MINIMAX THEOREMS ON CONDITIONALLY COMPACT SETS
By Ter Tioe-TiE

Catholic Unaversity of Lowvain

1. Introduction. Conditionally compact sets in minimax theorems were first
considered by A. Wald [2]: Let K(z, y) be a real-valued bounded function
defined on the produet of two arbitrary sets X and Y. The distances

d(z1, 2) = supy |[K(z1,y) — K(xa,y)| foray,z2eX
d(y1, y2) = supx |[K(z, y1) — K(z, %) foryi, el

define metric topologies for X and Y respectively which will be referred tos a
the intrinsic topologies or, briefly, the (I)-topologies for X and Y with respect to
the function K. In general these topologies are pseudo-metric only, but we
assume that a reduction to equivalent classes has made them properly metric.

Now let P be the set of all probability measures p on Jx , i.e. the s-algebra,
generated by the (I)-open sets in X. Similarly, @ is the set of all probability
measures ¢ on Jy, the s-algebra, generated by the (I)-open sets in Y. Then, if
K(p,q) = [ K(z,y) dp(z) X dg(y), we have [2]:

TaeEOREM 1.1. If one of the spaces X and Y is (I)-conditionally compact,
then both spaces are (I)-conditionally compact and suppr infq K(p, q) =
infq supr K(p, ¢)-

A metric space is said to be conditionally compact if and only if, given any
e > 0, there exists a finite subset {z; , - - - , Z,} of X such that the class of spheres
S(zi,e) ={x:d(x,z;) ¢ (¢ =1,---,n) is a covering for X.

A concept which is equivalent to (I)-conditionally compactness is that of
almost periodic functions defined as follows [1]: A real-valued bounded function
K (p, q) defined on the product of two sets P and Q is left almost periodic if and
only if, given € > 0, there exists a finite subset {p:, - - - , p.} of P such that for
any p ¢ P there is some p;, 1 < 7 < n, for which |[K(p, ¢) — K(p:, q)| £ ¢,
for all ¢ £ Q.

An analogous definition holds for right almost periodicity. Obviously, right
almost periodicity follows from left almost periodicity, and vice versa.

The following definitions are due to Ky Fan [1]: A real-valued function K(p, ¢)
is said to be concave-like in p if and only if, given any ¢ [0, 1] and any p, , s € P,
there exists po € P such that the inequality tK(pi, q) + (1 — )K(p2, q) =
K(po, q) holds for all g £ Q.

K(p, q) is said to be convex-like in ¢ if and only if, given any ¢ ¢ [0, 1]
and any ¢, g» € @ there exists ¢o € @ such that the inequality tK(p, ¢1) +
(1 — t)K(p, ¢2) = K(p, qo) holds for all p ¢ P.

K(p, q) is concave-convex-like if it is concave-like in p and convex-like in gq.
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Ky Fan has proved the following theorem [1]:
TrEOREM 1.2. If the function K(p, q) s left almost periodic and concave-convex-
like then supp infq K (p, q) = infq supr K(p, ¢).

2. A generalization of the (I)-topology. We are now going to introduce topolo-
gies for X and Y which will lead to more general theorems than Theorem 1.1
and Theorem 1.2.

Lemma 2.1. Let K(z, y) be a (not necessarily bounded) real-valued function
defined on X X Y. Then the class U of the subsets:

U(xo, a) = {11? : supy [K(IB, y) - K(x(l, y)] < a'} a > 07 x08X>
ts a base for a topology for X. Similarly, the class O of the subsets:
V(yo, b) = {y : supx [K(z, o) — K(=, y)] < b} b >0yl

s a base for a topology for Y.

The proof is trivial.

We shall refer to these topologies as the semi-intrinsic topologies or the (S)-to-
pologies for X and Y with respect to the function K. We define:

The space (X, W) is said to be (8)-conditionally compact if and only if to any
e > 0, there exists a finite subset {x;, -+, 2.} of X such that the elements
U(z;, €) of the class U form a covering for X.

We observe that every (S)-open subset of X is (I)-open. Also, every (I)-con-
ditionally compact set is (S)-conditionally compact. Finally, the given function
K(z, y) is (8)-upper semi-continuous in z for each fixed y ¢ ¥ and (S)-lower
semi-continuous in y for each fixed z ¢ X.

