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0. Summary. A distribution of a sum of identically distributed Gamma-
variables correlated according to an ‘“exponential” autocorrelation law pr; =
p* 7k, j = 1, --- n) where p; is the correlation coefficient between the
kth and jth random variables and 0 < p < 1 is a given number is derived. An
“approximate’’ distribution of the sum of these variables under the assumption
that the sum itself is a Gamma-variable is given. A comparison between exact
and approximate distributions for certain values of the correlation coefficient, the
number of variables in the sum and the values of parameters of the initial dis-
tributions is presented.

1. Introduction and general remarks. Distribution of sum of correlated
Gamma-variables has a significant interest and many applications in engineering,
insurance and other areas. Besides the applications mentioned in [3] and [6]
we should like to note the usefulness of this distribution in problems connected
with representation of precipitation amounts. Weekly or monthly, etc., precipita-
tion amounts are regarded as sums of daily amounts, the latter being well fitted
Gamma distribution [4]. A particular solution for the case of a constant correla-
tion between each pair of variables in the sum is presented in [3]. In this note, we
shall extend this result for the case of “an exponential autocorrelation scheme”
between the variables, where each one of the variables has the marginal density
function given by:

f(z) = [T(r)6T e "2, 220

(1.1)
=0 x<0

In meteorological applications, it is sometimes assumed that the sum random
variable is itself a Gamma-variable and an “approximate’” Gamma distribution
whose first two moments are identical with the “exact’ distribution of the sum
is used [4], (see also, for example, [7] for an earlier application in another field).
In the case of identically distributed r.v. and of stationary exponential correla-
tion model (namely, when the correlation coefficient between the sth and the
jth r.v. in the sum is given by p"*™’ for all 7 and j, p being a given positive con-
stant) it is easy to verify [4], that the appropriate parameters r, and 6, of the
“approximate” Gamma-variable, representing the sum r.v., are given by:

2 2p 1 - p”
(1.2) Tn = 3N n + n — r
1—0»p 1—o»p
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and

(13) 0n {[n-l-l_p(n—ll:‘:n)]/n}o

when 7 is the number variables in the sum and r and 6 are the parameters of
initial r.v. distributed according to (1.1). Since the first two moments completely
determine Gamma distribution, the “approximate’ distribution is unique. The
purpose of this note is to compare this “approximate’ distribution (which is
quite easily computable and applied) with an “exact” distribution of the sum
(which is much more difficult to be actually determined). We also note that,
similar to the case treated in [3], the obtained “natural” exact distribution may
not be unique, since the correlation scheme, in general, does not determine
uniquely a multivariate Gamma distribution; this however, does not affect the
final results of this paper.

2. Distribution of a sum of identically distributed exponentially correlated
Gamma-variables. Consider the “characteristic function” ¢(t;, t2, - - -, tn),

(21) ¢(tl sle, e, tn) = II - iOTVI—r7

where 6 and r are positive constants, [ is then X n identity matrix, T'isthen X n
diagonal matrix with the elements ¢;; = ¢; , and V is an arbitrary n X n positive
definite matrix. This characteristic function leads to a joint probability density
function whose marginals are glven by (1.1) and whose matrix of second moments
is some positive definite matrix V*, say.

In particular, if the elements of V are given by vi; = ' 4, =1,--,m,
(0 < p < 1 a given constant) it is easy to verify by differentiation of (2.1) that
the corresponding elements of V* will be given by v¥; = 760%™, 4,7 =1, - ,n
The characteristic function of the distribution of the sum of the random vari-

ables whose joint distribution has the characteristic function given in (2.1) is:
(2.2) ' o(t) = |I — 6V

and (2.2) may be expressed in the form

(2.3) 6(t) = I_I (1 — iong)™,

where the A; are the characteristic roots of the matrix V.
The distribution function of the Gamma-variable with positive parameters
r and @ denoted here by F,(-) is given by:

x
F.(z) e du, z=0

1
(24) B ofr(r)fo
=0 z <O0.

Let Y be the random variable whose characteristic function is given by (2.3).
The Y has the same distribution as the random variable X = > 7, \;X;,
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where X;, 5 = 1, 2, ---, n, are independent identically distributed random
variables, each following a Gamma distribution with parameters .r and 6 as
given in (24).

Using the well-known method developed by Robbins and Pitman in [5], (see
also Box [1], Theorem 2.3), we easily obtain the distribution of the r.v. ¥ as
follows:

Pr (Y < y) = IZ(:) ckF,,,+k(y/)\*)

0 i y/\* ” nr+k—1 o
) Y T Ly ) M
=0 0T(nr + k) Jo 0

where A* = min; \; and the coefficients ¢, are determined by the identity,

(2.5)

(2.6) ILO/ADL = 0 =N/l = Zad
The upper bound on the error of truncation is also given by Robbins
and Pitman [5]:

P2
(2.7) 0<SPr (Y <y) — D cFupx(y/A) =1 - > .
P !

Py

The characteristic roots A; (j = 1 - - - n) of the matrix. V = {p'"""'} can be calcu-

lated from the following formulae:

(2.8) A= (1 —2pcost; + o)1 — oY), i=12 - ,n

where 8, are the values of 8 which satisfy one or the other of the equations:
sinf(n + 1)6 = psin2(n — 1)8 and

(29) cosi(n + 1)0 = pcosi(n — 1)6.

