forj = 4, = 0 otherwise. The result follows from Theorem

1 and some simple manipulations.

The determinant of the covariance matrix of an estimate of a vector pa-
rameter is called the generalized variance of the estimaite. It is possible to determine
bounds similar to those given above for the generalized variance of o* and 4.

THEOREM 3. Let kp = A1+ * *Np/An—pt1° * *An Where again the \/s are the eigen-
values of F' C F ordered decreasingly. Then,

1= detEWLs/detsz = [(Ki + K?)/zlz'
Proor. By (8) and (9)
det Zwrs _ det ((2'We) &' WCWR(S'We)™)
det Zmv det- ((@'C'®)™)
_ det (2'WCW®) -det ($'C”"®)
(det (@'W®))? )

Let ¥ = F'® so that :
det Zwis _ det (¥'F'CF¥)-det (¥ (F'CF)™¥)

det Smv (det (¥'¥))?

The result follows immediately from (5) with & = 0.
Note that it follows immediately that a* is the minimum generalized variance

estimate of a.

3. Choice of F. As pointed out earlier, even though C may be known, it may
be difficult to compute the MV estimate of « since it may be difficult to invert
for large n. The question arises whether it is possible to choose W so that the
WLS estimate best approximates the MV estimate in some sense. Note that
the right hand side of inequality (11) is an increasihg function of «. It will be
shown that for C' belonging to a certain class of mattices, it is possible to mini-
mize « with respect to W being a diagonal matrix. The present results depend
heavily upon those of Forsythe and Straus [2]. Let x(A) = /A, where \; and
\. are the largest and smallest eigenvalues, respectively, of the positive definite
matrix A. Let 3 be a class of regular linear transformations.

Define A” = T'AT. Then, A is said to be best conditioned with respect to 3 if
k(A7) = «k(A) for all T ¢ 3. The above definition and Theorem 4 and Lemma 5
below are given by Forsythe and Straus [2].
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TaEOREM 4. Let D be the class of regular diagonal transformations. A sufficient
condition for DAD to be best conditioned with respect to D is that for some pair of
etgenvectors ey , em belonging to N1 and \, , respectively,

(12) lese.d] = |em.d] j=12 - n

Moreover, if \1 and N\, are simple etgenvalues, (12) s also necessary.

If the rows and columns of a (p + ¢) matrix can be rearranged so that the
upper p X p and lower ¢ X ¢ submatrices are diagonal, then the matrix is said
to have Property (A). Matrices with Property (4) occur frequently in the
numerical solution of partial differential equations and have been discussed
extensively by Young [9]. (It is not difficult to show that all tridiagonal matrices
have Property (4).) ,

LemMA 5. Let S be a positive definite symmetric matriz with Property (A) and
s =1,1=1,2, ---, n then S is best conditioned with respect to .

THuEOREM 6. Let C be a covariance matriz with Property (A). Then if {Do}:: =
¢di=1,2 - ,n k(DCD) = k(DCDy) for all D in D.

Proor. Consider any matrix D; ¢ D. Then

k(D1CD1) = k((D1D5s") DoCDo(D5'Dy)).
Since Dy £ D, Dy ¢ D, DD ¢ D, and the result follows from Lemma 5.

4. An example. In this section, we shall investigate the weighted least squares
which minimizes x among all diagonal weightings for a particular model. The
results of the previous section shall now be applied to an example given by
Rosenblatt [7]. Consider the process y; = a1 + ast + ¢; where the stationary
residual ¢; is a first order autoregressive scheme with covariances

Elaswia) == p"/(1 = p") lp] <1
and hence
cy = {Cly = o"7/(1 = o).

When the sample size is n,
1.1, +--.1
’ = b b b
® (172""""').(

C does not have Property (4) but C does since it is tridiagonal. Specifically,
(Cu={Cham =L {Cy =1+p,j=2,n—1{Cy=—p
for | — j| = 1;and {C"}; = O for [¢ — j| > 1. Hence for C, {Do}i = 1,
i=1mnand {Do}ss = (1 + o)} i =23, -+, n — 1. Since x(DC'Dy) =
k(D3'CDYY), x(DCD) = k(Dy'CDy") for all D e . Thus the diagonal set of
weights which minimize the condition number are {W}11 = {W}a = 1/(1 + p°),
and {W}; = 1fore=2,8, ---,n — 1.

