TWO ESTIMATES OF THE BINOMIAL DISTRIBUTION
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1. Introduction and summary. The tail of the binomial distribution is defined as

n

(1) E(n,s, p) = Z (f) (1 —p)""

with the restriction that p be non-negative and less than (approximately) s/n.
An estimate of E(n, s, p) can be considered as the product of two separate esti-
mates, an estimate of the size of the leading term in (1) and an estimate of the
ratio of E(n, s, p) to the leading term. This paper is concerned solely with the
second estimate. That is, let

@) R =50sn /(1) pa-nm

two estimates of R are presented.

In Section 2 an upper bound to R is derived from a geometric series approach.
The resulting bound is an improvement over previous results in that it is useful
even when p is near s/n, as opposed to simpler geometric bounds, such as that of
Bahadur [1], which either blow up or become excessively large when p is near
s/n. The bound is given in Theorem 1, Equation (9). Section 3 discusses the
error in using this bound.

Section 4 gives a normal approximation to E, namely R* of Equation (18).
Theorem 3 shows that the relative error of this estimate goes to zero as s and
n — s go to infinity provided 0 < p < (s — 1)/(n — 1) and under a weak re-
striction on s/n in the limit. The uniformity of this result with p contrasts with
the many normal approximations to E(n, s, p), such as those of Bernstein, [2]
Feller, [6], [7] Uspensky, [9] and Camp [3] in which the relative error becomes
infinite as p approaches zero. Section 5 presents a brief discussion of the be-

havior of R*.

2. A geometric bound on R. Define the following:

(3) a = (s+1)/(n+1)

(4) z=p/(1 —p)

(5) 2 =2(1 — a)/a

(6) k=[2(n+ 1)1 — a)af
(7) ve=(n—s+1—r1)/(s+7).
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Note that 2; = #y1. Let m be the integer defined by
(8) k+1zm>k

The principal result of this section is
THEOREM 1. Let0 S s=n—1,n> 1,and 0 < p < a and let

RL={k+2—2a+12_a’11:1|:1_,"+]l-c_mxrln_1i1/v
(©) o =
AT 4 (- e - 21

We remark on the excepted cases. Equality holds forp = 0,0 S s < n — 1,
and for n = 1, s = 0 as can be easily verified. For s = n equality may be con-
sidered to hold formally, for if (6) is substituted for k& and m is set equal to 1,
then we find that R approaches 1, which is the correct value.

Proor oF THEOREM 1. Using the definitions of z and v, , we get for R

n—s r

(10) R=1+ 3 2 ]].

r=1 =1

Let & > 1 be an arbitrary positive number, ignoring expression (6) for the
moment, but let m be given by (8) and y41 by (7). Then (10) yields

(1 —zv)R = 14 (v1 — 1e11)2 + (v2 — Ve )med’
(11) + o+ (Y = eI Y2

m+1

—{(Yet1 — Ymd)V1 o Ym A A (Ve — Vneg1) V1 Yns2”

(Note that yn—s+1 = 0 which insures that (11) is formally correct for all positive
values of k¥ > 1 no matter how large.)

The first series on the right side of (11) and the series within braces are positive
(or zero) since

(12) Yr—ve=m+1D{E—=r)/(s+t)(s+7)>0 fort >r =2 0.

The bound is obtained from (11) by dropping the series in braces, bounding the
remaining series above by a geometric series and then selecting an appropriate
value for k. From (12), (11), and (5) it follows that

n+1 - .
(1 —en)R = 14 oy 30 (b4 1 — 1)af
n-+1 T

(13) R Py Py g S g

-[k—(lc+1—m)x'1”

-4 (l—x’{‘“l):l.

1—x1
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Ideally % should be selected to minimize the bound for R for each value of z; ;
however this can’t be done analytically. Instead we treat the expected worst
case and hope for the best: Put z; equal to 1 in (13) and further assume that %
is an integer. Then in obvious notation

(14) Bl = [(n —8)/(n+ D]-[(s + & + 1)/k] + 3(k + 1).

The right side of (14) is minimized when % is given by (6). Observe that for
0 <s=mn—1andn > 1 the condition ¥ > 1 is satisfied; hence m = 2 which
is sufficient for strict inequality in (13). Combining these results gives (9).

3. Error bounds on E; . A lengthy analysis is given in Reference [8] of the rela-
tive error & = (Rx — R)/R, which is probably not of general interest. We
confine ourselves here to a few remarks without proof.

REeEmARK 1. Although it has not been demonstrated, it appears that &, decreases
monotonically with p for fixed n and s. If this is true, the following theorem is
useful for estimating the maximum error.

TaEOREM 2. If p = o and n and s tend to infinity so that o is bounded away
from 0 and 1, then

limyae & = 2/7f — 1 = 0.128.
Theorem 2 may be proved by applying Stirling’s approximation to
(?) p°(1 — p)"° and by observing that E(n, s, p) — % under the conditions of

the theorem.

