ASYMPTOTIC EXPANSIONS FOR A CLASS OF DISTRIBUTION
FUNCTIONS

By K. C. CHANDA!

Washington State University

1. Introduction and summary. Investigations have been made in the past by
several people on the possibility of extending the content of the classical central
limit Theorem when the basic random variables are no longer independent.
Several interesting extensions have been made so far. Hoeffding and Robbins
(1948) have established asymptotic normality for the distribution of mean of a
sequence of m-dependent random variables, where m is a finite positive constant.
The result has been proved by Diananda (1953) under more general conditions
and has been extended to cover situations where the random variables {X}
(t=1,2, 3,---) are of the type X, — E(X,) = > 50g;Y.; where {Y}}
(t = 0, 1, - -+ ) is an m-dependent stationary process and '

E(Yi) =0, Zogi < oo,
=

Walker (1954) has established asymptotic normality for the distributions of
serial correlations based on X, of the above form. However, so far no attempt
has been made to investigate whether the type of asymptotic expansions as
discussed by Cramér (1937), Berry (1941) and Hsu (1945) for the distributions
of means of independent random variables could also be extended to apply to
situations where the random variables are not independent. Chanda (1962)
has made a start in this direction, but the results are understandably incomplete.
An attempt has been made in this paper to investigate this problem more sys-
tematically. The conclusion is that an extension is possible under conditions
precisely similar to those under which Cramér, Berry and Hsu proved their
results.

2. Asymptotic distribution of the mean of a sequence of m-dependent random
variables. We assume that the process {X;} ¢t =1, 2, 3,---), BE(X;) = 0is
either a stationary m-dependent process or is a linear process defined by X, =
> %09;Yjwhere {Y;} (t= 0, £1, --- ) is a sequence of mutually independent
random variables with a common distribution which is not purely discrete and
E(Y,) =0, E(Y%) =1, a‘nd Z;o=0 lgll < =, IZ;'LOQJ'I > 0. Let the (r, -,
7.)th order joint absolute moment of X , - - - , X, exist for Y oy 7; < r(r = 3).
Define Z, = D sy Xi/sn where s> = Var (2 iy X,). Let F,(z), ¢»(a) denote
respectively the distribution function (d.f.) and characteristic function (ch.f.)
of Z, and F(z), ¢(a) be the corresponding quantities for the standard normal
distribution. Our results can then be stated as follows.

Received June 26, 1962; revised May 20, 1963.
1 Now at the Towa State University.

1302

[
)
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%J%
The Annals of Mathematical Statistics. BINORN

WWWw.jstor.org



EXPANSIONS FOR DISTRIBUTION FUNCTIONS 1303

Turorem. Let E{] [} |X,|"%} exist for D j—r; < r where r can be any arbi-
trary integer =3 when {X,} is a linear process defined by X, = D 70g;Y—; with
E(Y,) = 0,E(Y}) = Land D 5olgi] < o, |2 t0gi > 0 and the distribution
of Y, is not purely discrete and r = 3 when { X4} is a general m-dependent stationary
process with E(X,) = 0. Then

(2.1) Fuo(z) = F(z) + Gur(z) + RBur(2),
where Gy, »(x) s a linear combination of successive derivatives
F(g)(x)a Tt F3(r—3)(x)

with each coeffictent of the form "1 yvsr— 3) times a quantity depending
on r and the multivariate moments of X, - -+, X, but bounded for all n and

(2.2) |Ror(z)| £ M/n"™® forall z,

where M s a generic symbol denoting a finite positive constant. It can be noted,
in passing, that F(z) + G, .(x) is obtained by expansion of the cumulant func-
tion log ¢,(a) and term by term inversions.

Before proving this theorem we shall consider a few lemmas.

Lemma 1. Let N, denote the vth order cumulant of s,Z, . Then ), exist and
Nonl £ Mn forall v < 1.

Proor.
CaseI: X,is an m-dependent stationary process. Evidently, the (7, - -+ 7,)th
order cumulants «,, ... ,, of X1, -+, X, exist for > _jyr; < r.Let2 < » < 7.

