NON-SINGULAR RECURRENT MARKOV PROCESSES HAVE
STATIONARY MEASURES!

By RicuArD Isaac
Hunter College

1. Introduction. Let X, be a discrete parameter Markov process on a meas-
urable space (X, =) and let X, have stationary transition probabilities P"(x, E).
2 is assumed separable [3]. Call the process singular with respect to a o-finite
measure m on X if for each z, except for an m-null set, there exists a set L.,
m(L;) = 0, such that P"(z, L,) = 1 for all positive integers n. In the contrary
case, call the process m-non-singular, or simply non-singular if there can be no
confusion. In this paper we wish to continue work of Harris [3]. The methods and
the notation of this paper rely heavily on [3] and all references to results in Harris
refer to [3]. Our result is:

THEOREM. Let the X, process be m-non-singular where m is a measure on Z such
that m(E) > 0 implies P{X, ¢ E i.0.| Xo = 2} = 1 for almost all (m) starting
points x in X. Then there exists a o-finile stationary measure Q for the process.
(“4.0.”” means infinitely often.)

This theorem is related to Theorem 1 of Harris. Our condition changes Condi-
tion C of [3] by relaxing the “‘everywhere” hypothesis to an “almost everywhere”’
assumption. However, we no longer obtain that m(E) > 0 implies Q(E) > 0.
As an example, let us remark that all processes satisfying Doeblin’s condition
[1] satisfy the hypotheses of the theorem for some measure m. Indeed, if Y is a
closed, indecomposable, ergodic subset of X, let m be the stationary measure
vanishing outside ¥ with m(Y) = 1. That such an m exists is well known, as
well as the fact that m(Z) > 0 implies P{X, e E i.0.|Xo = z} = 1 for all
z ¢ Y. The X, process is thus m-non-singular and satisfies the recurrence condi-
tion.

We wish to emphasize that the exceptional null set of the theorem will depend,
in general, upon the set E.

2. Notations. Following Harris, p. 115, we define the process on 4 with transi-
tion probability P,(z, E) to be:

Pi(z,E) = P(2,E) + [x-4 P(z,dy)P(y, E)

+ Jx-s Jx-a P(z, dy)P(y, d2)P(2, E) + -~ .
The transformation T, takes measures into measures:
(2) (Ta)(+) = [4 Pa(z, -)u(de)

and represents the evolution of the process on A. If the process on 4 has a sta-
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tionary probability measure @, , Harris proves on p. 116 that if, for every E ¢ =,
we consider

(3) Q(E) = [4 Pu(z, B) Qu(dz)

then this formula defines a measure @, not necessarily finite, which is stationary
on Z for the original X, process.

3. Proof of result. The theorem will be proved by means of several lemmas.
Lemma 2 below follows very closely Lemma 2 of [3]. We repeat part of the argu-
ment to indicate the necessary changes.

LeMMA 1. Let the X, process be non-singular. Then there exists a set K, m(K) >
0, such that for each x € K and every E & = with m(E) > 0, there exists a positive
integer j = j(z, E) with P’ (z, E) > 0.

Proor. Since the process is non-singular, there exists a set K, m(K) > 0, such
that for each z € K the Lebesgue decomposition:

(4) P"(z, -) = [. f*(z, y) m(dy) + Pi(z, -)

obtains, and for some positive integer k, f*(z, y) > 0 forall yin a set ¥, m(¥) >
0. k and Y depend, of course, upon x. Now let m(E) > 0. Almost all (m) points
in Y enter F infinitely often with probability 1, so we may find a positive integer

r,asubset Yo € Y, m(Y,) > 0,and € > 0, satisfying P'(y, E) = eforall y ¢ Y,.
Here r and Y, depend upon z and E. We now have:

P (2, B) = [P*(z, dy)P'(y, E)
2 [y, P(z, dy)P"(y, B) = eP*(z, Yo) Ze [r, ff(z, y)m(dy) >0 .
Thus the conclusion of the lemma holds for j = &k + r.
LemMA 2. Let r be any real number, 0 < r < 1. There exist a measurable set B,

a positive number s, and a positive integer k, such that 0 < m(B) < o, and for
every x € B:

(5) m{y:y e B, f'(x,y) + - + ff(x, y) > s} > rm(B).

Moreover P {X, ¢ Bio.| X, = 2} = 1 for every x ¢ B.

Proor. Let K be the set of Lemma 1. Since each of the measures Py , n = 1,
is singular, we can find, for each z ¢ K, a measurable set S(z) with m(S(z)) = 0,
such that

(6) Py {X — S(x)} = 0. n=12 -
For each z ¢ K, let T (z) be the measurable z-set defined by
(7) T(x) = {y:fn(x’ y) =0,n=12-- }

Then if X, = z, the probability is 1 that there is no n such that X, ¢ T(z) —
T(z)S(z). Therefore, by Lemma 1, m(7T(x)) = 0.

Now let A; be any measurable subset of K such that 0 < m(4,;) < «. For
each z ¢ A, , define the measurable set A;; = Au:(x) fori = 1,2, --- by

(8) Au(e) = {yiy e As, f' (2, 9) + -+ + (2, 9) > 7.
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Since m(T (z)) = 0 for z ¢ K, this implies that m(A4, — U.4.:) = 0. Proceeding
as Harris does in Lemma 2, we can construct the set 4,0 < m(A) < o, satisfy-
ing (5). Thus, by hypothesis, P {X, ¢ 4 i.0.| X, = z} = 1 for almost each z(m).
Let N = {z:xed, P{X,eAio.|Xo =2} <1} and put B = A — N. Then
m(N) = 0 and, for z ¢ B, P*(z, N) = 0 for all positive integers k. This follows
since points of B entering N would have positive probability of not returning
infinitely often to 4, which is impossible by definition of B. Moreover, it is clear
that (5) holds, and the proof is complete.

LemMA 3. There is a stationary probability measure Qg for the process on B.

Proor. Lemmas 3 and 4 of Harris hold without change and prove Lemma 3.

LemMMA 4. Qp may be extended to a o-finite stationary measure Q for the X,
process.

Proor. Using the Definition (3) employed in Lemma 1 of Harris, we may
extend @z to a measure @ which is stationary for the X, process. We now show
that @ is o-finite. First of all, since

1 = Q(B) = [ P*(z, B)Q(dx)

the set V,.(z) = {x:P"(x, B) > 0} is o-finite for @ by Theorem F, p. 105 of [2]
for each positive integer n, and so U,V is o-finite for Q. By assumption, X —
U.V, = C has m-measure 0, and the proof will be complete if we show that C
is o-finite for Q. In fact, we shall show that @(C) = 0. Now, by (3), we have
Q(C) defined by

9) Q(C) = [5 Ps(z, C)Qs(dx).

For each z ¢ B, however, P"(x, C') = 0 for all positive integers n, otherwise z
would have positive probability of escape from B, which is impossible. Therefore
(1) shows that Pz(z, C) = 0 for each z ¢ B, and by (9), Q(C) = 0. Indeed if
D = {z:P{X, e Bio.| Xy = 2} < 1} then the same argument used above shows
that Q(D) = 0 whence Q is concentrated on the set of points recurrent for B.
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