MULTIVARIATE THEORY FOR GENERAL STEPWISE METHODS!

By A. P. DEMPSTER

Harvard University

0. Summary. This paper presents null hypothesis distribution theory for
certain methods of significance testing applicable to multivariate data. This
theory is derived in Sections 2 and 3 using simple geometrical reasoning. Section
3 derives theory related to stepwise methods in a form sufficiently general to
include both the standard methods of Section 4 and certain new methods based
on principal variables of Section 5. The generality in Section 3 is made possible
by the independence results proved in Section 2.

1. Introduction. In multivariate analysis the data to be analyzed usually
consists of the joint observation of a set of p variables on each of a set of » indi-
viduals. For example, a variable might be a length in ¢m. of a specified bone
which is found in all humans, and a set of data might provide values of these
lengths for a specified set of » human subjects. Such data would become multi-
variate when it provided values for several such variables on the same set of n
subjects. The concept of variable will be used a great deal in this paper in the
interpretation of various proposed procedures. Since the word variable is used
in different senses in different parts of mathematics, a brief discussion of the
present use is appropriate.

First, it is important to distinguish between the terms variable and random
variable. As commonly used in mathematical statistics, the latter term refers
to a measurable function over a probability measure space. The analogous inter-
pretation of the word variable, as used here without the modifying adjective, is
as a function over a space with no associated measure structure. In order not to
complicate the mathematical structure any sooner than necessary, I prefer to
carry out the discussion in terms of variables rather than random variables
wherever possible. This is in line with a general principle of model-building in
specific applied situations, namely that first one identifies the variables of interest
and then one tries to find the laws (probability or otherwise) governing these
variables.

Thus, in its mathematical connotation, a variable V is a function from an
arbitrary set I to the real line. The set I corresponds to the set of individuals on
which the variable may conceivably be observed, and the values taken on by V'
correspond to the observations on the variable for the members of I. The nota-
tion used will assign different symbols to a variable V and an observed value X
of the variable. I believe that users of statistical methods do think naturally in
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874 A. P. DEMPSTER

terms of a variable ¥ without explicitly thinking of sets of observations on V,
and it is therefore appropriate that mathematical statistics should allow separate
notation for V. In this paper symbols like ¥V and U will denote variables and
not real-valued observations on these variables, but bold-face V and U may
represent vectors of observations on V and U.

Multivariate considerations require a set of p variables Vy, Vy, ---, V,
which are functions over the same space I. These variables are usually regarded
as directly observable on a subset of I. Real functions of V;, V,, -+, V, are
again real functions over I, and so many new variables can be constructed from
the directly observable Vi, V., ---, V,. In multivariate statistics considera-
tion is often restricted to linear functions, i.e., the p-dimensional vector space
U of variables

(1.1) U= a(Vi, Ve, -+, V)

where « is any 1 X p vector of real coefficients. The variables V1, Vy, ---, V,
form a basis of V.

Many of the techniques of multivariate data analysis have as a basic aim to
find from data particular variables in U, e.g., a sample best linear discriminator,
pairs of variables resulting from a sample canonical correlation analysis, and
variables resulting from a sample principal component analysis. Without the
terminology and notation introduced here it is necessary to describe such vari-
ables either in terms of coefficient vectors « as in (1.1) or in terms of sets of
sample observations, and the indirectness of both of these types of description
seems to me awkward and not in acecord with applied thinking.

The variables resulting from a sample principal component analysis will be
called principal variables, as will be made precise in Section 5. Principal variables
play a special role in this paper. The distribution theory to be presented, al-
though more general in scope, was motivated by a consideration of stepwise
significance testing procedures based on principal variables. By this is meant a
sequence of test criteria which are naturally thought of in terms of the sample
observations on the principal variables. The main idea is to show that certain
null hypothesis distributions are unaffected by the fact that the principal vari-
ables themselves are computed from the data.

