EFFICIENT UTILIZATION OF NON-NUMERICAL INFORMATION IN
QUANTITATIVE ANALYSIS: GENERAL THEORY AND THE
CASE OF SIMPLE ORDER

By RoBerT P. ABELSON AND JouN W. Tukey'

Yale Unaversity, Princeton University and Bell Telephone Laboratories

0. Summary. Suppose a single contrast y = 2 ¢;y;, where Y ¢; = 0, is to
be tested as a basis for detecting differences among unknown parameters u; ,
where y; = u; + ¢;, and the ¢; are independent and normally distributed with
mean zero and variance ¢*. Write p; = a 4 Bz; . Then the problem is to detect
B50.1f > z; = 0,and 2, 25 = 1, the noncentrality of y, referred to its standard
deviation, is (8/¢) times the formal correlation coefficient r between the c;
and the z; .

If the z; are known, the ¢; can be chosen to make the correlation unity. If
the z; are wholly unknown, no single contrast can guarantee power in detecting
B # 0. Intermediate situations, where we know something but not everything
about the z;, occur frequently. If our knowledge can be placed in the form of
linear inequalities restricting the u; (equivalently the z;) the problem of choosing
a contrast {c;} which will give relatively good power against the unknown (latent)
configuration {z;} is a relatively manageable one.

The problem is to obtain a large value of * between {c,} which is at our choice,
and {z;}, which is only partially known. A conservative approach is to try to
select the {c;} so that the minimum value of »* compatible with the restrictions
on {x;} is maximized, or nearly so.

The maximization of minimum r* when response patterns are constrained by
linear homogeneous inequalities leads to the mathematical problem of finding
the geometric direction whose maximum angle with a given set of directions is
least. The solution to this problem is characterized and proven unique (Sections
8, 17-20). No useful algorithm which is absolutely certain to reach the solution
in a few steps appears to exist. However, procedures are discussed (Sections 10
and 11) which reach a solution relatively rapidly in the instances we have
considered. The procedures are illustrated on selected examples (Sections 15-16).

The general theory is applied (Sections 13-14) to the latent configuration
defined by 2, < 22 < 23 < -+ £ z,., which we call semple rank order. A formula
is found for the maximin contrast which maximizes minimum ¢°, and its coeffi-
cients are given for n < 20.

The “linear-2-4” contrast, constructed from the usual linear contrast by
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quadrupling ¢; and ¢, , and doubling ¢; and ¢, , is a reasonable approximation
to the maximin contrast for small or medium n, and its minimum 7* remains
above 90% of the maximum possible for n < 50 (Table 2).

Knowing only simple rank order for the u; , good practice seems to indicate the
use of “maximin” or “linear-2-4” contrasts in careful work. If more information
or insight about the z; is available, some other contrast may be preferable.

I. INTRODUCTION
1. The problem area. Consider a set of ¥’s, y1, ¥, - -+ , Yn , fOr which
(1) Yi = uit+ €,

where the u; are unknown constants and the ¢; are a combination of fluctuations
and errors. We shall find it convenient to write u; = a + Bz;, where o, 8 and

the z; are also unknown constants. Any sequence of ¢’s satisfying¢; + ¢co + -+ +
¢, = 0 defines a contrast
(2) y= 2. c;

which is a candidate for use in detecting that the u’s are not all equal.

If the joint distribution of the e; has sufficient symmetry (we need only re-
quire that each e; has mean zero and variance 5 + o°, while the covariance
between every pair of ¢; is 8°), then the average value, variance, and noncen-
trality of y are

(3) avey = > ci(a+ Bz;) = B- 2 ¢j (x5 — T)
(4) vary = o+, ¢}

(ave y)* _ 5_2 e, [Doci (2 — &)
@ vy A 2T S G o)

where the last factor in the noncentrality can be recognized as the square of the
formal correlation coefficient between the c¢; and the z; (or the x; — &).

If we have equally good ways of estimating the variability of various contrasts,
the effectiveness of a particular contrast in detecting that the u’s are not alike
(that 8 ¢ 0) will mainly depend upon this noncentrality (this will be exactly
so if, for instance, the ¢; are jointly normally distributed), which in its turn
depends upon

(al) the underlying variability o°,

(a2) the spread of the u’s, as measured by > (u; — 5)° = 8-> (z; — &)%,
and

(a3) the value of r°.

If we knew the x; , we would choose the ¢; to make »* equal, or very close, to
its maximum value of +1. If we know nothing about the z; and intend to use a
single contrast, we might as well choose the ¢; at random. Such a random con-
trast provides a much less sensitive test than one relying upon Y (y; — %) or
on the range of the y; , as an indication of a difference among the u.
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The case where we have incomplete information about the z; is of very great
practical importance. There are at least four levels of specificity at which this
problem can be attacked:

(b1) we may postulate an over-all probability structure, for example, an
a priori distribution for the vector {z;}, and then try to determine the {c;} to
optimize some given criterion,

(b2) we may choose some class of basic statistics, such as contrasts, and some
intermediate criterion, such as the least value of +* compatible with specified
limitations on the {,}, and try to determine the corresponding optimum,

(b3) we may turn to some plausible general procedure of ““testing”’, and trace
its consequences for incomplete information of certain sorts,

(b4) we may select, possibly both quite arbitrarily and reasonably wisely, a
specific criterion, and develop tables for its use.

We have been unable to see how approach (bl) can be made of practical
utility, and we know of no attempts to do so. Our approach in this paper follows
(b2), choosing contrasts as the class and maximization of least r* over a convex
set of admissible {x;} as criterion. Approach (b3), choosing the likelihood-ratio
principle, and applying it to the convex set defined by z; < 2, < --- £ z, has
been adopted by Bartholomew [4], [5], [6]. Approach (b4) has been taken by
Jonckheere [8] who uses a statistic based on ranks which is intuitively sensitive
when z; £ 2, £ -+ = z,, in the special case where each y; can be replaced by
the sample of n; observations of which it is a mean.

Some comparisons of the power of the special case of our procedure correspond-
ing to the convex set defined by 21 < 2, < --- = z, (simple order) and his own
procedure have been made by Bartholomew [4]. Further discussion of these
issues is, we believe, definitely in order but inappropriate to the present paper.