We have been unable to find these algebraic results in the literature.? The
outline of their derivation is as follows. The inverse of V is

(2.10) V7= ((14p) - p'4A — pB)(1 — p)"

where [ is the n X n identity matrix, A is the n X n matrix with elements a;; =
@., = 1 and all other elements 0, and B is the n X n matrix with b,; = 1 for
[¢ — 7] = 1 and all other elements 0. Hence the characteristic roots of V™" are

(1 —p) 7,5 =1,2, -+, n, where the v, are those values of v which satisfy
the equation
(2.11) [(1 + " —¥)I — p’A — pB| = 0.

Let A.(v, p) be the Lh.s. of (2.11). Expanding A.(v, p) by its minors we obtain

2 Note added in proof: Professor J. S. Frame of Michigan State University has sent the
authors a derivation of the characteristic roots of the matrix ¥V which is similar to, but
simpler than, the one given here.
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(212) Au(v,0) = (1 — )™ Duz(v, ) — 20°(1 — ¥)Dus(v, p) + 6'Dus(7, p),
where D, (v, p) is the determinant of the n X n matrix U,

(2.13) U= (14 p"—v)I — pB.

Expanding D, (v, p) by its minors we get the following difference equation

(2.14) Du(v,p) — (1 + " = ¥)Ducs(v, p) + p'Dus(v, 0) = 0,
and, is it as well known, (see e.g. [2]), this difference equation has the solution
(2.15) Du(v, p) = p" sin (n + 1)6/sin 6,
where 1 + p* — v = 2p cos 6.

Substituting (2.15) in (2.12) and equating A.(v, p) to zero we obtain the
equation .

(n—1)0

(1 =yt B 2 DO o gy prrsin (0 = 200

sin
(2.16) in ( 3)
n 80 (n — 3)0
T sin @ =0.

Using the complex representation of the sine function we get after multiplying
(2.16) by sin 0 (excluding the value of 6 for which sin § = 0),
@17) & = e’ = p) = £TTC(A =M — ),

and after a few algebraic manipulations the equation (2.17) reduces to

(2.18) sin ¥(n + 1)8 = psin 3(n — 1)6,

and

(2.19) cos3(n + 1)0 = pcos i(n — 1)6.

If6;,5 = 1,2, - - -, n, are the values of 8 which satisfy one or the other of the equa-

tions (2.18) and (2.19), then the characteristic roots of the matrix V™" are
given by v; = (1 — 2p cos 8; + p°)(1 — p°)™", and the characteristic roots of
V are \; = 7;1 = (1 — 2pcosd; + PZ)—I(]- - p2)1j =12-,n
Apparently it is not possible to express the solutions of (2.18) and (2.19) as
explicit functions of #» and p. However, for 0 < p < 1, it can be verified that the
solutions of (2.18) are located one in each of the intervals {[(2k — 1)/n]r,
2kr/(n + 1)}, k=1,2,--- 3n or 3(n — 1) depending on whether n is even or
odd; and that the solutions of (2.19) are one in each of the intervals
{[(2k — 2)/n)x, [(2k — 1)/(n + V)]r, bk =1,2,--+ , }nori(n+ 1) depending
on whether n is even or odd. We have used a convergent iterative method for
finding 6, ; details of this are omitted but can be obtained from the authors.

3. Comparison between the approximation and exact distributions of sum of
identically distributed exponentially correlated Gamma-variables. In order to
obtain the distribution of sum of identically distributed Gamma-variables corre-
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lated according to the stationary exponential law (r(X:, X;) = p'*7,
i,j = 1,---, n) we replace in (2.1) the matrix V = {v;} = {p""} by the
matrix @ = {w;} = {p"'"7} so that the matrix @* which corresponds to the
matrix V* will have its elements {w?;} = {r6%'""'}, where r6® is the common
variance of the Gamma-variables X;,7 =1, ---, n.

Using the UNIVAC 1105 of the Computation Center of the University of
North Carolina, we computed the parameters {ci} and \* of the distribution given
by (2.5) for several different values of n, p, 8, r and compared several percentiles
of this distribution with the corresponding percentiles of the ‘‘approximate”
Gamma, distribution with the parameters given by (1.2) and (1.3). The results
of the computations are presented in Table I. We recall that the first two mo-
ments of these two distributions are identical; (this fact has been used for check-
ing the correctness of the numerical calculations). Owing to computational
difficulties and complications especially in computing the sequences {c:}, we
cannot claim higher accuracy than the second significant figure.

Comparing these two types of distributions, we observe that the functional
dependence of parameters on n follows the same pattern in both cases. The
parameter r is asymptotically linear with n, while 6 is independent of n. The
discrepancies between the corresponding distributions are relatively small and
may be considered insignificant for most of the practical purposes in the cases
of small values of p (p = .3) even for values of n as small as 5. The computations
also indicate that for higher values of p (p = .5 and greater) the relatively large
deviations at the lower tail decline sharply with the increase of values of n. It
is also seen from Table I that the approximation becomes more accurate with the
increase of the values of the parameter r. The number of ¢’s necessary to obtain
the cumulative sum equal 1 (up to 8th significant figure) increases with both
n and, even more rapidly, with p. For n = 5, p = .2 100 ¢’s are sufficient, for
n = 5, p = .5 more than 200 are needed and for n = 15, p = .5 the number
of the necessary cx’s is over 300.

The number of iterative steps necessary to obtain the values of the charac-
teristic roots \; with accuracy up to the 6th significant digit also depends
strongly on n and p and varies for the cases presented below between 6 and 16.

Similar but differently inspired numerical investigations were carried by Box
([1], Table I) for integer values of A; (with A* = 1). Box found that the 5% and
95% significance points of the approximate distribution lay below the corres-
ponding values of the exact one. However, in all our cases \* < 1; this may ac-
count for the different behaviour of the exact distribution at the lower and upper
tails (Equation 2.5).
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