All of the test criteria considered in this paper are based on a pair of matrices
S: and S; which are p X p sample dispersion matrices corresponding to variables
Vi, Va, -+, V,. When the usual normality assumptions are made for the
sample observations, and the null hypotheses are specified, then S; and S are
independent Wishart matrices with common = and degrees of freedom n; and
N .-Such models arise in two different contexts. In multivariate analysis of vari-
ance S; and S; are “between” and “within” dispersion matrices, and the alter-
native hypothesis is that S; has a non-central Wishart distribution. The other
context is that of testing for equality of covariance matrices, where S; and S,
refer to different covariances matrices ¥; and X, under the alternative hy-
pothesis.
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The choice of a test criterion in these situations is usually made on heuristic
grounds, since considerations of power are very difficult mathematically and,
in any case, do not lead to unique optimum tests. The stepwise methods of this
paper constitute a class of testing methods, where several particular members
of the class appear to have heuristic appeal. A general member of the class
involves a sequence of independent tests on variables Uy, Us, ---, U, where

(1.2) (Ui, Uz, -+, U)' = C(Vi, Vi, oo V)

and the r X p matrix C satisfies CSC’ = I where S = S; + S..

One particular member of the class is defined by requiring C to be triangular
with zeros above the main diagonal. This will be called the standard stepwise
method. It has been discussed by J. Roy [10] and is discussed further in Section 4
of this paper. Another particular member chooses U,, Us, - - -, U, to be vari-
ables resulting from a principal component analysis of S. This method allows
the resulting principal variables to be tested one at a time according to a sequence
of independent tests. Section 5 gives more details about the approach to testing,
which represents a new method of data analysis.

The distribution theory of this paper is of limited originality. The results of
Lemmas 2.2 and 2.4 and Theorem 2.1 are-essentially given in Section 8.4 of
James [6], except that James’s methods do not obviously apply to the case
p > n which is permitted in the present theory. Similar independence results are
implicit in certain derivations of density functions as given by S. N. Roy [12],
and are made explicit in some derivations of densities given by Khatri [7]. An
attempt has been made to give new and simple derivations for the theory pre-
sented here. These derivations are mostly geometrical in nature. It is interesting
to note that some early derivations in the multivariate field made heavy use of
geometrical terms, e.g., [4] and [11], and the habit of relying almost entirely on
matrices was a subsequent development [1], [12]. The present geometrical
approach has the fundamental difference with the early geometrical approach
that, whereas the latter was concerned with considering small volume elements
and deriving densities, probability density functions have no essential role in
this paper.

2. Some independence relationships. A random p X n matrix X will be called
spherically distributed about the origin, or simply spherically distributed, if, for any
n X n orthogonal matrix B, XB has the same distribution as X. The briefer
terminology will cause no confusion in this paper. The following lemma is well
known [6] and its simple proof is omitted.

Lemma 2.1. Suppose the columns of @ p X n matriz X represent a random
sample of size n from the normal distribution N (0, X) where 0 ¢s the p X 1 vector of
zeros and X s an arbitrary p X p covariance matrix. Then X ¢s spherically dis-
tributed.

The results of this paper are based on the next lemma, c.f. James [6], which
is perhaps less well known, and whose proof, assuming Lemma 2.1, is presented.
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Lemma 2.2. Suppose the hypotheses of Lemma 2.1 hold. Then the conditional
distribution of X, given S = XX', is spherical.

Proor. From Lemma 2.1, the conditional distribution of XB, given (XB)
(XB)’, is the same as the conditional distribution of X, given XX', where B is
any n X n orthogonal matrix. But (XB) (XB)’' = XX’ and therefore the condi-
tional distribution of XB, given XX', is the same as the conditional distribution
of X, given XX, as required.

Before proceeding, some geometrical terminology is introduced. Suppose E is
the n-dimensional Euclidean vector space of 1 X n vectors with the standard
definition of the inner product of A and B as AB’. The rows of a p X n sample
matrix X can be regarded as p vectors Vi, Vs, ---, V, in E. To say that X is
spherically distributed is to say that Vy, Vs, ---, V, have a joint distribution
which is invariant under any orthogonal linear transformation of E leaving the
origin fixed. Such Vi, Vo, ---, V, will be called jointly spherically distributed.
The matrix S = XX’ determines the configuration of (i.e., the set of lengths and
angles among) V;, Vy, .-+, V,, but not their absolute orientation. Thus, in
geometrical language, the foregoing lemmas state that, if X is a random sample
of n from N(0, =), then the rows Vy, V;, ---, V, of X are jointly spherically
distributed in E both unconditionally, and conditionally, given their configura-
tion S.

