ON THE AXIOMS OF INFORMATION THEORY

By P. M. Lee
Churchill College, University of Cambridge

1. Introduction. The uniqueness of Shannon’s measure of information is here
proved under less restrictive conditions than previously.

Let Hi(py, p2, -+, pe)(2_p; = 1;all p’s > 0) be a measure of the informa-
tion provided by the performance of an experiment with k& possible outcomes of
probabilities p1, p2 , - - px (c.f. Shannon [4] or Khinchin [3]).

We assume

(i) that H, is permutation-symmetric for £ = 2, 3;i.e. Hy(t,1 — t) = Hy(1 — ¢,
t) = h(t),say,for 0 < t < 1, and Hs(p1, P2, ps) = Hs(Px, , Pry » Prs) for (m,
w2 , m3) any permutation of (1,2, 3) and any p;, p2, ps > 0 such that p; + p»
+ps=1;

(ii) that A(-) is a finite real-valued Lebesgue measurable function defined on
(0, 1) and that h(3) = 1 (previous authors have assumed A(-) continuous on
[0, 1], see Fadeev [1], monotone on (0, 3) and on (%, 1), see Kendall [2], or
Lebesgue integrable on [0, 1], see Tveberg [5]);

(iii) that for 0 < ¢t < 1,k > land p1, p2, -~ px > 0, 2_p; = 1, we have
Hk+l(tpl ’ (1 - t)pl y P2y 0, pk) = Hk(pl » T pk) + PIHZ(t, 1- t); so that
Hy(py, p2 ps) = h(p1+ p2) + (p1 + p2)h(py/p1 + p2).

From (i) and (iii) we see that A(-) must satisfy the functional equations

(iv) h(t) = h(1 — ¢),

(v) h(p1) + (1 = p)h(p:/1 — p1) = h(pr + p2) + (p1 + D) h(Py/D1 + p2)

(vi) h(p1) + (1 — p)h(p2/1 — p1) = h(p2) + (1 — p2)h(p/1 — ps).

We shall show under assumptions (ii), (iv), and (v) that h({) = —t Ig
t — (1 —t)lg (1 —t) (g denotes logarithm to base 2, log denoting logarithm to
base e). It follows that H, is uniquely determined for all k; in fact

Hi(pr,pe, -+ o) = — 2p:lg ps.

2. Simple lemmas. As in Zaanen [6] (Section 36, Theorem 1 and Lemma v),
we observe that if u denotes Lebesgue measure in R, , and if ¢(-) is a continu-
ously differentiable increasing function with a strictly positive derivative which
maps an open interval I onto an open interval ¢(/), then ¢ maps Lebesgue sub-
sets @ of I to Lebesgue subsets ¢(Q) of ¢(/), and

w(s(Q)) = f (1) dt.

From this we deduce:
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Lemma 1. Let J < (0, 1) be a Lebesgue set of measure c. Then
Ky, = {z/[1 — (1 — z)yl;ze J}
28 a Lebesgue set for each y € [a, b] < (0, 1) and u(K,) = (1 — b)e.

3. The fundamental lemma.

Lemma 2. Let E be a Lebesgue set of positive measure in [0, 1] which is sym-
metrical about the point 4. Then there existk = 2,0 < a < b < 1, and ¢ > 0 such
that any y ¢ [a, b] can be expressed asy = v/1 — nwithy,ne EN (1/k, 1 — 1/k)
for a Lebesgue set of distinct values of n of measure at least c.

Proor. Choose a k such that @ = E N (1/k, 1 — 1/k) has positive measure.
For any continuous function f on [0, 1] one has lim, 11 f(yz) = f(z) uniformly in
z, (as f must be uniformly continuous on [0, 1]), thus

lim [ 1) — (@) lu(dz) = 0
y11

Because the continuous functions are dense in L, , (Zaanen [6], Section 30, Ex.
10) this implies

tim | [xe(v2) — xo(2)lu(dz) = 0
y11

(xe being the indicator of G). Hence

lim p{pine @, (1 — )y e @} =limp{z:ze G, zy e G}
y11 vi1

= limf xe(zy)pu(dz) = f Xe dp.
y1T1ve ]

On writing (1 — 5)y = v, 3u(G) = ¢, the lemma is proved, for suitable ¢ and b.
(N.B. We could here have taken b = 1, but in the application to follow we shall
want b < 1.)