LemMa 2.2. If X is conditionally compact in the (S)-topology determined by the
Sfunction K(z, y), then given € > O there exist a finite subset {z1, --- , T} and a
finite class of subsets Wy, -+, W, of X such that

(1) zeeWyfork=1,---,n

) Uiaw, =X

(i) Wpo N W, = ¢ fork = m

(iv) Wi is (8x)-measurable, i.e. it belongs to Sx , the o-algebra generated by the
(8)-open sets of X.

(v) K(z,y) — K(zx,y) < eforallzeWiyand all y e Y.

A similar statement holds for Y.

Proor. Let the class of subsets U; = U(%;, ¢/2) be a covering for X, (j = 1,

-+« ,p). I Pisthe set {&, - - -, &}, then define

Wy=U{U;:¢eU,(U;—U) NP = ¢
pe=min{j: §eX — Wil

Wo=U{U;:t¢eU,, (Ui—Uyp,) NP =¢} — W,
ps=min{j: e X — (W, UW)};

W= U{U;:&¢eU,,, (Ui— Uy, NP =¢} — (W, UW,)
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and so on. Then there will be an n = 1 such that the set X — U}, W, does not
contain any ;. This set is empty. Defining #, = &, 2% = &, (k = 2, - - - ,N)
we see that xy and Wi (k = 1, - - - | n) satisfy the hypotheses of the lemma.
Lumma 2.3. If X is (I)-separable, then $x = 9x.
Proor. Clearly $x C dx . To prove the reverse relation, consider the (I)-open
sphere

8(z0, a) = {z : supy [K(z, y) — K(20,9)] < a}
U {x ! infy [K(IB, y) - K(Il?o, y)] > —a}'

Now infy [K(z, y) — K(xo, y)] is (S)-upper semi-continuous. So the sets
E, = {z :infy [K(z,y) — K(z,y)] < —a + 1/n},n = 1,2, - - - are (8)-open.
Consequently, the set %=1 B. = {& : infy [K(z,y) — K(20, )] £ —a} and its
complement {z : infy [K(z, y) — K (20, y)] > —a} belong to Sx . This proves
that S(zo, a) € 8x . The lemma follows from the (I)-separability of X.

We define 9 to be the smallest o-algebra in X X Y, containing the rectangles
A X B, A e9xand B edy. §is defined similarly. Wald ([3], p. 34) has proved
that the function K(z, y) is (9)-measurable, if X is (I)-separable. The next
lemma is a generalization of this statement.

Lemma 24. If X is (I)-separable, then K(x, y) is (8)-measurable.

Proor. We define:

Z = {(z,y) : K(z,y) > a} areal
Cxy,r) ={x:d(m,z) <r} rpositive rational.
Xo = {z : K(z,y) > afor at least one y ¢ Y}

Since K (=, y) is (I)-continuous for each fixed y, the set X, is (I)-open. Let X;
be a countable dense subset in X, and (z,, ¥1) be a point of Z. Then there exist
a point 2, ¢ X; and a positive rational r such that

d(xo,2) <r and r < K(z1,4) — a.

Let ¢ be a positive number such that 0 < r + ¢ < K(21, 1) — a. Then, if
(2, y) is a point of the rectangle C(x:, r) X V(y1, €), we have

K(zi,91) — K(z,y) = |K(z1, 41) — K(z, y1)| + [K(z, 1) — K(z, y)]
<r+e< K(xi1,y) — a.

It follows that K(z,y) > aor C(z1,7) X V(y1,e) € Z.If Y(ay, r) is defined
to be the set

Y(zi,7) = U{V(y,e) :ye¥, e>0 and 0<r+e<K(z,y) — a

then it has been proved that for any point (z,y) e Z there exist a point z; ¢ X; and
arational r > Osuch that (z,y) ¢ C(21,7) X Y(21,r) C Z.Since C(z;,7) € 8%
and the class of rectangles C(z1, r) X Y (1, r) is countable, the set Z is
(8)-measurable.
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3. Minimax theorems.

TaEOREM 3.1. Let

(i) K(z, y) be a real-valued function defined on X X Y such that X and Y are
conditionally compact in the (S)-topologies determined by K.

(ii) P (Q respectively) be the set of all probability measures on Sx(8y).

(iil) K(p,q) = v [x K(z,y) dp(z) dg(y) = [x [ v K(z,y) dg(y) dp() for
all pe P and g € Q.