Lemma 2.3. Suppose X is any spherically distributed p X n random matriz
such that S = XX is constant. Then the distribution of X is uniquely determined.

Proor. The rows of X define vectors Vy; V,, -+ -, V, in E. V; has fixed length
I, determined by S and, since it has a spherical distribution, its distribution is
uniquely determined as the uniform distribution over the surface of the sphere

of radius ;; in E. For 7 = 2, 3, ---, p, V; has a component V;us...;._p) in the
subspace of E spanned by Vi, Vo, ---, V._;, and a component Vi.s...;_1y in
the subspace E.jo...i-p of E orthogonal to Vi, Vo, -+, Vo . I Vi, Vo, -,

Vi1 are fixed along with S, then (i) V;qg...¢imy) is fixed and (ii) Vi.jo...¢;—1y has a
fixed length [; in a fixed subspace E.j...;i-1) of E. Moreover, the overall spherical
symmetry in the model implies that the conditional distribution of Vi.ja...¢io1 ,
given Vi, V;, --- , V._;, must obey spherical symmetry in E.j...;_1y , i.e., this
distribution is uniquely determined as the uniform distribution over the surface
of the sphere of radius /; in E.,...¢;—1) . Consequently the conditional distribution
of Vi = Viqeee-y + Virzeoimy, given Vi, Vo, --+ | V., is uniquely deter-
mined, for ¢ = 2, 3, - -+, p. This completes the proof.

The distribution determined by Lemma 2.3 may be called the spherical dis-
tribution of X with fizred configuration matriz S. The following Lemma 2.4 is a
slight extension of Lemma 2.3 which follows immediately from Lemma 2.3.

Lemma 2.4. Suppose X is any spherically distributed p X n random matriz
such that S = XX is constant. Suppose C is any constant r X p matriz. Then
CX has the spherical distribution with fized configuration matriz CSC'.

Lemma 2.4 will be applied in the special case where » = rank S and C is chosen
such that the rows W;, W;, ---, W, of CX are orthonormal, i.e., such that
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CSC’ = I. The unique distribution of Wy, Wy, - - -, W, will now be called the
spherical distribution in E of the orthonormal set Wy, Wy, ---, W,. (This
distribution is also described by James [6] as the invariant distribution over a
Stiefel manifold.)

The following Theorems 2.1 and 2.2 are basic for the rest of the paper. Using
the notation of Anderson [1], a random matrix S is said to have the Wishart
distribution W (2, n) provided it has the same distribution as XX’ where the
columns of the p X n matrix X are distributed like a random sample of n from
N(O, =).

TaeoreM 2.1 (c.f. James [6]). Suppose the columns of @ p X n matriz X repre-
sent a random sample of n from the normal distribution N (0, =) where = has rank
f = p. Suppose r = min (f, n). Suppose that, for each S = XX’ of rank r (S has
rank r with probability one), an r X p matrix C = C(S) us defined such that the
rows Wy, Wy, -+-, W, of CX are orthonormal. Then the set W1, Wy, ---, W,
is an orthonormal set distributed spherically in E, and is independent of S which
has the W(X, n) distribution.

Proor. Theorem 2.1 is an immediate consequence of Lemmas 2.2 and 24.

THEOREM 2.2. Suppose the p X p random matrices S, and Sp are independently
distributed like W (=, ni) and W(X, ns), respectively, where = has rank f = p.
Suppose S = S; + S: and n = ny + ne. Suppose r = min (f, n) andr X p
matriz C = C(S) 4s defined such that CSC’ = L Then CS,C’ and CS,C’ are dis-

" tributed independently of S according to a distribution which gs free of both C(S)
and 3. In particular the characteristic roots and vectors of CS,C’ have this property.

