ORTHOGONALITY IN ANALYSIS OF VARIANCE
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1. Introduction. Although the literature on the subject of analysis of variance
is extensive (c.f. Plackett [7]) and goes back a long way, a recent paper by
Darroch and Silvey [1] throws a fresh light on the idea of orthogonality which is
usually associated with analysis of variance models.

Suppose we have a general linear model G:y = 6 + &, where ¢ is a random
vector distributed as N[O, ¢’I,] and 0, the vector of means, belongs to @, a
subspace of n-dimensional Euclidean space R". Consider a sequence of linear
hypotheses 3C;:0 belongs to w; a subspace of @ (¢ = 1,2, ---, K). Then from
Darroch and Silvey [1] we have the following definition: an experimental design
is orthogonal relative to a general linear model G and linear hypotheses
3¢, 3y, ---, g if the subspaces Q, w1, wp, -+, wx satisfy the conditions
wrNQ L wf NQ for all 4,5, 7 & j, i.e. if the orthogonal complements of the
w; with respect to @ are mutually perpendicular. This definition expresses in
general terms the well known orthogonality property of analysis of variance
models; namely, that the sums of squares obtained by nesting the hypotheses are
stochastically independent and are the same irrespective of the order of the
nesting (c.f. Scheffé [11] and Kempthorne [2] p. 49).

In this paper we shall derive necessary and sufficient conditions for a general
p-factor analysis of variance model, with unequal observations per cell, to be
orthogonal.

2. Matrix conditions for orthogonality. A vector space can be represented in
two ways: either as the null space 9[A] of a matrix 4, ie. @ = {6| A6 = 0} or
as the range space ®R[X] of a matrix X, i.e. 8 belongs to Q if and only if there
exists « such that 8 = Xe. When X is of full rank we have the familiar regression
model, while if X is not of full rank and the elements of X are either zero orone,
we have the analysis of variance model in which « is not unique and identifia-
bility conditions He = 0 say, are introduced (c.f. Scheffé [11] p. 17). Although
the range space representation is the more familiar one, the identifiability
conditions can cause theoretical difficulties and so it is often easier to use the
null space representation, as shown in Rao [9], Roy and Roy [10] and in the
theory below. We shall require the following lemma.

LEmma. If

Q=1{0]A40 =0}, w; ={0]A406=046=0}

where the rows of the matriz [A :4:]" are linearly independent, (i = 1, 2, , K),
and AA; = 0fori=1,2, - Kthenw,ﬂQJ_w,ﬂszandonlyzfAA -0
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Proor. Since the null space of any matrix is the orthogonal complement of
the range space of its transpose

wi = &lA"143].
Thus
wi NQ = ®I4": 41 N 4],
= (4"l ® ®[43]) N9f4],
= (/[ATNA]) ® (®[4i] N9oA]),
where “®”’ denotes “direct sum” as used in vector analysis. Now ®[4;] L ®[A]

and hence ®R[A:] CA]. Also ®R[A1NRA] = (0[A]* NI[A4] = 0. Thus
wiNQ = ®[4{] and wi NQ L «f NQ if and only if 4;4; = 0. This proves

the lemma.
3. The two factor analysis of variance. Consider a two factor analysis of

variance with unequal observations per cell and the two factors at I and J
levels respectively. Suppose we have K,; observations per cell. This gives us the
model '

Yie = Oip T € fore=1,2,---,I;j =12, ---,J;
k=1,2 -+, K;, and the e; are all distributed independently as N (0, o°).
Let

J I I J
K, = ZK{,‘, K.j = ZK{;‘ and K.. = Z ZK{,‘.
=1 i=1 ==
Let
pige = Oize — Bij. ,
vij = 0. — 0;. — 8.5 + 6.,
Ay = 9, - é
B = 91 -6 ’
where
_ K;; _ J Kij
5. = O/ Kij bi. = 2 D 0in/Ku.,
k=1 i=1 k=1
J Kij
6. = ouk/K ete.
i=1 j=1 k=1
Thus we have imposed identifiability constraints Y = a:Ki/K.. = 0,