In a similar fashion to Rosenblatt [7], the (7, j) elements of the. covariance
matrix of the least squares, minimum variance, and weighted least squares
estimates are given in Table I for the sample sizes n = 10, 20, 50 and correlation
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TABLE I

Elements of the covariance matrices of the least squares, minimum variance, and weighted
least squares estimates of a linear regression, residual first-order autoregressive

[ 1) 1,2) = @21 (2,2)
N =10
(A) 6.56093 — .496608 .0902924
.900 B) 5.97795 — .437550 0795545
D) 6.87113 — .537556 .0977375
A) .540686 —.0901623 .0163931
—.900 (B) .167807 — 0249467 .00453577
D) .181861 —.0274926 .00499866
A) 11.8998 —.577765 .105048
.950 (B) 11.1657 — .514981 .0936330
D) 12.2552 —.622432 113170
(A) 1.05540 —.183370 .0333401
—-.950 B) .160585 — .0238995 .00434537
D) . 184222 —.0281945 .00512628
(A) 54.4744 —1.06344 .193352
.990 B) 51.3228 —.590179 .107305
D) 52.6078 —.699685 127215
A) 5.46079 —.983913 .178893
-.990 (B) .155138 —.0231084 00420152
D) .256793 —.0415910 .00756201
(A) 162.634 —11.6406 2.11647
.995 B) 101.342 —.600532 .109188
D) 102.655 —.709973 .129086
A) 11.0110 —1.99297 .362359
—.99 B) 154477 —.0230122 00418404
D) .353711 —.0592367 .0107703
A) 101567. —18376.1 3341.11
.999 B) 501.353 —.608977 110723
D) 502.688 —.718303 .130600
(A) 55.4506 —10.0728 1.83143
—.999 (B) .153951 —.0229357 00417013
D) 1.13381 —.201093 .0365623
A) 6.27689 —.319749 .0304523
.900 B) 5.38817 —.262533 .0250031
D) —.340300 .0324095

6.55244
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TABLE I—Continued
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P @,1) 1,2) = (2,1) 2,2)
N=20
(A) .138960 —.0113663 .00108251
.900 (B) .0676743 — .00506050 .000481952
D) .0686342 — .00515030 .000490505
(A) 12.1678 —.444678 .0423503
.950 (B) 10.7942 —.371205 .0353529
(D) 12.5241 — 469556 .0447196
(A) .238654 —.0206939 .00197084
.950 (B) .0644835 — .00482484 .000459509
(D) .0657622 — 00494608 .000471055
(A) 53.4937 —.613232 .0584030
.990 (B) 51.2070 —.508144 .0483946
D) 53.6624 — 615992 .0586659
(A) 1.20489 —.112460 .0107105
.990 (B) .0620906 — 00464796 .000442663
(D) 0666665 —.00508374 .000484166
(A) 110.392 —1.27635 .121556
.995 (B) 101.256 — .520778 .0504551
(D) 103.834 —.637770 .0607400
(A) 2.44655 —.230670 .0219686
.995 (B) .0618009 — 00462654 .000440623
(D) .0705464 — 00545945 .000519948
(A) 9215.74 —830.367 79.0826
.999 ®) 501.289 — 547960 .0521867
(D) 503.972 — .655814 .0624591
(A) 12.4146 —1.17998 .112379
.999 (B) .0615705 —.00460951 .000439001
(D) .103689 — .00862083 .000821030
N =50
(A) 4.79468 —.124380 .00487763
.900 (B) 4.00795 — 0995044 .00390213
(D) 4.93797 —.129147 .00506460
(A) .0337711 —.00106614 .0000418100
.900 (B) .0239681 — .000718468 .0000281757
D) .0240267 — 000720649 .0000282612
A) 11.5363 — 251542 .00986438
.950 (B) 9.56262 —.196752 00771575
(D) 11.7987 —.259762 0101868
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TABLE I—Continued

p 1) 1,2) = 2,1) 2,2)
N =50
(A) 0442648 ~—.00145541 .0000570752
—.950 B) .0227864 —.000683224 0000267935
D) .0228348 ~-.000685072 .0000268660
(A) 55.6734 —.504984 .0198033
.990 (B) 50.9067 — .415065 .0162770
D) 56.0755 —.515782 .0202268
A) 175959 — .00654664 .000256731
—.990 (B) .0219029 — 000656862 0000257598
D) .0220090 ~—.000661019 .0000259227
(A) 106.959 —.571819 .0224243
.995 B) 101.111 —.463739 .0181858
D) 106.975 — .566814 .0222280
(A) .359302 —.0137189 .000537997
—.995 B) .0217961 " —.000653675 0000256348
D) .0219861 —.000661125 .0000259269
(A) 1072.18 —22.7526 .892259
.999 (B) 501.240 — .508366 .0199359
-(D) 507.776 —.612102 .0240041
A) 1.85492 —.0723543 00283742
—.999 B) .0217112 —.000651141 .0000255354
- D) -0225763 — 000685072 0000268658

(A) Least squares, (B) Minimum variance, and (D) Weighted least squares (The asymp-
totic approximation of the covariance matrices (C) given by Rosenblatt are not included
here.)

coefficients p = 4.9, 4-.95, 4-.995, 4.999. From the discussion in Grenander
and Szegé ([3a], p. 71), it can be shown that x — [(1 + |p|)/(1 — |o|)]*as 7 — oo,
Consequently, to show the improvement of choosing the optimum diagonal
weighted least squares, we have chosen |[p| = .9. Note that the variances of
the weighted least squares estimates are not uniformly smaller than the variances
of the least squares estimates. However, for p = .999 there is a considerable
reduction in the variance by simply weighting the first and last observation.
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