Proor. A particular realization of the independent W (X, n;) and W (X, ns)
Wishart matrices may be found from two independent samples X; and X of
sizes n; and n; from N(0, X), i.e., one may set S; = X,X; and S, = X,X;. The
proof of Theorem 2.2 rests on the fact that, if the theorem is true for this par-
ticular realization of S; and S, then it must be true in general, because the con-
clusions of the theorem concern only functions of S; and S, . Given such X; and
X;, they may be pooled to provide a single sample X = (X;, X;) of n from
N(0, =). If the rows of X define vectors Vy, Vi, - - -, V, in the Euclidean vector
space E, then the rows of X; and X, represent the components of V, , Vo, ---,
V, in two mutually perpendicular subspaces E® and E® of E, when E® and
E® have dimensions n, and n, . From Theorem 2.1, the rows Wy, Wy, -+,
W. of CX are orthonormal with the uniform. distribution over the unit sphere in
E, and are independent of S. But CS,C’ is simply the inner product matrix of
the orthogonal projections of Wy, Wy, ---, W, into E® for i = 1, 2. Hence,
being determined by Wi, Wy, --+, W,, the matrices CS,C’ and CS,C’ share
with Wy, W, --- . W, the property of being distributed -independently of S
according to a distribution which is the same for any choice of C(S).

3. Basic statistics for stepwise procedures. Suppose S; and S; are p X p non-
negative definite dispersion matrices arising from data in one of the contexts
indicated in Section 1. Following the familiar Gram-Schmidt procedure, each of
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the three matrices S;, S; and S = S, + S, may be diagonalized to yield
(3.1) D, = T:8iTi, D;=TeST; and D= TST,

where D, , D, and D are diagonal p X p matrices, and T, , T, and T are triangular
p X p matrices with all diagonal entries unity and all entries above the diagonal
zero. Suppose the sth diagonal elements of D;, D; and D are denoted dfY, d?

and d;; , respectively, for 7 = 1, 2, - - -, p. Having D, , D, and D, one may com-
pute

(3.2) P, =d?/ds,

(3.3) Q: = dP/(d?P +dP), and

(3.4) R, = dY + d?)/ds,

fors = 1,2, ---, p. If any denominators are zero, the corresponding P;, Q; or

R; should be regarded as undefined. Note that B, = 1.

Consider now a generalization of the above. Suppose C = C(S) isany r X p
matrix determined by S. Rather than diagonalize S,, S; and S, one may diag-
onalize CS,C’, CS,C" and CSC’ to produce diagonal matrices D,, D;, and D
which generalize the D, , D; and D defined in (3.1). Similarly, from the general-
ized Dy, D, and D, one may define generalized P;, Q; and R; using (3.2), (3.3)
and (3.4), for s = 1, 2, - -+, r. For the remainder of this section, the symbols
di?, d? dis, P:, Q; and R; should be understood in their generalized sense.

Turorem 3.1. Suppose S, and S, are independently distributed like W (X, ny)
and W (=, ns), respectively, where = has rank f < p. Suppose n = ny + ny, r =
min (f,n), S = S; + S; and C = C(8) 4s any r X p matriz such that CSC’ has
rank r. Suppose P;, Q; and R; are defined as above from S, , Sz, S and C. Then (i)
the statistics P;, Q; and R; for 1 < i = r are distributed independently of S, (ii)
the statistics P; for 1 = ¢ £ r are mutually independently distributed like beta
random variables with parameters ((ne — © 4+ 1)/2, n/2), and (iii) the statistics
Qifor 1 = ¢ = rand R; for 2 < 7 £ r are all mutually independenty distributed
like beta random variables with parameters ((ny — 7 + 1)/2, (ng — 7 + 1)/2)
Jor Q; and ((ny + ne — 20 + 2)/2, (¢ — 1)/2) for R; . (If any of these parameters
18 zero or negative, then the corresponding statistics are either constant or undefined.)

Proor. Theorem 3.1 is simply an extension of Theorem 2.2, except that Theo-
rem 3.1 does not suppose that CSC’ = I. In general, however, there exists a
triangular matrix T* with unity along the diagonal and a diagonal matrix D* such
that C*SC* = I where C* = D*T*C. Replacing C by T*C does not change d?,
d? or di; at all, and further replacing T*C by D*T*C multiplies each of d(?,
d{? and d,; by the same constant which leaves P; , @; and R; unchanged. The
following proof of Theorem 3.1 is an extension of the proof of Theorem 2.2,
using the same notation and definitions except that C is replaced by C* defined
above.

