ON ADDING INDEPENDENT STOCHASTIC PROCESSES

BY TOM S. PITCHER

Lincoln Laboratory, Massachusetts Institute of Technology

Let x be a stochastic process on an interval T, P_x be the probability measure it induces on the space Ω of sample functions on T, and M be the set of functions f in Ω such that P_{x+f} is absolutely continuous with respect to P_x (written $P_{x+f} < P_x$). The functions in M are "at least as smooth as" the sample functions of x in the sense that any smoothness property possessed by almost all of the sample functions must also be possessed by each function in M. Similarly, if y is a process independent of x such that $P_{x+y} < P_x$, then almost all the sample functions of y must possess any smoothness property possessed by almost all the sample functions of x. This might lead one to conjecture that $P_{x+y} < P_x$ would imply $P_y(M) = 1$ but this fails to hold even in the Gaussian case [1]. What is true in the Gaussian case is that $P_y(M) = 1$ if and only if the measure Q associated with the vector process (x + y, y) is absolutely continuous with respect to the measure P associated with the process (x, y). The theorem of this note generalizes this result to a large class of separable x's.

We assume that x is separable in the sense that there exists a countable subset (t_i) of T such that the closure, with respect to P_x , of the σ -field generated by the $x(t_i)$ contains the σ -field generated by all the x(t). We also assume that the joint distribution of $x(t_i)$, \cdots , $x(t_n)$ is given by a density G_n which is almost everywhere positive in R^n with respect to Lebesgue measure. We shall write x_i, y_i, f_i , and g_i for $x(t_i), y(t_i), f(t_i)$, and $g(t_i)$ and S_n for the σ -field generated by x_1, \cdots, x_n . It is easily verified that the function D_n on $\Omega \times \Omega$ defined by

$$D_n(f, g) = G_n(f_1 - g_1, \dots, f_n - g_n)/G_n(f_1, \dots, f_n)$$

is, for each fixed g in Ω , a martingale with respect to the fields S_n and the measure P_x . It follows that $D_n(f, g)$ converges almost everywhere (P_x) for each g to a limit D(f, g), that $\int D(f, g) P_x(df) \leq 1$ and that $\int D(f, g) P_x(df) = 1$ if and only if g is in M, in which case $D(f, g) = (dP_{x+g}/dP_x)(f)$ almost everywhere (P_x) .

THEOREM. If x and y are independent processes on T and P and Q are the measures associated with (x, y) and (x + y, y) then Q < P if and only if $P_y(M) = 1$. In this case (dQ/dP)(f, g) = D(f, g).

PROOF. Suppose $Q \prec P$. For any $S_n \times S_n$ measurable F

$$\int FD_n dP = \int \int F(f_1, \dots, f_n, g_1, \dots, g_n)$$

$$\cdot G_n(f_1 - g_1, \dots, f_n - g_n) df_1 \dots df_n P_y (dg)$$

Received 27 August 1963.

¹ Operated with support from the U.S. Army, Navy, and Air Force.

$$= \int \int F(f_1 + g_1, \dots, f_n + g_n, g_1, \dots, g_n)$$

$$\cdot G_n(f_1, \dots, f_n) df_1 \dots df_n P_y (dg)$$

$$= \int F dQ$$

so $D_n = E(dQ/dP \mid S_n \times S_n)$ and hence D = dQ/dP. Thus

$$1 = \int D dP = \int P_{y} (dg) \left(\int D(f,g) P_{x} (df) \right)$$

so

$$P_y\left(\left[g\left|\int D(f,g)P_x\left(df\right)\right|=1\right]\right)=P_y(M)=1.$$

Conversely, if $P_{\nu}(M) = 1$ then $\int D dP = \int P_{\nu}(dg) \int D(f, g) P_{x}(df) \ge P_{\nu}(M) = 1$ and this plus the fact that for any positive $S_{n} \times S_{n}$ measurable function F, $\int FD dP \le \liminf_{m \to \infty} \int FD_{m} dP = \int F dQ$ implies that Q < P and D = dQ/dP.

REFERENCE

[1] PITCHER, T. S. (1963). On the sample functions of processes which can be added to a Gaussian process. Ann. Math. Statist. 34 329-333.