THE COVARIANCE MATRIX OF A CONTINUOUS
AUTOREGRESSIVE VECTOR TIME-SERIES
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Norarion. We shall denote by z* or A™ the complex conjugate of the trans-
pose of a column-vector x or of a square matrix A. Thus, y*z = Y ,§, is the
scalar product of vectors z and y; but zy™* is a square matrix with components
.Gy (v =1, .-+, n).

TrEOREM 1. Let A be an n X n matrix of real or complex constanis a,, . Suppose
that all of the eigenvalues of A lie in the left half-plane. Let f (t) be an n-component
column-vector satisfying

Ef@O)f* ¢ — 1) = E,OLC — 1)) = §(z)C

where 6(r) s the delta-function and where C is a positive semi-definite Hermitian
matriz. Let x (t) be the stationary stochastic process defined by

dz(t)

(1) 7 Ax(t) + f(2) (—» <t < ).
Then
2) Ex(@)z*(t — 7) = e*' M

where the n X n covariance matriz M s uniquely determined by the system of n’
linear equations in n° unknowns

3) —C = AM + MA*.

Proor. The steady-state solution of the differential equation (1) is

z(t) = f_; V(N dn = fow Mt — \) d\.

Therefore,

Ex(t)z*(t — 7) = Efwf“° MLt — N — 7 — u)e™ d\ du
0 0
= -/‘m/-“° o(r 4+ u — N)Ce" dr du
0 0

= [ miees au = o
0
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where
(4) M = Ex()z*(t) = f #4044
0

Let the integrand in (4) be called Q (u). Differentiation gives

) @/dw)Q ) = AQ(r) + Qu)A™.

Since A has all its eigenvalues in the left half-plane, the matrix @ (u) tends
exponentially to 0 as u — . Therefore, we may integrate (5) from 0 to « to
obtain

6) —C = AM + MA*.

This is the classical Lyapunov equation of stability-theory. The uniqueness of
the solution M for any fixed C is established by the argument that, for any C,
Hermitian or non-Hermitian, the n’ linear equations (6) in n’ unknowns m,,
have a solution given by the convergent integral (4). Since every system (6) has
some solution, the solution is unique, by the theory of linear algebraic equations.
This completes the proof.

It was necessary to assume that A have its eigenvalues in the left half-plane
to insure that the moments be finite and that the process z(¢) be stationary.
The matrix C is necessarily positive semi-definite because for any vector v we
have the quadratlc form v*Cv = Ea*a = 0 where o is the random number
a = ([5 @) dt)o.

TurorEM 2. Let ¢ (t) be the real stochastic process satisfying the differential
equation

(7) ™M) +ad™ @) + - Fadp@) =w@) (o <t < w)

where w (t) is real white noise, and where the a, are real numbers such that all the
zeros of the characteristic polynomial ™ + at™" + -+ + a, lie in the left half-
plane. Then forr,s = 0,1, --- ,n — 1

) Eo” ()™ (t) = 0 (r + s odd)
= ( _)(s—r)/zm(s+r)/2 (r + s even)
where the n numbers mo, m1, «++ , Mu_ are uniquely determined by the n linear
equations
(9) ()" msq;( E) /2 (=) tnsqis g = 0 (k=0-,n—2)
9 <q=(n

(k=n-—1)

nf

where we define ay = 1.
ExampLE. For n = 6 the theorem states that
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mo 0 -m 0 my 0 )
0 my 0 — My 0 mg
() ,(8) | —m 0 Mg 0 —mg 0
(B )r0m0,0005 = 0 —my 0 M 0 —m,
me 0 —Mms3 0 may 0
0 ms 0 — My 0 ms
where myq , - - -, ms are determined by the linear equations
a6 —as ay —1 0 0 ) (meo) 0
0 as —as ay 0 0 my 0
0 —0ag a4 — Qs 1 0 me| _ 0
0 0 —a a —ax O ||msg  |O] "
0 0 473 — Q4 (42 -1 my 0
0 0 0 as —az; ap ) |\ms 3
Proor oF THE THEOREM. Define
0 1 0 0
:, ] 0 0 1 0
( 10) T = . , A = . e
(n—1) 0 0 0 1
¢ —Qn —Qp1 —Q0Qp_2 —ay
0 0 0 0
: 0 0 0
;= 0|’ c=1. ... . .
w(t) o --- 0 1

M = (mrs) = (E¢(r)¢(8))r,s=0,l, eee , n—1e
Then

de/dt = Az + f, Ef@Q)f*¢ — r) = Cé(s), Eaz* = M.