ReMARK 2. There is no reason to presume from the proof of (9) that n need
be large in order that & be small. Indeed, all the calculations which have been
made exhibit the reverse behavior, so that asymptotic bounds which hold for
large » and s are of interest. Such bounds and some calculations are presented in
Mott-Smith [8].

A minor point is that (9) may be simplified in appearance somewhat by re-
placing m by k& + 1 throughout. Although this decreases R, slightly, the in-
equality R < R will not be jeopardized unless k is very small, say smaller than
2or3.

Finally, the value of k was selected to minimize the bound for p = a, which
leaves open the question of how much has thus been lost when p is smaller than
a. For comparison, consider the simple geometric bound of Bahadur [1] which
takes the form: B < 1/(1 — x;) for p > 0, in the notation of this paper. Now,
by setting the expression in brackets in the numerator of (9) equal to unity
we have

(1 — 2)Re < [(k+2—2a)(1 — 21) + 20)/[2 + (1 — 21) (k — 2a)] = 1.

Thus, even with k given by (6), which is the optimum % only when z; = 1, Ry
is better than Bahadur’s bound for all z; ; the latter bound is known to be very
close when x; is much smaller than unity.
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4. A normal approximation to E. It is well known that E(n, s, p) is proportional
to a hypergeometric function whose integral representation leads to an expression
for R [4]. With z = p/(1 — p), as before, we have

LemMa 1.

1
(1) R=F(-n+s5Ls+1-2) =s [ 1 -1 +8)""a
0

The integrand of (15) is unity at ¢ = 0, is zero at ¢ = 1, and is monotonically
decreasing in between if 0 < p £ (s — 1)/(n — 1). This behavior suggests an
approximation along the lines of the method of Laplace, by expanding the loga-
rithm of the integrand in a Maclaurin series and dropping terms in ¢* and higher.
The radius of convergence of this expansion is the smaller of 1 and 1/z which
may be less than unity; however, even for large values of z the principal con-
tribution to the integral arises within the radius of convergence. The following
auxiliary definition will be used to prove the results:

(16a) a=1-b=(s—1)/(n—1),
(16b) h(t) = (1 — )7 (1 + )",

(16c) F(8) = exp [~ (n — 1){(a — b2)t + (a + b2")1"/2}],
(16d) g(t) = h(t)/f(?).
Now, let
(17) R* = sflf(t) dt.
0

Then

* _ 8(271')% 2 /0. v 2 .
(18) R* = T = exp L/2 fL exp (—z°/2) (27w) " dx,

where
L=[s—1—(n—29)2/[s—14 (n— )} and
U=L+[s—14+ (n—s)t

Let
(19) &* = (R* — R)/R.

Our principal result is

THEOREM 3. A sufficient condition that &* go to zero as n goes to infinity is that
sand n — s go to infinity in such a way that (In s)/(n — s)? goes to zero, and
0=sp=(s—1)/(n—1).

Some preliminaries to the proof are stated in the following lemmas.

LemMma 2. f(¢) 4s positive and monotonically decreasing if p < a, that is, if
z £ a/b.
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Proor. By inspection f(¢) is positive and In f(¢) decreases with ¢ for z < a/b.
LemMa 3. Letb/a >t = 0andn — s > 0. Thenfor0 = z £ a/b

(20) f(t) < exp (—(s — 1)£/2b).

Proor. Let n, s, ¢t be fixed. The derivative of In f(¢) with respect to z is
(n — 8)t(1 — 2t) which is greater than zero so long as ¢ > 0. The maximum
therefore occurs at z = a/b which gives the desired result upon substitution in
(16¢). If t = 0, f(¢) = 1 and the assertion is trivially true.

LemMa 4. Let s > 2 and n — s > 1. Then dh/dt is negative unless etther: (i)
t =1or (ii) t = 0 and 2 = a/b, in which cases dh/dt = 0.

Proor. The derivative is dh/di = —(1 — &) 2(1 + 2r)""'(n — 1)-
(a — bz + zt).

Proor or THEOREM 3. Let n, s, z be fixed for the moment and let 0 < ¢, < 1.
Then from (16) and (19)

1 tn 1
8 = (/B) [ (f=m)dt = (&/R) [" 1~ g) dt+ (s/R) [o-wa
There exists 0 < ¢, < 1 such that
l8*] < (s/R)|1 — g(cnt,.)lf0 fdt+ (s/R)f(t.) + h(t)1(1 — ta)

<1 — gleata)|(1 + [8¥]) + sf(ta) (1 + g(ta)),
whence, for g(cat,) % 0,
6% < [T — gleata)| + sf(ta) (1 + g(t))V/[1 — |1 — gleata)l] ,

where we have used Lemmas 2 and 4 and the fact that R = 1.