Wise formulation of problems of the general class discussed here is obviously
a matter of great importance, deserving of great care and appropriate space. We
note, for one thing, that any detailed discussion of the pros and cons of the choice
of the maximum-least-r* criterion would be of limited value without an equally
careful discussion of the pros and cons of the use of a single contrast.

2. The practical problem. In many cases where we have incomplete information
about what the z; will be like if 8 5 0, this information can be reasonably ap-
proximated by a system of linear equalities among the z; . Since our information
is most unlikely to have ‘“‘sharp edges”, it is important to emphasize the presence
and meaning of the words ‘reasonably approximated.” Any {c;} with ¢; + c.
+ +-- 4 ¢, = 0 defines a ““valid”’ test of u; = us = -+ = u, whatever be the
z; . Precision of significance level will depend only on the adequacy of distribu-
tion theory based on assumptions of normality. Power of test for a specific
situation will be a monotonic function of +*. We are guaranteeing a minimum
value for * for any {z,} in a specific set. The value of 7* for {z,} “near’ this set
will not fall far below this guarantee. Accordingly it will often be appropriate to
choose the set to omit, though coming ‘“near” to, some of the {x;} which are
possible according to our incomplete information.
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If, for instance, we are sure that the x; will be very nearly nondecreasing, but
we cannot exclude the possibility that there are small failures of monotonicity,
we shall probably be well advised to choose the contrast maximizing the least
7* for monotone z; .

3. Remarks. Our basic interest is in the general problem of definite numerical
approximation to latent configurations known only qualitatively via a set of
constraining linear inequalities. We have particularized our aim to be the testing
of “u; all equal” for clarity, and we invite the reader to particularize it further,
say to the case where the y; are means of repeated observations in a one-way
analysis of variance, whose common variance is estimated on » = n(k — 1)
degrees of freedom by

2 .
(6) s = error mean square/number, k&, of observations per mean

if this helps his insight.

Applications to problems in the field of psychological scaling [2] and attitude
test scoring [1] have been briefly broached elsewhere.

It should be emphasized that, although the simple (rank) order case z; =
22 £ -+ = x, is of great interest, it is by no means the only case we wish to
consider. A general procedure will be developed for finding the “best” sequence
{c;}, given any particular set of linear homogeneous inequalities on the z’s. In
the present paper, after the general solution is developed, only simple order and
certain illustrative examples will be considered. Subsequent papers will consider
cases where more than simple order is known, mainly in terms of inequalities on
the differences between the z’s, as well as cases where less than simple order is
known.

One comparison of some importance is the comparison of the i-tests (to which
any single-degree-of-freedom approach must lead us) considered here with the
F-test based on all n — 1 degrees of freedom in Y, (y; — y)* and on s*. This is
considered, for the special case of simple order, in a related paper [10], where it
is found that the use of a single well-selected contrast is almost certainly pre-
ferred to the omnibus F-test, which would be appropriate in the absence of
information about order.

1I. MAXIMIN 2

In this part we discuss the geometrical problem of determining the contrast
{c;} which makes 75, , where the minimum is for all admissible {x; — &}, greatest.
In geometrical terms, which we shall use extensively, we seek that direction
which makes least the maximum angle with all admissible directions. Our general
program is to first set up the geometrical problem, then to characterize its solu-
tion (leaving detailed proofs to Sections 18-20), and then to discuss specific
steps required to locate solutions in the cases which concern us.

4. Basic geometry. We are concerned with c-vectors {c;} defining contrasts,
and hence satisfying

(7 ate+ - +e=0
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and with z-vectors defining the true (and unknown) configuration of mean
values which satisfy

(8) (@—2)+ (@—2)+ - + (2. — %) = 0.

All our vectors will, consequently, be restricted to an (n — 1)-dimensional sub-
space of n-dimensional Euclidean space. The squared length of the x-vectors
(really (z — Z)-vectors) will be denoted by SSD = D, (z; — %)%

The admissible z-vectors will be those satisfying a family of % linear inequali-
ties, such as

(9) xléxz or x2-$1§x3"-$2

and will form a convex set (a convex cone with apex at the origin), since non-
negative linear combinations of admissible z-vectors will be admissible. This
convex subset of our (n — 1)-dimensional subspace will, with trivial exceptions,
be a convex region of the subspace.

Any admissible vector satisfies each of the & defining inequalities in one of two
ways, either by being < or by being =. Any admissible vector thus corresponds
to a pattern of <’s and =’s. In the present paper, we shall consistently and tacitly
assume that the origin, (0, 0, -+, 0), s the only vector making all k inequalities
into equalities.

Each pattern with the maximum number (less than k) of =’s corresponds to
a corner of our convex region, and to a set of vectors which are all positive multi-
ples of one another—to a “direction”. A corner will usually be represented by a
conveniently normalized z-vector.

A corner is simple if only one inequality is a <, while all the others are =. If
all corners are simple, which corresponds to linear independence of inequalities,
we have simple behavior. We can always identify a corner by specifying the in-
equalities which are < at it. If we have simple behavior, each corner corresponds
to one inequality and vice versa. Many problems show simple behavior and those
that do not are usually solved in terms of a problem or several problems which
do show simple behavior.

Returning to the patterns of <’s and =’s with more than the minimum
number of <’s, we note (i) that each pattern with but one = corresponds to a
face of the convex region (and to the hyperplane of which this face is a piece),
(ii) that the pattern with all <’s corresponds to the inferior of the convex region
and (iii) that patterns with intermediate numbers of <’s correspond to edges
of the convex region of various dimensionalities.

Corners, edges and faces alike, all run to the origin, since (ex:, exz, + - , €xn)
for any e > 0, no matter how small, satisfies the same (homogeneous linear)
inequalities and equalities as (1, 2, *** , Za).

In an inequality of the foorm A = B, A — B is the slack. If we have simple
behavior, so that each corner has only one nonvanishing slack, we define the
standard corner vectors as those whose nonvanishing slacks are +1.

In any case the corners generate the convex region, in the sense that, if we
have fixed a particular representative vector for each corner, every admissible
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vector is a linear combination of these vectors with non-negative coefficients. If
we have simple behavior, this representation is unique. If we use standard
corner vectors, these coefficients are, of course, just the slacks of the admissible
vector at the corresponding inequalities.