By Theorem 1 the real, symmetric matrix M is uniquely determined by the
equation —C = AM + MA™, which states in this case:

11) 0 = mip1,; + Mijn (Gj=0,-,n—2)
n—1
(12) 0= Mit1,n—1 — Z An—yMiy (’L = 0, crr,Nn — 2)
y=0
, ‘ —1
(12) 0 = Muy,j41 — Zoan_ym,,- (j=0,,n—2)
n—1 n—1
(13) 1= Zoan—vmn—l,v + ZO An—yMy,n—1 -

Equation (11) states that on any south-west to north-east diagonal of the
matrix M the components are of equal magnitudes with alternating signs. There-
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fore, since M is symmetric, m; i1 = —mipa,; = 0, so that m,, = 0 when r + s
is odd. Define m, = m,, . Then -

Mys = 0 if r + sis odd
(14)

—r) /2 . .
= (=)™ Maysye  if 7 4 s is even.

By the symmetry of M, Equations (12) and (12') are identical. By (14) we
have forallk =0, ---,n — 1

n—1

(15) Z Qp—y Mpy = (— )k Z (— ))‘an+k—2)\ my .
»=0 k/2<NE (nt+k—1)/2
Furthermore, by (14),
— M1 m1 = 0 (7 + nodd)
(16) (=12 .
= (—) Mntj)/2 ( + neven)

Therefore, if we define a; = 1, minus one times Equations (12) and minus one-
half times Equation (13) may be written together in the form (9). This com-
pletes the proof. ,

A result equivalent to Theorem 2 was obtained, as the conclusion of a long
argument involving the theory of residues, by R. S. Phillips [1] pp. 333-339. A
similar derivation was obtained later by R. C. Booton, Jr., M. V. Matthews,
and W. W. Seifert [2] pp. 366-371. The inverse of the covariance matrix M was
discussed by Parzen [3]. For discrete-parametric autoregressive time-series the
inverse of the covariance matrix was computed by M. M. Siddiqui [4].

TuEOREM 3. Let ¢ (1) be the stochastic process satisfying the differential equation

17) e (t) +ad” @) + - Fadl) =w(l) (o <t< o)

where w (t) vs white noise, and where the a, are complex numbers such that all the
zeros of the characteristic polynomial ™ + o™ 4 -+ + an, lie in the left half-
plane. Then forrys, = 0,1, -+ ;n — 1

(18) Bo® )67 (t) = " birse

where po, p1y *** 5 Bon—s Gre Teal numbers uniquely determined by the 2n — 1 real
linear equations

n+j n+j
Z'ajqﬂq =0, Z‘Biql‘q =0 G=0,---,n—2)
(19) a=j L a=j
q;_f‘n—l.ql-‘q = '21.7(_)”_1

where ajq , Bjq are the real numbers given by

(20) ajq + Big = (—1)an—g1j-
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Proor. For complex coefficients a, the relations (11)-(13) must be replaced by

(21) 0= Mrt1,s + My 41 (7', s = 0, cre, N — 2)
n—1 )
(22) 0= Myg1,n—1 — Zodn_,mﬂ, (1‘ = 0, cee,n — 2)
’ n—1
(22 ) 0 = mn—-l,j+l —_ Zoan—”mi‘j (j = 0’ ceey, n — 2)
n—l1 n—1
(23) 1= Z‘; dn—vmn—-l,v + Zo AnyMy,n—1 -

Since m,s = M, in the complex case, relations (22) and (22') are equivalent.
Since m,, = E|¢® |}, we have m,, = 0. Therefore, by (21), terms my, for r + s
equal to an even constant are real, of equal magnitudes, and of alternating signs.
For r = s Equation (21) states that m,,, + My, = 0, or, since M is Her-
mitian, 2 Re m,41,, = 0. Therefore, terms m,, for r + s equal to an odd constant
are pure imaginary and equal except for alternating signs. In summary, there

exist real numbers po, p1, - - - , pan—e such that
ONO) =
(24) E¢ D = Mes =T fhrs -

These real numbers are determined by Equations (22") and (23), which by the
identity (24) may be written as
n—1

— gy = 2 G g = 0 (G= 0,00 n = 2)
2

n—1

2Re X Uni™ hyina = 1.
y=0

By rearranging the indices and taking real and imaginary parts, we find the
required Equations (19).

THEOREM 4. For k = 0, --- , n — 1 let i (t) be the solution of the initial-value
problem
25) U0 + a4+ o+ e (®) =0 (t>0)
¥ (0) = o r=0,--,n—1).
Then under the hypotheses of Theorem 2
BeOW¢G 1) = T 4 () mn.
kts even

More generally, under the hypotheses of Theorem 3,

n~1

E¢” ()60 — ) = 2 i ()8 e -

k=0
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Proor. Let A be defined by (10). The matrix X = ¢* is defined as the solu-
tion of the initial-value problem (d/di)X () = AX({¢)(¢ > 0), X(©0) = I.
Therefore, by (25), e** = @ (t))rsm0,....n1 . Theorem 4 now follows from
formula (2) of Theorem 1.
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