Part (i) of Theorem 3.1 is now seen to be a direct consequence of Theorem
2.2, ie., P;, Q; and R; are functions of C*S,C* and C*S,C* only and so are
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independent of S. Some additional geometrical terminology will be used in
proving parts (ii) and (iii).

Suppose ED...cony , E%...py and E.y...;_p denote subspaces of E®, E® and
E, respectively, which are orthogonal to Wy, Wy, - -+, W._; . These definitions
hold for ¢ = 2,3, - - - , p and, by convention, E}...c_1y , ..o and Eugs...i)
for 7 = 1 may be taken to be E®, E® and E. This notation has been introduced
in order to give concise geometrical interpretations to the elements of D; , D, and
D, ie., df, d? and d;; are the squared lengths of the components of W in
E.(i;...(,;_l) , E.(ﬁ...(,‘_l) and E.lz...(;_l)', respectively, for ¢ = 1,2 ..., Simi-
larly P;, Q; and R; may be interpreted geometrically in an obvious manner as
squared cosines of angles. The distributions of these angles are uniquely deter-
mined by the spherical symmetry of the distribution of the W, . First it should
be noted that, since W, , W2, - - -, W, are spherically distributed in E, the sub-
spaces E.(i;...(,'_l) , Efﬁ...(i_l) and E.lz...(,'_l) have dimensions n — 7 + 1, Ne —
2+ 1 and n; + ne — 7 4+ 1 with probability one. These dimensions determine
the parameters of the beta distributions in Theorem 3.1. The conditional dis-
tribution of W, , given Wy , Wy, - - - , W._;, is spherical in the (n; + ny — 7 + 1)-
dimensional subspace E.js...ci-1 . Since P; is the squared cosine of the angle
between W; and the (n, — 7 4+ 1)-dimensional subspace E%)....-n, it follows
that the conditional distribution of P;, given W;, Wy, ---, W1, is the beta
distribution with parameters ((ne — ¢ + 1)/2, n;/2). Since this conditional
distribution does not depend on Wy, W;, - -+, W,;_;, which in turn determine
P;,, P, .-, P,,, it follows that P; has the stated beta distribution and is
independent of Py, Py, -+, P;y,for ¢ = 1,2, ---, r. Part (iii) of Theorem
3.1 follows in a similar fashion, but the details are omitted.

4. Standard stepwise procedures. In Section 3, the quantities d7’, di?, ds;,
P;, Q; and R; were first defined in a special case and then were generalized. In
the special case, {7, d?, and d.; are of the nature of residual sums of squares
of the variable V, after fitting a linear combination of V;, V;, --+, V1. Thus,
testing methods based on P;, @; and R; in the special case may be regarded as
tests based on V, after correcting for Vi, V., :--, V,._;. For example, one
might consider a sequence of independent tests based on Py, P;, -+, P, in the
special case. These methods may be called standard stepwise procedures. With
these methods it is assumed that Vy, V,, ---, V, have been pre-ordered accord-
ing to some a priori sense of importance.

For the case of multivariate analysis of variance the standard stepwise pro-
cedure based on Py, P, ---, P, is essentially a consequence of a procedure
proposed by C. R. Rao [8], p. 73 or [9], p. 264. If S; and S, denote between
groups and within groups dispersion matrices, then, in the notation of this
paper, Rao proposes the test statistic

(4.1) a =TI P

t=1
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for the first s variables, and the test statistic
8+t

(4.2) A = H p;

t=8+1
for the following variables V41, Veiz, -+, Vet after correcting for Vi, Vs,
..., V,.Bytakingt = 1 and repeating the test (4.2) fors = 1,2, --- ,p — lone
gets from Rao’s method the sequence of independent tests based on Pi, P,
.o, P,.

The standard stepwise procedure for multivariate analysis of variance is given
more explicitly by J. Roy [10]. In place of S; and S; with n; and n. degrees of
freedom, Roy’s notation uses S; and S, with ¢ and n — r degrees of freedom for
between and within dispersion matrices. Roy proposes the test statistics u, in his
Equation (22), where it could be shown that

(4:3) Ui = (1 —Pz)/P,-(nz—i+1)/n1 for 1 §i§ D,

i.e., the u, are the F-type variables corresponding to the beta-type variables P; . A
rigorous derivation of (4.3) is omitted since it would require giving a precise
definition to Roy’s ¢; which in turn would require introducing a great deal of
notation. In principle, however, such a derivation is easy, for one need only
interpret Roy’s u; geometrically in E, i.e., one need only show that u; X ni/
(nz — 3 + 1) is tan® 8 for the angle 6 such that P; is cos’ 6.