5. An example of standard corner vectors. Let us consider the restrictions
(10) L= S =T

Here we have simple behavior, and can match inequalities, corner patterns and
standard corner vectors as follows, where we give the standard corner vectors in
two forms, one corresponding to values of ; — & (to be used when forming
linear combinations of corners) and the other consisting of convenient integer
values of z; (to be used in the maximin solution of Section 13).

Inequality  Corner Pattern Standard Corner Vectors

2 < 1 < == (=075 4025, +0.25 +0.25) or (0, 1, 1, 1)
z2 £ @ = <= (=050, —0.50, +0.50, +0.50) or (0,0, 1, 1)
25 < @ = =< (=025 —025 —025, +0.75) or (0,0, 0, 1)

If an (admissible) vector with &y < hy < hs < hsis given, its slacks are hy — hy ,
hs — ha, by — hs . If we combine the standard corner vectors with these coeffi-
cients, we find that (ke — ki) (0.75, 4+0.25, 40.25, +0.25) + (hs — h2) (—0.50,
—0.50, +0.50, +-0.50) + (hs — h3)(—0.25, —0.25, —0.25, +0.75) reduces to
(hy, he, ks, hs), as it should, whenever hy + he + hs + hs = 0.

If we use the other representation,
(hl ) h ) hs , h4) = (h2 - hl)(oy 1,1, 1) + (h3 - hZ)(O’ 0’ 1, 1)

(11)
+ (hs — 75)(0,0,0,1) + hi(1, 1,1, 1).

(The appearance of a multiple of a origin shift vector all of whose entries are -1
is typical.)

The patterns (=, <, <) (<, =, <) and (<, <, =), corresponding to the
conditions x; = %2, x2 = 3 and x3 = x4, respectively, define the three faces of
the region. (In this case, since n is only 4, there are no edges of dimension inter-
mediate between corners and faces.)

We shall see (in Section 13) that a contrast making ra;. as large as possible
has coefficients (—0.866, —0.134, 40.134, 4+0.866) and that this c-vector
provides riin = Teximin = 0.651.

6. Where is  a minimum? We now consider any one fixed vector
(¢r, €2, -+ ,Ca), the vectors (x; — &, 22 — &, -++, » — &) of some convex
region, and the angles between the c-vector and the z-vectors. This angle is a
continuous function of the z-vector, and attains an unrestricted maximum only
when equal to 180°. Consequently, its maximum, when the 2-vector is restricted
to a region, either (i) is equal to 180° or (ii) is located on a boundary of the
region.
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If it has to be on the boundary of a convex region, this maximum will be on a
face, on an edge, or at a corner. Suppose it to be on a face. Project the c-vector
onto the hyperplane of which the face is a part (which surely contains the origin).
Maximizing the angle with the original c-vector is equivalent to maximizing the
angle with the projected c-vector. The original argument now shows that the
maximum is on the boundary of the face. Repeating this argument as often as
necessary, we see that, if the maximum is not 180°, it must occur at a corner.

In terms of » = cos 6, which takes the value —1 when 6§ = 180°, the result
is as follows: The minimum value of r either (i) is —1, or (ii) occurs at a corner.

Suppose now that r is non-negative for each corner. This is equivalent to

(12) 2oci(xs— ) =0

for each corner vector. The same inequality must hold for all non-negative linear
combinations of corner vectors. Thus r > 0 throughout the convex region so
that » = —1 is impossible.

We have shown that, if 7 is non-negative for all corners, its minimum value
for admissible z-vectors must occur at a corner. Conversely, if r takes on both
signs at corners, there will be an admissible vector with » = 0. Thus in working
with minimum +* we can forget all admissible vectors except a convenient set of
corner vectors.

7. Heuristics. We now face a simple problem: Given a finite number of di-
rections, find the direction whose maximum angle with any of the given directions
is least. To understand what results to expect, it is useful to consider a simpler
analog: Given a finite set of points, find the point whose mazimum distance
from any of these points is least.

If we are given three points in a plane, it is natural to fill in the triangle they
determine and to think in terms of this triangle. If the triangle has no angles
exceeding a right angle, the point sought will be equidistant from all three
vertices. But if the triangle is too flat, such an equidistant point will be outside
the triangle and wasteful of maximum distance; we shall do better by using the
midpoint of the longest side, which is equidistant from two of the three points
and closer to the third. (Clearly no point can have its maximum distance less
than half of the longest side, so that, if no distance from this midpoint exceeds
this value, this midpoint must be the point we seek.)

The generalization of this result to as many points as we wish may be given
in the following form:

If a set of k points is specified, and we seek the point whose maximum distance
from any of these points is least, the solution is provided by any point which
can be represented as such a linear combination of the specified points that (i)
no specified point appears with negative weight, (ii) each specified point appear-
ing with positive weight is at the same distance, and (iii) no other one of the
given points is further away than this distance. There is one and only one point
satisfying (i), (ii), and (iii).
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8. The key result. We show in Sections 17 to 20 that the answer to the maxi-
min angle problem may be put in a similar form:

THEOREM. If we are given a set of k directions and seek the direction whose maxi-
mum angle with any of these directions s least, the solution is provided by a direction
representable as a linear combination of the given directions in such a way that (i)
no gien direction appears with negative weight, (ii) each given direction appearing
with positive weight makes the same angle with the solution, and (iii) no other given
direction makes a larger angle. There is one and only one direction making angles
less than a right angle with the given directions and satisfying (1), (ii), and (iii).

According to (i) the maximin ¢-vector is a nonnegative linear combination of
z-vectors, and hence is an admissible vector. The first step in checking a possible
maximin c-vector is to see if it satisfies all the inequalities required of admissible
z-vectors. If it does not, it is not maximin.

If the candidate vector is admissible, and the problem has simple behavior,
then directions appearing with zero weight correspond to =’s in inequalities,
while >’s correspond to positive weights. Under simple behavior, the second
step in checking a candidate vector is to confirm that:

(ii*) Its r* with the corners corresponding to inequalities that are > are all
equal. )

(iii*) Its r* with the corners corresponding to inequalities that are = are all
at least as large as the common value of the r™s of (ii*).

Specifically, a completely equiangular contrast, one equiangular with all corners,
which also satisfies the defining inequalities must be the maximin contrast.