D j=1Bk.;/K.. = 0, etc. In general we are interested in testing the following
hypotheses 3¢ , 3., 3¢5 , where
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Gipie =0
31 tuie = 0, vij =0 (i.e. interactions zero),
3 tpip = 0, a; =0 (i.e. row effects zero),

3Cs tuie = 0, B; = 0  (i.e. column effects zero),

and we wish to know under what conditions the above design is orthogonal with
respect to G, 3¢;, 3C: and 3C; . In the past it has usually been the practice to
work in terms of the parameters 6... , a;, B; and v;; with the range space repre-
sentation
g:éij. = §... + a; + B; + v .

However when we endeavour to find conditions for orthogonality with this
representation we run into difficulties with the identifiability constraints on
the a;, B; and v;; . Although the identifiability conditions can be used to elim-
inate some of the parameters, and thus simplify the problem, this is not
practicable for more general p-factor analysis of variance models. Thus we
find it easier to work with the @’s i.e. the null space representation, as demon-
strated by the following theorem.

TursoreM 1. The design G, 3., 3C:, 5(33 18 orthogonal if and only if K;; =

K.K.;/K.. for all 1, j.
Proor. Let 6 be the column vector with elements 6;; ; we can express the set

of hypotheses as follows:
G:46 =0 and 3¢, :46 =0, A4.0=0 foru=123

For example we wish to express the conditions
K;j
(3.1) pie = Oip — IZ_:, O/ Ki; = 0,

where ¢ = 1,2, -+, I;j=1,2,---,J;k = 1,2, ---, K;;in the form 46 = 0.
The matrix A would be K.. X K.. and the row corresponding to Equation (3.1)
would have the (7, s, &) element of the form

(32) 5@’106;‘305“0 - airoaho/Kroso )

where 8, is' the Kronecker delta. Similarly the row of A: corresponding to
Yiis = 0 has its (r1, s1, ) element as

(3.3) 6i1’16j131/K’131 - Bilrl/KTl' - Bflsl/K'n + I/K'- .
The (72, 82, t2) element of row a;, = 0 for matrix 4, is given by
(34) 8iyre/ Krpe — 1/K..

and the (7, s3, t3) element of row B;, = 0 for matrix 4; is

(3.5) Sines/ Kooy — 1/K....
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Now by multiplying Equations (3.2) and (3.3), putting ro = 71, 80 = 81, b =t
a,ndsummingonro,so,to(to =1,2, -, Krpso 370=1,2, -+ , I;80=1,2, -+ ,J)
we have 4;4" = 0. Similarly 4,4" = A4;4" = 0 since (3.2) is the only term
containing f, and this summed on % is zero. Thus, by the lemma, the 3. are
orthogonal if and only if 4 WAy = 0 for all 4, v v ¥ v, and we now show that
these matrix conditions hold if and only if K;; = K;.K.;/K.. forall<, j.

A. Sufficiency. Let K;; = K.K.;/K.. for all ¢, j; then expression (3.3) be-
comes

(3.6) K.(8ir/Kry. — 1/K..) 05,0/ K0y — 1/K..).

Thus by multiplying (3.4) and (3.6) together, putting r; = 71 and summing on
s, St t we have that A:4; = 0. In a similar manner it can be shown that
A.A5 = A2A; = 0. Hence the design is orthogonal relative to G, 31, 3C; and 3C; .
B. Necessity. Given A;4; = 0, we multiply (3.4) and (3. 5) together, set
83 = s, and sum on g, Sz, 2. This gives us an element of AsA3 and therefore
0= Z (8igra/Krye — 1/K..)(8iea/ K- — 1/K..),

79,852,009
= Ky /K.jy — Ko JK....

Thus the conditions K;; = K;.K.;/K.. are both necessary and sufficient for
orthogonality and this completes the theorem. We would mention that with the
identifiability constraints given above, it is well known that the conditions
K = K.K.;/K.. are sufficient for orthogonality (Scheffé [11]). However the
above method of proof not only proves that the conditions are necessary but
also lends itself readily to generalisation.