Roy also provides standard stepwise procedures for testing the equality of
covariance matrices. These tests are equivalent to tests based on Q; and R;,
i.e., it could be shown that the test statistics given by Roy’s formula (50) are

Ar —14 .
600 _1-Rn 1 g 15isp-1,
(4.4) 8it1 Ry n + ng — 20
nﬂ_—_i_+_1(§ﬂ>2= Q@ m—i+]1 o 1<i<
n — ¢+ 1 \s{? 1—Q m—1+1 <1 =p

(In the left hand side of each of the Equations (4.4) I have presumed to correct
Roy’s formulas (50), (i) by setting 8; = 0 which is surely true under Ho, and
(ii) by squaring s{°/s{® in (50) to agree with (45).) The P;, Q; and R; variables
are preferred in this paper because they are simpler and more natural, both to
compute and to interpret geometrically.

Note that Theorem 3.1 provides the null hypothesis distribution theory for the
standard stepwise procedures based on Py, @ and R; .

b. Stepwise procedures on principal variables. Section 1 mentioned the aim of
basing tests on principal variables. The term principal variable will now be defined
and the tests based on them will be described. It will be assumed, to start with,
that S, and S; are between and within dispersion matrices arising in an analysis
of variance situation. The principal component analysis is to be carried out on
S = Sl + Sz . )

The principal component analysis of S relative to a reference inner product
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matrix K is carried out as follows. First, one chooses the p X p positive definite
matrix K within certain limitations to be discussed below. Then one finds the
principal variables

(5.1) Ui=a(Vy, V2, -, Vp),

where Uy is chosen to maximize the ratio of norms \; = &;Se1/e;Ke; , and U, is
chosen to maximize the ratio of norms A\; = «;Se!/e;Ke; subject to the condition
that eKe; = 0 for ¢ > j. The associated \; may be called principal values. Using
this definition it is seen that the principal variables have certain extremal proper-
ties regarding their dispersion relative to reference matrix K. It is these extremal
properties which give the method heuristic practical appeal. ,

An equivalent description of this analysis is to define the \; as the positive
roots, in decreasing order, of

(5.2) det (S — AK) =0
and the corresponding e; to be roots of the linear equations
(5.3) (S —AK)e: = 0.

In this form the principal component analysis defined here is seen to be a more
general form, allowing various K, of the analysis proposed by Hotelling [5]. The
terms principal variable and principal value are introduced to avoid any am-
biguity in the term principal component.

The subsequent testing methods allow K to be a function of S, although not of
S: and S;, subject only to the requirement of positive-definiteness. This range
of choice is so wide to allow that any set U; are principal variables for some K
provided only that they are uncorrelated relative to S, i.e., provided that
o.Se; = 0 for ¢ > j. In practice, however, K is most often chosen to be the
diagonal matrix with the same diagonal elements as S. In this case Equation
(5.2) is the same as

(5.4) det (R — M) = 0,

where R is the correlation matrix corresponding to S. An alternative special
choice is to set K = I. Either of these special choices may be used when the
problem is expressed in terms of a new basis V5, Vi, -+, V3 of U, whose rela-
tion to the original basis V;, V2, -+ V, does not depend on S. This provides
wide, but not all-inclusive, limits on the choice of K.

In any principal component analysis, the e; are determined only up to a scale
factor which may be chosen so that

(5.5) oKoi = N7
One may then define C = C(S) from
(5.6) C= (alya2’ ""af'),

to satisfy CSC’ = I. Thus Theorems 2.1 and 2.2 may be applied with this C, and
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also the general stepwise theory of Section 3 may be applied. The statistics
P,, P;, ---, P, calculated using this choice of C come from CS,C’, CS,C’ and I,
i.e., from the dispersion matrices of the principal variables U, U, ---, U,, so
that tests based on these P, P,, - -, P, are naturally regarded as stepwise pro-
cedures based on principal variables. These stepwise statistics are, in general,
different from the P, P,, ---, P, found in the standard stepwise procedure,
but, according to Theorem 3.1, the same null hypothesis distribution theory
holds.