There is an important corollary. If we start with a subset of the directions
with which we are concerned, and find the one of their linear combinations which
satisfies (i), (ii), and (iii) for the subset (but may violate (iii) for some direc-
tion not in the subset), then we can calculate both lower and upper bounds for
the least maximum angle for the whole set. For the least maximum angle for the
whole set is surely 7o less than the least maximum angle (with all directions) of
the subset solution (and no more than the maximum angle for this candidate).
If we are satisfied with a reasonable approximation to the least maximum angle
(t0 7haximin) We can often use such bounds to show that we have a practically
useful answer without going on to obtain the precise maximin contrast.

9. Equiangular contrasts. We shall clearly wish to calculate the coefficients
of contrasts which make equal angles to—are equally correlated with—certain
sets of corners. Such a completely or partially equiangular contrast will have a
common value for the ratio of [ ¢;(z; — &)]* to > (z; — &)° for the corre-
sponding set of corner vectors. It is very convenient to choose this ratio equal
to unity. For if this is done,

(18) 0 SO MOl =
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is easily calculated, while the equations
(14) 2 il — &) = 2w = [2(e; — 8T = (8SD)*

often involve simple coefficients.

All this has been for situations with simple corners; what of situations with
complex corners? In practice, so far as we can see, situations with complex
corners are going to be handled either (i) by selecting out a subset of corners
which behave like simple corners, working with them, and finally testing the
“solution” for such a subset against the remaining corners or (ii) by special
devices appropriate to the problem. Thus simple behavior is the important case.

10. Finding the solution. We have characterized the solution, but we have
still to find it. While it is true that we could find it by

(a) selecting j (linearly independent) directions with 2 < j < k,

(b) finding the corresponding (partially) equiangular vector,

(¢) checking to see if all coefficients are positive by checking to see if all
inequalities are satisfied,

(d) checking to see if all the k¥ — j angles with the other given directions are
no greater than the 7 equal angles with the.j selected directions,

(e) repeating this process until the checks of (¢) and (d) are all satisfied,
we might have to try all 2° — k — 1 sets of j = 2 directions. For £ = 10 this
would be 1013 cases, and for & = 20 would be 1,048,555 cases. Neither number
is pleasant, while the last is surely impractical.

Some less exhausting method is desirable. It appears that such a method will
be tentative and exploratory, since there seems to be no method guaranteed to
find the solution in a small number of steps. We shall describe a method which
starts from the “top”” and moves down, and one which starts from the bottom
and moves up. Detailed examples are given in Sections 15 and 16.

11. Iterative approaches “from the top down” and “from the bottom up”.
The basic steps of an approach “from the top down” are as follows:

(t0) Choose a relatively large set of trial corners which has simple behavior (i.e.,
are linearly independent). Each trial corner will then have an associated in-
equality, although these inequalities need not be the same as for the original
problem. (See Section 16 for an example.)

(t1) Calculate, as a trial contrast, using any symmetry present to simplify
Equations (14), an equiangular contrast for the corners considered.

(t2) Check for negative coefficients in the corresponding linear combination by
checking whether the trial contrast satisfies all the associated inequalities of (t0),
and pass on to (t3) or (t4) accordingly.

(t3) If the inequalities are satisfied, find the minimum 7" for the trial contrast
with all the corners including those not included in the subset. If this is the same as
the common value of the angles with the trial set, the exact solution has been
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reached. If it is an adequate approximation to that value, then an approximate
solution has been found. Otherwise another start must be tried.

(t4) If one or more of the associated inequalities fails, each of the corresponding
corner equations is replaced by the inequality converted into an equality, and a new
trial contrast is generated. This contrast will make equal angles with all the trial
corners whose equations were not converted, and is suitable for step (t2). (One
must then be careful, in a later application of (t3), to include among the “other
corners” with which angles are to be checked corners whose equations have thus
been converted.)

While many problems yield most easily “from the top down,”” so that such
an approach will be most usually tried first, there are sometimes certain ad-
vantages to proceeding ‘“from the bottom up”.

Here the steps run as follows:

(b0) Choose a relatively small set of corners.

(bl) Find as a trial conirast, often by a combination of symmetry arguments
and Equations (14), the contrast which gives rai, for the j initial corners. (If this
process is too difficult, try another starting set.)

(b2) Calculate v for this trial contrast with all other corners and find its mini-
mum value. If this minimum is the same as 74, for the initial set of corners, the
solutions has been reached. If the minimum is close enough to the rhi, for the
initial set of corners, a practical solution has been found.

(b3) If neither a precise or adequately approximate solution is found in (b2),
the starting set is enlarged by adding that corner (or those corners) whose r* with
the trial contrast vs least.

12. Quadratic programming. The problems we face are all instances of quad-
ratic programming [3], [9], [11]; (see [12] for other references) and can thus be
solved, if necessary, by the iterative techniques which have been developed for
use in solving general quadratic programs. These techniques usually are only
feasible when a stored-program computer of substantial size is available. Most
of the problems we have considered yield with satisfactory ease to much less
powerful tools.

III. SIMPLE ORDER
13. The finite case. We now treat the case where admissibility is defined by

Consider the restriction ; < x; < x3 < x4 The three inequalities, and the
corresponding corners with their sums of squares of deviations, are given by

(a) = £ 22, (0,1,1,1) with SSD = 3/4
(b) 2z = a5, (0,0,1,1) with SSD =1
(¢) = =, (0,0,0,1) with SSD = 3/4

If we seek an equiangular contrast with the sum of cross-products equal to the
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square root, of the sum of squared deviations (Equation (14) in Section 9), we
require

(8) eat+eates+ca=0,

(a) e+ e+ e = (3/4)}
(d) es + ¢ = 1}
(c) = (3/4)}

where (s) is the contrast-ensuring equation.

Proceeding by successive substitution, the solution is (—866, —.134, .134,
.866), whose sum of squares is 1.536, so that (Equation (13) of Section 9) its
with each of the three corners is 1/1.536 = .651. This equiangular contrast clearly
satisfies each of the three inequalities, and, hence, must be the desired maximin
contrast.

The same construction can be repeated for the general case 2; < 2, < - - -
Zn , and leads to
(16) ¢; =G = DI = (G~ /MY = {1 —j/m)y
with the results shown in Table 1 for n =< 20. Asymptotic behavior for large n
will be treated in the next section. In addition to the maximin coefficients and
the corresponding values of r*, Table 1 also provides minimum »* values for
linearly varying coefficients, and for linearly varying coefficients (i) with the end
values doubled, called “linear-2”, and (ii) with the end values quadrupled and
the next to the end values doubled, called “linear-2-4”’. For n = 10, for example,
these coefficients would be proportional to

-9, =7, =5, =3, —1, +1, +3, +5, +7, +9,  (linear)
—18, =7, =5, —3, —1, +1, +3, +5, +7, +18  (linear-2)
—36, —14, —5, —3, —1, +1, +3, +5, +14, +36 (linear-2-4)

I\

respectively.