To prove that |6*| — 0 it is sufficient to show that ¢, can be chosen so that
g(t.) = 1, g(cata) — 1, and that sf(¢,) — 0. We first show that for any choice of
t. , these three conditions will be satisfied if the four conditions

(21) ta/b < 1,
(22) (s — 1)t —0,
(23) (n — s)(at./b)*— 0,
(24) (s — 1)t3/2b — Ins — o

are satisfied.
Now In g(#) may be bounded above by using the inequality

[In (1 + )| < 2°/3(1 — =), || < 1.
We find
(25) ng(t)] < (s — 1)F/3(1 — t) + (n — $)2%/3(1 — at).
Inspection of (25) shows that g(f,) — 1 (Ing(¢,) — 0) provided (21), (22),
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(23) all hold. Use is here made of the inequalities z < a/b < 1/b. Now it is clear
that if the sequence {t,} satisfies (21), (22), (23); so, t0o, does {t,c,} and hence
g(txca) — 1. Finally, by application of Lemma 3, whose conditions are satisfied,
we have that (24) implies that sf(¢,) — 0.

To complete the proof of Theorem 3 we produce a sequence {¢,} which satisfies
(21) through (24). Choose

t. = [4bIns/(s — )]
Upon substitution we obtain:
ta/b = [4 In s/ab(n — 1)} =0,
(s —1)t% = 4bIns/(s — D — 0,
(23") (n — s)(at,/b)® = [4dalns/(n — s)'Tt — 0,
and
(s — 1)t%/2b —Ins = Ins— =,

the limits all holding under the conditions of the theorem as n — «. The most
stringent condition and case is seen to be (23’) when b — 0.

6. Discussion of R*. The dependence of R* on n, s, and p is not obvious from
the form of (18). This dependence can be made more apparent, at least if p is
not too close to s/m, by rewriting (18). Following standard notation, let
o(z) = (2r)F exp (—2%/2). Then (18) may be written

R* = s/ls — 1 — (n — 8)2]-{L [ ¢(x) dz/e(L)}.

If L is large the expression in brackets approaches unity. We also remark that
for all practical purposes U may as well be taken as infinity.

The proof of Theorem 3 does not illuminate the dependence of &* on n. The
upper bound on |&*| is, however, uniform in p so that the following theorems are
at least illustrative:

THEOREM 4. If p = O then §* ~ (2s + 1)/ (s — 1)* as s — oo.

Proor. If p = Othen R = 1, L = (s — 1)}, U = 2(s — 1)} whence, from
(18) and (19)

2(s—1)%

(26) & = (?—j—l—)}exp (—(s = 1)/2) f(s_m exp (—2%/2) dz —1. =

The asymptotic expansion

© 2
[ e (—2/2) ae ~PRE (g rat ), o,

applied to (26) yields the desired result.
THEOREM 5. If nisodd, s = (n + 1)/2, and p = % then 8* ~ 3/4n asn — .
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ProoF. &* may be written as

(27) g* = (:) p'(1 — p)"R*/E(n,s,p) — 1.

Under the conditions of the theorem E(n, s, p) = %,a = p = } whence, from (18)
R* ~ 3(x/2)'[(n + 1)/(n — 1)I1 + O(exp (—(n — 1)/2/(n — 1)}))].

<?> is obtained from Sterling’s series (cf. Erdelyi [5] p. 47) which gives for n!
nl = (n/e)"(2m)}(1 + 1/12n + 0(1/n%))
and for <z), with s = n(n 4+ 1)/2

my_[2T (1 — 8/4n + 0(1/n%))
s/ Lm )
Combining these results with (27) proves the theorem.

As our last remark we sketch how a comparison between R* and the various
normal approximations to E(n, s, p) can be made. It will be our object to show
that under certain conditions R ~ R* but that the relative error of the normal
approximation blows up. In order to avoid the trivial case that R = 1if p = 0
we also require that R — . We therefore call R* “nontrivial” if

(28) R~R*— o, asn — o,

A sufficient condition that (28) hold is that the conditions of Theorem 3 hold,
that s/n be bounded away from 0 and 1, and that s/n ~ p. On the other hand,
most normal approximations require not only that s/n ~ p but also
that n°(s/n — p) — 0 for some particular 1 > ¢ > 0. Although this is usually
stated as part of a sufficiency condition, it, or one like it, is necessary as well.
Thus it is possible to satisfy (28) while violating a necessary condition of the
normal approximation by controlling how fast s/n — p goes to zero. The pro-
ceeding argument can be applied, for instance, to the approximation of Feller
[7] p. 178. We observe that E(n, s, p) — 0 in the limit, so that B* may be a
computational improvement only for very small values of E(n, s, p). The re-
quirement, in the usual normal approximation, that s/n — p not go to zero too
slowly can be traced back to the estimate of (;')p"(1 — p)", which suggests
that the success of our approach derives from dealing with R instead of with
E(n, s, p).
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