The author feels that tests of this type can be of practical interest, for, if the
first few principal variables are imagined to be important in some sense, it is
natural to want to check whether they are important relative to an analysis of
variance hypothesis. Also, these tests have certain nice mathematical properties
which help to give them appeal in certain situations.

The first such property is that, under the null hypothesis, the test statistics
Py, Py, ---, P, are independent of the set of principal values Ay, A2, =--, Ar.
This is immiediate because, from Theorem 3.1, the P; are independent of S and
the A; are determined by S. Thus, in weighting the individual tests based on the
P; to produce a single test with a given significance level, one may use A;, As,
-++, A\, to determine the weights. For example, if it turned out that A,/ > 7 A
were near unity, one might then decide to base a test on the first principal
variable only.

The second important property of these tests is that they remain applicable
for p > n,, in fact for arbitrarily large p. The usual criteria, based on the roots of

(5.7) det (S; — »Ss) = 0

are undefined in this case. Moreover, the standard stepwise procedure breaks
down after incorporating the first n, variables, and provides no way of using the
information in the remaining p — 7, variables. On the other hand, the prin-
‘cipal variables U;, U;, ---, U,, can still be tested stepwise and do weight in all
p of the original variables. The tests based on Py, Py, --- , P,, offer competitors
for the testing methods described in [2] and [3].

Several disadvantages of the method based on principal variables, as opposed
to the standard method, are as follows. The general distribution theory in
Theorem 3.1 is less easily used when the null hypothesis fails. For example, in
the standard procedure P, , P, , - - - , P, retain their null hypothesis distributions
provided the null hypothesis holds for the first s variables only, whereas no such
simple statement can be made in the case of the principal variable method. Like-
wise Roy [10] is able to make explicit confidence statements about the parameters
of the alternative hypotheses. Such confidence statements are possible in prin-
ciple with the principal variable method, but in practice they would require
carrying out the principal component analysis for each possible set of alternative
parameters. This appears to be computationally infeasible. Thus the distribution
theory for stepwise tests based on principal variables appears to be limited in
practice to testing the full null hypothesis.
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Finally, it should be remarked that stepwise tests based on principal variables
are also possible for testing the null hypothesis of equality of covariance matrices,
i.e., one would again do a principal component analysis on S = S; + S, and
define C as in (5.6). As test statistics one would use the @; and R; associated with
this C. These tests share the same advantages and disadvantages as those based
on the P;.

REFERENCES

[1] AxpErsoN, T. W. (1958). Introduction to Multivariate Statistical Analysis. Wiley,
New York.
[2] DEMPSTER, A. P. (1958). A high dimensional two sample significance test. Ann. Math.
Statist. 29 995-1010.
[3] DEMPSTER, A. P. (1960). A significance test for the separation of two highly multi-
variate small samples. Biometrics 16 41-50.
[4] FisuER, R. A. (1928). The general sampling distribution of the multiple correlation
coefficient. Proc. Roy. Soc. London Ser. A 121 654-673.
[5] HoreLLING, HAROLD (1933). Analysis of a complex of statistical variables into prinei-
pal components. J. Educ. Psychol. 24 417-441 and 498-520..
[6] Jamms, A. T. (1954). Normal multivariate analysis and the orthogonal group. Ann.
Math. Statist. 26 40-75.
[7]1 Kaatrr, C. G. (1959). On the mutual independence of certain statistics. Ann. Math.
Statist. 30 1258-1262.
[8] Rao, C. RaADHAKRISHNA (1948). Tests of significance in multivariate analysis. Bio-
metrika 36 58-79.
[9] Rao, C. RapHARRISHNA (1952). Advanced Statistical Methods in Biometric Research.
Wiley, New York.
[10] Rovy, J. (1958). Step-down procedure in multivariate analysis. Ann. Math. Statist. 29
4 1177-1187.
[11] Roy, S. N. (1942). The sampling distribution of p-statistics and certain allied statistics
on the non-null hypothesis. Sankhyd 6 15-34.
[12] Roy, S. N. (1957) Some Aspects of Multivariate Analysis. Wiley, New York.