The linear-2-4 contrast yields especially high ratios of minimum #* to maximin
7 (i.e., “maximin efficiency”), as Table 1 shows. There are at least two reasons
why, even though we know the formula for the coefficients of the maximin
contrast, we may wish to use such a contrast as linear-2-4:

(1) Integer coefficients are often computationally more manageable.

(2) The form of the linear-2-4 coefficients is easier to remember, making the
contrast more usable when tables of maximin coefficients are not at hand
(n £ 20) or have not been calculated (20 = n < 50, say).

14. Asymptotic behavior. Here we derive, for the case of simple rank order,
an approximation to the value of maximin +* as a function of n. Equation (16)
specifies that the maximin contrast coefficients are formed as (backwards)

first differences of :
(17) 2(t) = {t(1 — t/n)} 0

I\

¢

IIA

n,



TABLE 1

Performance of various contrasts against simple rank order, together with the coefficients of
the maximin contrasts, for n = 20.

Minimum 72

n=2\n=3|n=4|n=5|n=6|n="T\n=8|n=9|n=10
mazrimin 1.000 | .750 | .651 596 | .557 | .530 | .510 | .492 | .478
min* for linear 1.000 | .750 | .600 | .500 | .429 | .375 | .333 | .300 | .273
min for linear-2 1.000 | .750 | .649 | .588 | .546 | .512 | .485 | .462 | .441
min for linear-2-4 | 1.000 | .750 | .649 | .588 | .549 | .522 | .493 | .473 | .456
Minimum 72 as % of maximum 72 (“maximin efficiency”)
n=2\n=3|n=4|n=5|n=6|\n="T7\n=8|n=9|n=10
linear 100 100 92 84 77 71 65 61 57
linear-2 100 100 100 99 98 97 95 94 92
linear-2-4 100 100 100 99 99 98 97 96 95
Values of ¢; for maximin contrast
J
n=2|n=3|n=4|n=5|n=6|n=7|n=8|n=9|n=10
1 —.707 | —.816 | —.866 | —.894 | —.913 | —.926 | —.935 | —.943 | —.949
2 707 000 | —.134 | —.201 | —.242 | —.269 | —.289 | —.305 | —.316
3 .816 .134 000 | —.070 | —.114 | —.144 | —.167 | —.184
4 .866 .201 .070 .000 | —.045 | —.076 | —.100
5 .894 .242 114 .045 .000 | —.032
6 .913 .269 .144 .076 .032
7 .926 .289 .167 .100
8 .935 .305 .184
9 .943 .316
10 .949
n=2|n=3|n=4|n=5|n=6|n=7|n=8|n=9|n=10
SSD 1.000 | 1.333 | 1.536 | 1.679 | 1.794 | 1.886 | 1.961 | 2.032 | 2.091
Minimum 72
n=11n = 12n=13n=14n=15n=16n=17n=18,n=19|n=20
maximin 467 | 457 | .447 | .439 | .433 | .427 | .420 | .415 | .410 | .406
min* for linear .250 | .231 | .214 | .200 | .188 | .176 | .167 | .158 | .150 | .143
min for linear-2 423 | .407 | .392 | .378 | .366 | .354 | .343 | .333 | .324 | .315
min for linear-2-4 443 | .433 | .423 | .418 | .412 | .407 | .402 | .397 | .393 | .389
Minimum 72 as % of maximin 72 (“maximin efficiency”)
n=11|n =12|n = 13/n = 14|n = 15|n = 16|n = 17|n = 18}n = 19|n = 20
linear 54 51 48 46 43 41 40 38 37 35
linear-2 91 89 88 86 85 83 82 80 79 78
linear-2-4 95 95 95 95 95 95 96 96 96 96

1358
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TABLE 1—Continued

Values of ¢; for maximin contrastt

J
n=11ln = 12|n = 13|n = 14|n = 15\n = 16|jn = 17|n = 18|n = 19|n = 20
1 —.953 |—.957 |—.961 |—.964 |—.966 |—.968 |—.970 [—.972 |—.973 |—.975
2 —.326 |—.333 |—.340 |—.346 |—.351 |—.354 |—.358 |—.362 |—.364 |—.366
3 —.198 |—.209 |—.218 |—.226 |—.233 |—.238 |—.243 |—.248 |—.252 |—.255
4 —.118 |—~.133 |—.145 |—.155 |—.163 [—.170 |—.178 |—.183 |—.188 [—.192
5 —.056 |—.075 |—.090 |—.102 |—.113 |—.122 |—.130 |—.136 |—.142 |—.147
6 .000 |—.024 |—.043 |—.059 |—.071 {—.082 |—.092 [—.100 |—.107 |—.113
7 .056 | .024 | .000 |—.019 |—.035 |—.047 |—.059 |—.068 |—.077 |—.084
8 .118 | .075 | .043 | .019 | .000 [—.015 |—.029 (—.040 |—.050 |—.058
9 198 | 133 .090 | .059 | .035| .015| .000 {—.014 |—.024 |—.034
10 .326 | .209 | .145 | .102 | .071 .047 | .029 | .014 | .000 |—.011
n=11n =12\n = 13|n = 14\n = 15(n = 16|n = 17 = 18\n = 19(n = 20
SSD 2.141 | 2.189 | 2.235 | 2.277 | 2.312 | 2.344 | 2.379 | 2.411 | 2.437 | 2.465

* The minimum occurs for the linear and linear-2 sequences at the corner labelled by
(n — 1) zeros and one 1. This is also true for linear-2-4 for n < 7; but the linear-2-4 minimum
ocecurs at the corner with 4 ones for n = 8, 9, or large; at the corner with 5 ones for n = 10,
11, 17, 18, 19, 20; at the corner with six ones for » = 12, 13, 15, 16; and at the corner with
7 ones for n = 14.

1 For n = 11 use symmetry to complete the table.

namely

(18) c;=2(j—1) —2() where j=1,2,---,n.