4. The general p-factor model. Suppose we have a p-factor analysis of variance
model with the rth factor at level I, (r = 1,2, - -+, p) and 0 i,xx:, observations
per cell. Let G, 3¢, , 3Cps, -+, Higssp (1, 8§ = 1,2, -+, p7 # 8 etc.) be the
general model, the hypotheses of no main effects, the hypotheses of no first
order interactions, - - - , the hypothesis of no (p — 1) order interaction respec-
tively. Then we can extend Theorem 1 as follows.

TareorEM 2. The above p-factor model is orthogonal with respect to G 3C,, 3Cys

etc. if and only if
(4.1) Nigigtoriy = (Miyeern) (Megger) =00 (M) /(Mo )yt

forall @y, %s, +++ , 1p Where
I

Niyeure = E Zf nuzz**tp ete.
i9=1 1-3—1 ip=

ProoF. As the notation is complicated we shall only outline the method of

proof.
Let 4, A, , A,, etc. be the corresponding matrices in the null space representa-

tion of the above hypotheses. Then, as in Theorem 1 we have

AA: = AA:S = e = AAiz**p = 07
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and by the lemma we have orthogonality if and only if the matrix products
AAq, A Az, AyA, ete. are zero. It is seen that Conditions (4.1) are sufficient
for this to happen by factorising the product of corresponding elements in the
above matrix products into terms of the form

(Biyry/Morgeeee — 1/Mul), (8iyrg/ M. — 1/n...0) ete.

That the conditions are also necessary follows by an inductive argument. For
example in a 4-factor model from the relations A1 Ad; = Apd; = AAs = 0 we
can prove the following equations

Niyigee = (Mipee.) (Mg )/ (M),
Niyigipe = (Miysge.) Mereiy) /(ML)
Niyigigis = (Miyigiy ) (Mevsy)/(M21L),
which combined give
Niyigiziy, = (Miyerr) (Wi ) (Meiy) (i) /(n.)

Thus in conclusion we see that the Conditions (4.1) are necessary and sufficient
for orthogonality.

5. General remarks. We observe that the above theorem would still apply if
we included the hypothesis 3¢, :4..... = 0 among our hypotheses to be tested.
This follows from the fact that if A, is the corresponding matrix for the null
space representation of 3¢, then A4, , Aod,, etc. are all zero because of the
identifiability conditions which underly our method of defining the main effects
and interactions.

It can also be shown that the variance-covariance matrix for the estimates
of the unknown parameters is of a diagonal block form, i.e. for the groups of
parameters 0..... , a;’s, 8;’s, vi’s etc. the estimate of any one parameter of one
group is uncorrelated with that of any parameter of any other group. This is
the more usual way of defining orthogonality of design (Yates [13], Kempthorne
[2]) and although equivalent to the definition we have adopted, it is not as
fundamental as it depends on the parameters used, and therefore to some
extent on the identifiability conditions rather than on the basic structure un-
derlying the design.

One also notes that conditions similar to K;; = K, K.;/K.. of Theorem 1 are
derived in Plackett [6] where the design of optimum multifactorial experiments
is considered. This follows from the fact that in multifactorial designs in which
the design matrix has been reduced to a matrix of full rank by a suitable trans-
formation of parameters (Plackett [8]), the condition for the design to be op-
timum (optimum in the sense that certain contrasts can be estimated with
equal maximum precision) is that the variance-covariance matrix is proportional
to the unit matrix and not just of diagonal block form as required by orthog-
onality. Thus one would expect to obtain the same kind of necessary conditions
as given above.
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The literature on optimum designs is considerable (e.g. Kiefer [4]) and various
criteria for optimality have been suggested (Kiefer [3]). However one feels in-
tuitively that the role of orthogonality plays an important part in the structure
of optimum designs as is illustrated for example by the Latin square (Wald

(12]).
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