4. Boundedness of solutions. We now show that: Every measurable solution
of (iv) and (vi) zs bounded on some interval.

Proor. {£:0 < £ < 1, |h(£)| > n} is measurable and of finite measure (<1),
and decreases to the null set as n T <, so there exists N such that, when E =
{£:0 < £ < 1, |h(§)|] = N}, u(E) = %. Choose k, a, b, and ¢ as in Lemma 2,
noting that £ = 1 — E. If y ¢ [a, b], then, as in Lemma 2 we may write y =
v/1 — 7 in a great many ways with v, n¢ E N (1/k, 1 — 1/k). The values of
n/1 — v for such representations are all positive and less than unity (as
¥ <1—9=19<1— %), and the set of such values is the set of values of
7/(1 — (1 — 3)y), hence (Lemma 1) covers a Lebesgue set whose measure is at
least (1 — b)ec.

We now observe that there exists M = N such that u(F) < 3(1 — b)c, where
F = {£:0 < £ < 1, |h(¢)| > M}. It follows that for any y ¢ [a, b] there is at least
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one representation y = v/1 — 9, such that 5/1 — v 2 F, butv, ne¢ E N (1/k,
1 — 1/k). Hence, by (vi),

h(y)] = |h(v/1 — )] = (1 — 2)7'|h(v) + (1 — ¥)k(n/1 — %) — h(n)]|
S (1= )Y RO)| + [R(n/1 = )| + |h(n)]} <3kM as ne(1/k,1— 1/k).

This completes the proof.

The above is now extended to become: Each measurable solution of (iv) and
(vi) is bounded on every compact subset of (0, 1).

Proor. Let A be the set of positive A such that h(a) — Ar(a/N) is ultimately
bounded as o | 0. Plainly (a) 1¢ A, (b) A>C A, (¢) A~ C A, so A is a multi-
plicative group. Now let J be an open interval contained in (0, 1) on which
h(-) is bounded; we already know that such an interval exists. If 1 — X\ ¢ J, then

since (vi) gives
(1) h(a) — Mi(a/A) = h(1 — ) — (1 — a)h(1 — /1 — @)
0D<a<A<),

we see that A ¢ A. Thus A covers a measurable set of positive measure, and so is
the whole of (0, ) (the latter remark follows on noticing that on taking loga-
rithms we have an additive group, which thus contains its own difference set,
hence a non-degenerate interval around zero (Zaanen [6], Section 10, Lemma
8)).

From Equation (1) above and from (iv) it now follows that each
t =1 — Xe (0, 1) lies in an open interval of boundedness of k(- ), so that A(-)
is bounded on each compact subset of (0, 1).

5. The uniqueness of h(-). We cannot from the argument above deduce the
boundedness of () on the whole of (0, 1); if we could, the desired result would
follow from the work of Tveberg [5]. We can, however, adapt one of his arguments
to obtain further useful information about A(-). Integration of (vi) (Zaanen [6],
Section 36, Theorem 1) gives

® a/l—p #/1—a
(w=Wh@) = [amdy+a [y dy— A —al[ k) dy
A a/1-A Mi-a
for0 <a < a+N= a-+ u <1,and so we see that h(-) is continuous and in-
deed (by iteration) of class C* at every interior point of the unit interval.

We cannot, however, appeal to Fadeev’s theorem [1] since that would require
continuity on the closed interval [0, 1], but we can adapt the argument at the
end of Kendall’s paper {2] (see his Equation (12) et seq.). The argument, which
uses (v) and (vi), simplifies drastically because of continuous differentiability;
it depends on putting b’ (t) = E(t/1 — t) to obtain E(u) + E(v) = E(wv), the
unique continuous solution of which is well known. Note that under (iv), (v)
& (vi). The following has thus been proved:

TuEOREM 1. The only measurable solutions to (iv) and (vi) are the multiples of
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Shannon’s function h(t) = —tlg ¢ — (1 — t) lg (1 — t). The uniqueness of
H, for k > 2 now follows.

This result is best possible in the sense that there are nonmeasurable solutions
of (iv) and (vi) other than Shannon’s function, for example h(t) = —if (Ig t)
— (1 — t)f (Ig (1 — t)) where f is a non-measurable linear function.

I am greatly indebted to Professor D. G. Kendall and the referee for several
helpful comments on this work leading to simpler proofs of the results of Sections
2 and 5, and to the Department of Scientific and Industrial Research for a
Research Studentship.
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