A natural approximation to these differences is given by

N _d&__2/m—1_
(19) 0<t+ 5) T T @ 2 = t/m

This approximation is poor at the extremes but rather good elsewhere. To find
an approximation to > c; , therefore, one may use the exact values at the two
extreme values of 7, and an integral approximation elsewhere. The net result is

n—1 2
O .2 2 2t/n — 1) . 1. _
(20) ;Cj—CI_"'Cn'I—/I‘ mdt—l-l-zlog(n 1)
so that ’
(21) 7 = 2/12 + log(n — 1)].

At n = 20, this approximation yields .4044, compared with the true value .4056;
at n = 50, the approximation is .3395, the true value .3399. The values given in
Table 2 for scattered n > 50 have been computed from this approximate formula.
Linear and linear-2-4 results are included for comparison.
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TABLE 2
Performance of various contrasts against simple order Minimum r* for
n’s with 2 = n = 1000

selected

n=2 n=3 n =10 n =20 n = 50 n =100 | » =200 | »= 500 |=»= 1000
Maximin 1.000 .596 .478 .406 .340 .303 274 .244 .225
Linear 1.000 .500 .273 .143 .059 .030 .015 .006 .003
Linear-2-4 | 1.000 .533 .456 .389 .306 .231 .155 .079 .043

1V. EXAMPLES OF ITERATIVE SOLUTIONS

156. Other tree diagrams. If the inequalities among the z’s are indicated by
arrows, the case so far treated may be diagrammed thus

O—O—@—=—@

This case led to linear equations which could be solved one value at a time by
successive substitutions. Such easy solution occurs for any ‘tree” diagram be-
cause of the one-to-one correspondence between inequalities and corners. For
example, consider the diagram ‘

O—@ ®
@>@——-@<®

for which inequalities and corners are as follows:

(@) @ <@, (0,1,1,1,1,1,1) with SSD = 6/7
() 2=z, (0,0,1,1,1,1,1) with SSD = 10/7
(¢) ==, (1,1,0,1,1,1,1) with SSD = 6/7
(d) =z <25, (0,0,0,0,1,1,1) with SSD = 12/7
(e) x5 =, (0,0,0,0,0,1,0) with SSD = 6/7
() ==z, (000000,1)with SSD = 6/7

Equations (14) for a completely equiangular contrast become

(8) atet+eat+etestcect+e=0

(a) o4 o+ e+ o5+ oo+ e = (6/7)}
(b) o3 4 0s + o5+ e + e = (10/7)}
(¢) aatec + e+ e+t e = (6/7)
(d) o5+ s + e = (12/7)}
(e) Ce = (6/7)}

) e = (8/7)}
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whence we may easily find the four end coefficients ¢; = ¢; = (6/ 7)*, e = C1 =
(6/7)* and continue inward. The resulting contrast, converted to decimal form
and arranged in the original pattern becomes

[-0.929 |—>| -0.210 |
N\ /
| 0.758 |—>|-o.s4s|\
/1

We now clearly see that one inequality, (d) has been violated, so that this com-
pletely equiangular contrast, for which Y ¢; = 4.359 and i, = .229, is not
the maximin contrast.

The discussion of Section 11 suggests that we try either (i) proceeding ‘“down”’
by dropping a corner or (ii) starting ‘““up” from two or more widely-spread
corners.

We detail the latter procedure here. Extremity of angles makes it reasonable
to begin with the four corners (a), (¢), (e¢) and (f). We impose the equalities
associated with corners (b) and (d), which we are for the moment not consider-
ing, thus forcing the solution to give zero weight to these corners. We then have
the modified equations, whose solution will still be only a trial contrast.

(8) at+eteat+eatetec+cea=0

(a) et ot eatest ot o= (6/7)
(b) C = C
(¢) a+e + e+ s+ o + e = (8/7)}
(d) o =
(e) o = (6/7)}
¢ o = (6/7)}

Their solution is [— (6/7)% 0, — (6/7), 0,0, (6/7)}, (6/7)} or,

N | /
’ 0.000 |—>| 0.000 |

o — e

with D ¢} = 24/7 = 3.430 and hence »* with corners (a), (¢) (¢) and (f) of
1/3.430 = .292. Turning to corner (b), whose (S8D)? is (10/7)*, we find D ciz:
equal to (6/7 )%. The value of 7* with this corner is thus smaller than the common
value .292, namely (6/10) (.292) = .175. This violates Condition (iii) (of the
Theorem of Section 8), so we cannot have found the solution. The first try from
the bottom has thus only provided us with upper and lower bounds, 0.292 and
0.175 for the maximin 7°. The fina] solution may actually be reached in one more

|—o.929|-—>| 0.000 |
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step by adding (b) to the subset (a), (¢), (e), (f) already considered; elimi-
nating cs , we have

(8) eaet+ect+ce+2u+c+ce=0

(a) 2+ o5 + 2 + ¢ + o = (6/7)}
(b) ¢ + 20 + ¢ + ¢ = (10/7)}
(¢) e+ c 2+ ¢ + 7 = (6/7)%
(e) e = (68/7)
) er = (6/7)}

of which the solution is

|-o.929 I-—->|-o.ato I\ /
oy ]

All inequalities are now clearly satisfied. The sum of squares of coefficients is now
3.495, 50 that 7w = 0.286 (as compared with r: = .229 for the completely
equiangular contrast).

Note how close the upper bound obtained ‘“from below” of 0.292 is to the
actual 0.286. The values of 7° are 0.286 for each corner except corner (d) and
0.643 for this corner. By allowing the correlation with corner (d) to increase
beyond the others, we have been able to increase all r* to at least 5/4ths their
previous values, and have reached the maximin.

| o.los—|—>| 0.105 l

16. An example lacking simple behavior. In the previous section, we illustrated
an iterative solution “from the bottom up.” Now we illustrate a solution “from
the top down”, and introduce the complication of nonsimple behavior.