Then supe infq K(p, ) = infesupr K(p, ¢)-

Proor. Let ¢ > 0. Then, according to Lemma 2.2 there exist a finite subset
{z1, -+, zs} of X and a finite class of subsets Wy, - -+, W, of X, satisfying the
hypotheses of the lemma. It follows that for each ¢, 1 < ¢ < n, the inequalities
K(z,y) — K(z;,y) < eholdforally ¢ Yand allz ¢ W;. If K(x;, q) stands for
the integral [y K(z:, y) dg(y), then it follows from hypotheses (ii), (iii) and
(iv) of Lemma 2.2:

K(p, ¢) = EK(xi,q)p(W,-) 4+ ¢ forallpePandallge@.

Let P’ be the set of all probablhty measures p’ on the set {21, -+ - , z,}, such
that p'({z}) = p(W;) fori = 1, ,n,and p ¢ P. Then K(p,q) = K, q) + ¢
forallp e P,and all ¢ € Q. It follows that

(3.1.1) inf, supr K(p, q¢) = infq maxps K@, q) + e

Similarly, there exist points y1, -+, ym and subsets Z;, «+- Zn in ¥ Whlch
satisfy Lemma 2.2. Again, define Q to be the set of all probablhty measures ¢
on the set {g1, « -+ , Ym}, such that ¢'({y}) = ¢(Z;) forj = 1, ,mand q ¢ Q.
Then K(p, ¢') < K(p,q) + eforallp e Pandallg € Q. It follows that

(3.1.2) maxp ming K(p', ¢') = supsinfq K(p, q) + e

Since maxy ming K(p', ¢') = ming maxs K(p', ¢') it follows from (3.1.1) and
(3.1.2), infq sups K(p, q¢) = sups infq K(p, ¢). This proves the theorem since
the inverse inequality always holds.

REMARKS.

1. Hypothesis (iii) of Theorem 3.1 is fulfilled if K(z, ) is bounded and X is
(I)-separable, which is a necessary condition for X being (I)-conditionally
compact.

2. The following example shows that (S)-conditional compactness of one of
the spaces X and Y is not sufficient for the other space having the same topo-
logical property: Let X be the set of the positive integers and Y the class of all
subsets of X. K(z,y) = —1for z ey and =1 for z £ y. It is readily seen that
the Y-space is (S)-conditionally compact but the X-space is not.

However, the next lemma is easily proved:

Lemma 3.1. If X s finite and K(x, y) is bounded below in y for each fized x,
then Y is (8S)-conditionally compact.

Theorem 3.2 is an extension of Theorem 1.2. It is an extension of Theorem 3.1
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as well. In linear cases however, the latter is still useful because of the relatively
simpler structures of the X- and Y-spaces in comparison with the spaces of the
probability measures P and Q.

TaeorEM 3.2. If

(1) K(p, q) is a real-valued function on the product of the arbitrary spaces P
and Q,

(il) K(p, q) s bounded below in q for each fixed p,

(iii) K(p, q) 7s concave-convex-like,

(iv) P s (8)-conditionally compact,
then supp infq K (p, ¢) = infq supr K(p, ¢).

ProoF. We need the following lemma, [1]: If K (p, q) s concave-convex-like, then
to every finite subset {p1, - - , Da} of P and every finite subset {1, -+ , qm} of @
there exist po € P and qo € Q such that K(p;, ) = K(po, g;), fori =1, -+, n
andj =1, -+, m.

Because of the conditional compactness of P there exists to every ¢ > 0 a finite
subset Py = {p1, -, 0.} of P, such that for any p ¢ P there exists an index
1,1 £ ¢ < nfor which K(p, ¢) < K(p:,q) + eforall g € Q. It follows

(3.2.1) infg supr K(p, ¢) < infg maxp, K(pi, q) + e

According to Lemma 3.1, @ is (S)-conditionally compact with respect to the
restriction of the function K to Py X Q. Thus there exists a finite subset Qo =
{qi,* ,qm} of @ with the property that given any ¢ € @, there is ¢; £ Qo for which

K(pi,q;) < K(pi,q) + ¢ =1, -, n. It follows:

(32.2) maxp, ming, K(pi, ¢;) = suprinfe K(p, ¢) + e

Accordmg to the lemma, mentioned at the begmmng of the proof, there exist
pePandq € Q such that K(p:,¢) < K/, ¢;) fori =1, - nand] 1,

, m. Since P is conditionally compact, it follows K(p; , ¢ "NEK®,q) <
K (pk , q;) + efor some p, ¢ Py and consequently

(3.2.3) info maxp, K(p;, ¢) < maxp, ming, K(p:, ¢;) + e
From (3.2.1), (3.2.2) and (3.2.3) it follows
infq supr K(p, q) < suppinfe K(p, q) + 3e
and thus
infq supr K(p, ¢) = supp info K(p, q).
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