THE SPECTRAL THEOREM FOR FINITE MATRICES AND COCHRAN'S THEOREM¹

By M. F. SMILEY

University of California, Riverside

If B_0 , ..., B_k are real symmetric n by n matrices such that

$$\sum (B_i; i = 0, \dots, k) = I$$
 and $\sum (\operatorname{rank} B_i; i = 0, \dots, k) = n$

where I is the n by n identity matrix, then there is a real orthogonal matrix P such that $P'B_iP$ is a diagonal matrix of zeros and ones $(i=0,\dots,k)$. This is W. G. Cochran's Theorem [2] which is of great importance in the analysis of variance ([5], p. 154). Our purpose here is to give a proof of this theorem which reveals it as a characterization of the spectral decomposition of finite real symmetric matrices and may suggest some useful generalizations.

Let us first agree on some notation. If D is a division ring, we let $V_n(D)$ denote the totality of row vectors $x = (\xi_1, \dots, \xi_n)$ with ξ_g in D $(g = 1, \dots, n)$. We also let D_n denote the totality of n by n matrices with elements in D.

LEMMA 1. Let D be a division ring and let A and B in D_n be such that AB = BA and rank (A + B) = rank A + rank B. Then AB = 0.

PROOF. Let R_A denote the totality of vectors xA for x in $V_n(D)$. Define R_B and R_{A+B} in a similar manner. Then R_A is a subspace of $V_n(D)$ and rank $A=\dim R_A$. Now

$$\dim (R_A + R_B) + \dim (R_A \cap R_B) = \dim R_A + \dim R_B = \dim R_{A+B}.$$

Because $R_{A+B} \subseteq R_A + R_B$, this implies that $R_A \cap R_B = 0$. But then xAB = xBA is in $R_A \cap R_B = 0$ so that xAB = 0 for all x in $V_n(D)$ and hence AB = 0. Lemma 2. Let R be a ring with identity element 1 for which 2x = 0 implies that x = 0. If elements a_i $(i = 0, \dots, k)$ of R satisfy, for $i \neq j$ and $i, j = 0, \dots, k$,

$$\sum (a_i; i=0,\cdots,k)=1,$$

(2)
$$a_i \sum_{j \neq i, j = 0, \dots, k} (a_j; j \neq i, j = 0, \dots, k) = 0,$$

(3)
$$(a_i + a_j) \sum_{i=1}^{n} (a_h; h \neq i, h \neq j, h = 0, \dots, k) = 0,$$

then $a_i^2 = a_i$ and $a_i a_j = 0$ for $i \neq j$ $(i, j = 0, \dots, k)$; that is, the elements a_i $(i = 0, \dots, k)$ are orthogonal idempotents of R.

PROOF. Multiply (1) by a_i on the left and use (2) to get $a_i^2 = a_i$ ($i = 0, \dots, k$). By (3) we have $(a_0 + a_1)(a_2 + \dots + a_k) = 0$, and (2) gives $-a_0a_1 - a_1a_0 = 0$. By symmetry, we have $a_ia_j + a_ja_i = 0$ for $i \neq j$ ($i, j = 0, \dots, k$). But then $a_ia_j + a_ia_ja_i = 0 = a_ia_ja_i + a_ja_i$ so that $a_ia_j = a_ja_i$ and $2a_ia_j = 0$, and we have $a_ia_j = 0$, as desired.

Received 1 August 1963.

¹ Research supported by NSF Grant GP-1447.

Proof of Cochran's Theorem. In Lemma 1, take $A = B_i$ and $B = \sum (B_j; j \neq i, j = 0, \dots, k)$. Then

$$n = \operatorname{rank} (A + B) \le \operatorname{rank} A + \operatorname{rank} B = n$$

gives rank $(A+B)=\operatorname{rank} A+\operatorname{rank} B$, and AB=BA is clear since A+B=I. This verifies (2) of Lemma 2. A similar argument with $A=B_i+B_j$ for $i\neq j$ and $B=\sum (B_h; h\neq i, h\neq j, h=0, \cdots, k)$ verifies (3) of Lemma 2. Thus the matrices B_i $(i=0,\cdots,k)$ are orthogonal (hence commuting) idempotents and their simultaneous reduction to the desired diagonal forms is a consequence of a standard theorem on matrices.

Added at the suggestion of a referee: A. T. Craig [1] gives a beautifully direct and simple proof of Cochran's Theorem. Graybill and Marsaglia [3] and Hogg and A. T. Craig [4] discuss interesting modifications of Cochran's Theorem.

REFERENCES

- CRAIG, A. T. (1938). On the independence of certain estimates of variance. Ann. Math. Statist. 9 48-55.
- [2] COCHRAN, W. G. (1934). The distribution of quadratic forms in a normal system. Proc. Cambridge Philos. Soc. 30 178-191.
- [3] GRAYBILL, F. A. and MARSAGLIA, G. (1957). Idempotent matrices and quadratic forms in the general linear hypothesis. Ann. Math. Statist. 28 678-686.
- [4] Hogg, R. V. and Craig, A. T. (1958). On the decomposition of certain χ² variables. Ann. Math. Statist. 29 608-610.
- [5] Tucker, H. G. (1962). An Introduction to Probability and Mathematical Statistics.

 Academic Press, New York.