Suppose that we have a diagram with one or more loops but no aid from sym-
metry. For example, suppose that the available inequalities are z; < z, < 23 <
25 < zgand x; < x4 < 2, for which the diagram is

O—0
O—_ ,_——0—0

In this example, we have the inequalities

(@) x =
(B) x = s
(¢) xS x5
(d) =2
() 1 = s
(f) s = x
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Each corner corresponds to a minimal set of arrows whose deletion disconnects
the diagram. Enumerating these sets, we find seven corners, one of them simple,
the other six “compound.” Each of the six compound corners makes two of the
inequalities < (with excess of unity) and the other four =. If the corners are
identified by the < inequalities, we have

(ad) (0,1,1,1,1,1) with SSD = 5/6

(ae) (0,1,1,0,1, 1) with SSD = 8/6

(bd) (0,0,1,1,1,1) with SSD = 8/6

(be) (0,0,1,0,1,1) with SSD = 9/6

(ed) (0,0,0,1,1,1) with SSD = 9/6

(ce) (0,0,0,0,1,1) with SSD = 8/6

¢ (0,0,0,0,0,1) with SSD = 5/6
We know that the maximin contrast will also be a maximin contrast for some
linearly independent set of five corners. There are <;> = 21 sets of five corners,

but not all are linearly independent. Thus we can reduce the number of explora-
tions by learning which sets of five involve linear dependence. We could do this
directly, examining the standard corner sequence and noting, for example, that
(ad) + (be) = (ae) + (bd), or we could proceed in another way, one which
provides us with conveniently simplified equations.

The contrast-ensuring condition (s) is always available, and by its use we
may reduce the corner equations to the forms,

(ad) a = —(5/6)
(ae) o+ = —(8/6)
(bd) a+ e = —(8/6)

(be) e+ cod+ci=—(9/6) and ¢+ ¢ + ¢ = (9/6)*

(ed) e+ c+ecs=—(9/6) and ¢+ s + ¢ = (9/6)}

(ce) ¢ + ¢ = (8/6)*

f) ¢ = (5/6)*
A value for ¢, is determinable from three different pairs of corner equations as
follows:

(ad and ae) ¢ = —(8/6) + (5/6)}
(bd and be) ¢, = —(9/6)* + (8/6)}
(cd and ce) ¢, = (9/6)F — (8/6)*

No two of these values are consistent, so that no two of these pairs can appear
among the selected five corners. This reduces us to 12 pentads.
These are tried successively until one is found which successfully satisfies the
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conditions stated in Section 8. The uniqueness result guarantees that only one
such success is possible.
Trial of the pentad (ad, ae, bd, ce, f) leads to the partly equiangular contrast

| || 0238 |
/ N\
=

The sums of products with unused corners (be) and (cd) are respectively 1.389 >
(9/6)* and .913 < (9/6)*. The last inequality shows that this contrast has a
lower correlation with corner (cd) than with the other corners, thereby violating
Condition (iii) of the Theorem. Expressing this violation in a standard way, we
say that this pentad ‘“fails on corner (ed).” When such failure is encountered,
we set aside the pentad, hoping to find the solution from another starting point.

Eight more of the pentads fail on one or both unused corners. Three pentads,
however, do not fail on the unused corners, and it will be instructive to consider
these in detail.

Pentad (ae, be, cd, ce, f) yields

I'0.07O ‘——Dl 0.07;) |\
/ F.z«tz |-->| 0.9 |3J
Nem—

The sums of products with (ad) and (bd) are 1.225 > (5/6)* and 1.295 > (8/6).
All of the original inequalities (a)-(f) are satisfied by this contrast, and it would
seem that this is the solution, with rk;, = .415. However, a subtlety arises in
cases with compound corners. The above contrast is not a convex combination
of the corners, as required by our Theorem. This may readily be seen by solving
for the linear combination of corners that produces the contrast, {c;}.

-0.238

Fo.z:se |-—>ro.913 l

{c;} = 1.155(ae) + .140(be) + 1.295(cd) — 1.123(ce) + .671(f) — 1.225(s)

Corner (ce) enters with negative weight, signifying that further manipulation
is needed.

At this point it is necessary to construct a single inequality which has an ex-
cess of unity at corner (ce) and zero at (ae), (be), (cd), and (f). (We are in
effect looking now at a hypothetical five-inequality problem with precisely the
present pentad as its standard simple corners.) This single inequality turns out
to be

(9) o5 — %4 — 23+ 21 = 0.

Trial proceeds according to (t4) of Section 11 by forcing equality to hold for
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(¢g) and finding the equiangular contrast among (ae), (be), (cd), and (f),

leading to
-0.211 '\

/l
M

with * = 478 vs. (ae), (be), (cd), and (f). The +* is improved, as one expects.
However, this contrast now fails on (bd) and is set aside in favor of a new trial

pentad.
The pentad (ad, ae, bd, cd, f) yields

-/[—()ﬁ]—»l-—o@\ 0.554 | —»| 0.913
\-/

which does not fail on (be) or (ce) and has 7%, = .477. However, this is not a
convex combination, (ad) entering with negative weight. The hypothetical in-
equality for which (ad) is the standard corner in this pentad is

-0.070 |—>|

[o 523J-—> o 913 ]

h) ©i—2— s+ 220

Forcing equality (k) and writing corner equations for (ae), (bd), (cd), and (f)
gives the contrast

/I 0.211 I—-b 0070l\
e
with 74, = .478. This contrast is indeed a convex combination (except for the
coefficient of the scale shift vector (s)).

{c;} = .733(ae) + .141(bd) + .592(cd) + .390(f) — .944(s).

The contrast succeeds on corners (be), (ce) and (ad), and thus is the required
solution.

This solution may also be reached via the remaining pentad (ae, bd, be, cd, ).
After the first step, corner equation (be) must be replaced by an equality which
turns out to be (h).

Similar exhaustion techniques appear to be necessary whenever the diagram
has loops which cannot be dealt with by symmetry arguments or by special de-
vices. It may be worthwhile to notice that the examples below are essentially
tree-like and may be straightforwardly solved, since symmetry allows us to put
¢; = ¢4 in the first and ¢ = cs and ¢; = ¢, in the second, so that we need con-
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sider only symmetrical corners, whose possible compoundness we need never
notice.

®
O— @>@-—-@——»@

OO0, OO,
O eo—0"
V. PROOFS

In this part we develop and establish the geometric facts which we have
already used. Certain simple facts about unit vectors in n-dimensional space come
first, and are then shown to imply the characterization and uniqueness of the
solution.

17. Three results of elementary geometry. We begin by establishing the
following:

LemMa. Given k + 1 nonzero vectors, o, w1, * ++ , Uz 0 a linear space, either

(1) There are non-negative constants a; such that wo = 2, aju;, or

(2) There is a hyperplane through the origin with u, definitely on one side and
all the w; either in it or on the other side.

