THE SPECTRAL THEOREM FOR FINITE MATRICES AND
COCHRAN’S THEOREM!

By M. F. SmiLeY
University of California, Riverside
If By, ---, By are real symmetric #» by n matrices such that
2. (Bi;i=0,---,k) =1 and Y (rank B;;i=20,---,k) = n

where [ is the n by n identity matrix, then there is a real orthogonal matrix P
such that P'B;P is a diagonal matrix of zeros and ones (¢ = 0, - - - , k). This is
W. G. Cochran’s Theorem [2] which is of great importance in the analysis of
variance ([5], p. 154). Our purpose here is to give a proof of this theorem which
reveals it as a characterization of the spectral decomposition of finite real sym-
metric matrices and may suggest some useful generalizations.

Let us first agree on some notation. If D is a division ring, we let V,(D) denote
the totality of row vectorsx = (&, -, %) with&inD (g =1,---,n). We
also let D, denote the totality of n by n matrices with elements in D.

Lemma 1. Let D be a division ring and let A and B in D, be such that AB = BA
and rank (A + B) = rank A + rank B. Then AB = 0.

Proor. Let R, denote the totality of vectors zA for z in V,(D). Define Rs and
R 415 in a similar manner. Then R, is a subspace of V,(D) andrank 4 = dim R, .

Now
dim (RA + RB) + dim (RA n RB) = diInRA + dimRB = di'mRA.,.B.

Because R 13 & R4 + Rjp, this implies that B, N Bz = 0. But then z4AB =
zBA isin R4 N R = 0 sothat zAB = 0 for all z in V,(D) and hence AB = 0.

Lemma 2. Let B be a ring with identity element 1 for which 2x = 0 implies that
x = 0. If elements a; (¢ = 0, --- , k) of R satisfy,fori # jand 1,7 =0, --- , k,

(1) Z(ai;i=0,-~,k)=1,
(2) @22 (a5 #4,j=0,---,k) =0,
(3) (ai+ai)Z(a’h;h?£iyh?£j}h=07""k)=07

then ai = a; and aw; = Ofori = j (4,7 =0, -, k); that s, the elements
a; (¢ =0, -, k) are orthogonal idempotents of R.
Proor. Multiply (1) by a; on the left anduse (2) togeta = a; (s =0, - - , k).

By (3) we have (a0 + a1) (@2 + -+ - + ax) = 0, and (2) gives —aw — aa = 0. .

By symmetry, we have a.a; + aja; = 0 fore = 5.(4,7 = 0, --- , k). But then
a.a; + aa;0; = 0 = aaa; + a;a; so that a,a; = aja; and 2a.,a; = 0, and we
have a;a; = 0, as desired.
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Proof of Cochran’s Theorem. In Lemma 1, take A = B;and B = ) (B;;
j#14,5=0,---,k). Then

n =rank (A + B) <rank4 + rank B = n

givesrank (4 4+ B) = rank A + rank B,and AB = BA isclearsince A + B = I
This verifies (2) of Lemma 2. A similar argument with A = B; + B, for ¢  j
and B = 2 (Bi;h =4, hs%j,h=0,---,k) verifies (3) of Lemma 2. Thus
the matrices B; (¢ = 0, - - - , k) are orthogonal (hence commuting) idempotents
and their simultaneous reduction to the desired diagonal forms is a consequence
of a standard theorem on matrices.

Added at the suggestion of a referee: A. T. Craig [1] gives a beautifully direct
and simple proof of Cochran’s Theorem. Graybill and Marsaglia [3] and Hogg
and A. T. Craig [4] discuss interesting modifications of Cochran’s Theorem.
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