Then M. = »! D4 (kg oo/ T 17<1 77 1) where > denotes summation
over all possible values of »; = 0(1 £ 7 < n) such that Y+, »; = ». Note
that «,,,....,, = 0 if at least one of the differences j — 7 > 7)), such that
vip > 0,v; >0, vjryg = --- = vy = 0, is greater than m. Let v;,, ---, »;,
(h < je < ¢+ < J,) be the ¢(¢ = v) non-zero values of the »; corresponding
to a non-zero term in Y_; . From m-dependence we must have 1 < juu — ju S m
(1 = u = ¢q— 1), and it follows that the number of possible values for 7,
given v, = Jo — J1, " 5 Vg1 = Jqg — Jo—1 lies between n — (¢ — 1) and

n— (¢ — 1)m.

To each of these corresponds the same joint cumulant, which by stationarity
is a function of v, , - -+, vy for given values of »;, , ---, »;, . It follows from
this that the total number of different non-zero cumulant terms occurring in
Y"1 remains finite as n — . As a matter of fact this number

Y v — 1 —
S 2in (q - 1) e
Hence these cumulants have a finite upper bound and

Nl S My! 21(1 ]lillyj z) = u!iM{n — (¢ —1)m*™ >, (1 qu;- 1),

g=1 i=1
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where Y, denotes summation over all positive integral values of »; subject to
>4 1 v; = ». As a result we have

(2.3) Mowl < Mn

Cask II: {X4 is a linear process. Let £(a) denote the ch.f. of Y, . Then the
ch.f. of s,Z, is given by

(24) e («Z o) de(< 5, 0).

*=1 =1tk

so that

(25) 2 u(E () + & (§g> . e s
< Ma ”‘2{2;<Zoga> + Z(Z ga) } < Ms,

k=0 \j=1+k

where @ = D¢ |gi| . But s2/n — D e 7,, 88 0 — o, Where
Ty = Zogjgj+v and Z Ty = (291)2 > 0
I= —00 J=
further | > 7| £ (2 ¢g5)* < . Hence for sufficiently large n, s3/n < M and

(2.6) Non| = Mn

LemMA 2. Let H(x) be any d.f. such that cumulants «, of H(x) of order r and
lower exist. Then if Y(a) s the corresponding ch.f. we can write

r—1
(2.7) log¥(a) = 2 (1a)’k/v! + 0:(a) ke,
y=0
where |0.(a)| = 1 for all |a] = e where € is a suitably determined finite positive

constant.
Proor. If we define 6.(«) by the relation above then it can easily be shown
that limg. 0,(a) = 7 /r! Since 6,(«) is a continuous function of « the result

of the lemma follows.
LemMA 3. Let ¢(a) xn »(ta) = [ exp (1az) dGy . (z). Then if

8n = SUP_c<a<w !Fn(x) — F(z) — Gn,r(x)l )
for all sufficiently large values of A(>0),

As, {3 foﬁn (1 — éos z) /2 dx — 1r}
< MA /;A |pn(a) — () {1 + xn,r(’ia)”a_l do.

For proof see Hsu (1945). The result is stated in Equation (71) on page 18
of Hsu’s paper.
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We shall now prove our theorem.
Case I: {X} is an m-dependent stationary process. Let ¢x(a) denote the
chf. of s,Z, . Then from Lemma 2 and the fact that ;. = 0, we have

log ¢n(a) = —("/2)Man + B:Msn || %,
where for |a| < ¢, |65 < M. Further since ¢.(a) = ¢n(a/s,) and Nz, = s5,

log ¢n(a) = —a’/2 + Ohsn | */sh ; where for |a| < sq.¢ |0 = M. We can
therefore, write ¢n.(a) = exp (— 16a*){1 + 6sexp (|s|)}, where [0[ 1 and
§ = Oghsn o ®/sh . Since ])\3,,] Mn by Lemma 1, and lima,e s,,/n > 0 so

that n/sh < M, |s| £ M|a®|/s. < %a® for sufﬁclent]y small values of |a|/s,. It
follows, therefore, that there exists € (0 < € = ¢) such that for all |a| < s,€’

(2.9) én(a) = exp (—a’/2) + 0 la| */s,exp (—o’/4),
where |6 £ M. By Lemma 3, taking xns(ia) = 0(Gn3(z) = 0) A = s,¢ we
have

(2.10) A [ loue) = ¢la)la” da = 1.