If (1) fails, then the set K of all vectors of the form Y a,u;, all a; = 0, is
a closed convex set including the origin which does not contain u, . Consequently
there is a neighborhood U of u, which does not intersect K. This neighborhood
can of course be taken to be convex. If L consists of all vectors of the form au,
with @ > 0 and % in such a convex U, then L is an open convex set which is
disjoint from K. By a classical result [7], there is a hyperplane which separates
K from L in the weak sense that L is on one side of the hyperplane while the
points of K are either in the hyperplane or on its other side. Since the origin is
in K, and is a limit point of L, this hyperplane must contain the origin, estab-
lishing (2).

In our Euclidean n-space, where each hyperplane through the origin is per-
pendicular to a unit vector, this result can be restated as follows:

LemMa A. Given k + 1 unat vectors wo, w1, + + + , Uz tn Euclidean n-space, then
either

(1) uo = 2 aju; with all a; = 0, or

(2) there is a unit vector w such that uo-w < 0 but u;»w = 0 for j = 1to k.
Next we have:

Lemma B. If the u; , u, and v are distinet unit vectors with (1) w # v, (ii) u-u; =
o for all 7, (iii) v-u; = ¢ for all j, where ¢ > 0, then there are infinitely many
distinct unit vectors w with w-u; > ¢ for all j. These w come arbitrarily close to u.

If au + bv, where a, b > 0, is a unit vector w,

1= (au + w)-(au + ) = a® + b* + 2ab(u-v) < (a + b)*

©—®



USE OF NON-NUMERICAL INFORMATION 1367
sothata + b > 1 and
(w-u;) = (au + W) -u; = a(u-u;) + d@-u;) = (a + db)e > o.

Thus any such au 4 bv serves as a w, which will be arbitrarily close to w when
b is arbitrarily small.

Finally: .
Lemva C. If u = > am;, and w-u; = ¢ for all j, then the only other unit
vector v = Y, bu; making equal angles with all u; isv = —u.

Suppose first ¢ = 0. Then u-u = u- ) au; = 2 a;(u-u;) = 2, a;-0 = 0
which is impossible. If ¢ £ 0, then set { = (1/¢)wu, so that u;-t = 1 for all ; in
P. If v makes all v-u; = ¢, then, by the argument just made ¢ = 0, and we
may set s = (1/¢)v. We then have, for all u; in P,

ujrs =1 and u;(t —s) = 0.

Since ¢ — sis a linear combination of the u; , it follows that (t — s)-(t — s) =
0, that ¢t = s, that ¢y = ¢ and that ¥ = Z-u. The result is proved.

18. Necessity of the equiangular-or-closer condition. Consider now a set
A of unit vectors w; and any unit vector 4. The maximum angle 8 between u
and any u; is determined by the minimum value of u;-u, the one increasing as
the other decreases. If u cannot be represented in the form u = Y au; with
all a; = 0, then by Lemma A there is a unit vector w such that

u; = v; €08 n; + wsin 7;, U =1vcosn — wsin g

where v and the v; are perpendicular to w, 0 < 9; < 7/2and 0 < 9 = 7/2.
(Note that » = 0 is excluded.) Consequently

u-u; = (v-v;) cos n;cosq — sing; sin 9 < (v-v;) cos n; = vV-u;

so that u cannot maximize the least u-u;, and consequently cannot minimize
the greatest angle between w and any wu; .

Consider now some % which does maximize the least u-u; (and minimize the
greatest angle). It is certainly of the form v = D au; with all a; = 0. Suppose
further that u-u; > 0 for all j. Let M consist of those wu; for which u-ux =
min;[u-u;] that is for which the angle between u and u; is equal to the greatest
angle between w and any wu; .

For any v, define 6y as the maximum, for u; in M, of the angle between v and
uy, , and define 6,4 as the corresponding maximum over all »; in A. Consider 6; ,
the angle between v and w; , u; not in M. For v = u, 6; < 6, and, since both
0; and 0y are continuous, this inequality holds in a neighborhood of . Conse-
quently there is a neighborhood of % in which 6; < 6y for all u; not in M.

We assert now that 4 minimizes the greatest angle with the w; in M. If this
were not so, then there would be a unit vector v with

VeUr = MiNgn ¥ U > Migy U ue = mingy %-u;
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for all u; in M. And by Lemma B there would be w arbitrarily near « for which
the same result would hold. But in a certain neighborhood of u, 8, = 64, and
some of these w would thus have to make 6, smaller than for u, contrary to
hypothesis.

Moreover, since % does minimize the greatest angle with the «; in M, it must
be representable as ) aju; with all a; = 0 and all u; in M. This completes the
proof of the

NEecessity LEMMA. If u minimizes the greatest angle with the u; of any set A,
and this minimum is < 180°, then there is a subset P of A such that

(1) u s a linear combination with positive coeffictents of the u; of P

(2) u makes equal angles with each u; in P

(3) The angles between u and any w; not in P are no larger than these equal angles.

Given any representation u = Y au; with all a; = 0 and all u; in M, we
need only omit those u; with a; = 0 to obtain the subset P.

19. Sufficiency of the equiangular-or-closer condition. We may now easily
show that: If u = Y a;u; with a; = 0 and u; in a set P, and if u-u; = ¢ > 0
Sor all u; in P, then ¢ vs the maximum value of the least w-u; for w; in P.

Suppose the contrary, then for some unit vector w, we have w-u; > ¢ =
wu-u; for allu; in P.

Multiplying by a; and summing gives w-u = w- (>, a;u;) > u- (2 amu;) =
u-u = 1 which is impossible.

This shows that the necessary conditions of the last section are also sufficient.

20. Uniqueness of Solution. All that remains is to show that, given any set of
unit vectors u; , with the maximum of the least w-u; equal to ¢ > 0, only one u
makes equal angles with some subset of the w;, and is, at the same time, a
convex combination of the same ;. There are a finite number of subsets, and
by Lemma C at most two «’s have this relation to any subset. Hence at most a
finite number of u’s make u;-u = ¢ for all 5. Suppose two of these, say v and w,
were distincet, then by Lemma B there would have to be infinitely many more,
which is impossible. Hence the » that makes u;-u = ¢ > 0 for all j is unique,
and the proof of theorem of Section 8 is complete.
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