Hence A6, < M or
(2.11) Ras(2)| = M/s, = M/n.
Case II: {X,} is a linear process. Using the same symbols as in Case I, we

have from Lemma 2

r—1

lOg ¢:(a) = Z (ia),?\vm/(”!'s:z) + 0r>\r.n|alr’

r=0

where for |a| < ¢, |6/ = M. Hence

log ¢n(a) = TZO (Za) Mo/ (¥187) + 0N ulel/s5 .

Since My, = 0 and A, = 55,

$n(er) = exp (—a’/2) {1 + f_, s/i1 + f’lil(—_g%('_l%@}

where s = D 23 (ia) N/ (#18%) + 0Arm|al”/sh and |6] < 1 (here we have taken
r > 3; when r = 3 the term Z ;8 ’/ i1 is absent and the argument below simpli-
fies accordingly). Also since n/s2 < M,

r—4
(2.12) |s] = Mlaln/sn 2 |of’/(v1sh) = Mlaf*/s, exp (lal/s.) < Mlal'/sn
y=0
for |a| = s.e. Hence
(2.13) ls/7!| < Mlal"/s} exp (jlal/sa), (1 Sj=r—2).
If now we expand s’ and denote by P; the polynomial part of s'/j! of degree
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r — 3 in s," and the remainder term by R; we have from (2.13)

0

IR < Mlof"/s% 2. 7lal’/(vsh)
(2.14) B .
=M lal'—m"/s:fzz 7’/ (vlsh) S Mo ™**/s,7
for all |a| < sqe. Further from (2.12), —a’/2 + Is| = —o/2 + M|a|*/s. =
—a’/4 for some ¢ =< e. Hence for all |a] < s.¢ we have
¢n(a) = exp (—a’/2){1 + xn.(ia)}
+ 0/s el + lof™ + oo+ o7 exp (—a/4),

where xn.(ia) = i P;. Note that x..(ia) is a polynomial in s, of degree

r — 3 with coefficients which are functions of n and « but, for given «, are

bounded for all n. Evidently x..(ta) = 0 for » = 3. In Lemma 3, putting
= (sn€')"%, we have

(2.15)

A [ 1ou(@) = $(@)11 + x0 (i)} o™ de
sne’ (spe’)T—2
= (8,¢)"" {[ + } =J,+J: say.
0

Spe’

(spe’)T—2
725 6 [ lauwle™ d
(2.16) -
+[° l¢(a){1+xn'r(i,a)}la_lda].

Then J; £ M and

The second term on the right hand side of (2.16) is evidently <M. Now since
|>°% g;] > O there exists a positive integer N such that IZ,EO gl > 0 for all
k > N.From (2.4), wehavefor n > N + 1, ¢x(a)| £ [[i50 [E(a> b0 gi)| <
T4 [£(@D %0 g5)|- Again, since the distribution of ¥, is not purely discrete,
the only solution to £(a) = 1is @ = 0. Since |£(a)| = 1 for all o, there exists a
positive real number p < 1 such that |£(a)| = p for all |¢| = € however small
¢(>0) may be. Hence

(2.17) |én ()| < Mp"
for all |a] = €. Thus

(Sp€’)T 2 s'r“—selr 2
/ (@)™ da = / , 6 (@)|a™ da = Mo" log (s.¢).

Since (s.€ )" p" log (s.€) < M for all n, it follows that the left hand side of
(2.16) is =M. Hence Ad, = M and

(2.17) |Run(z)| € M/s2 < M/n¥™?

for all z.
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