ON THE TOPOLOGICAL STRUCTURE OF SOME ORDERED FAMILIES
OF DISTRIBUTIONS!

By J. PranzaGL
Unaversity of Cologne

1. Introduction. In many statistical contexts one studies a family & of distribu-
tion functions F' on the real line with the following properties. (a) & is a dominated
family; (b) & = {Fe} where 6 is a real parameter taking values in an interval;
(¢) convergence of a sequence in F to an element of F in the usual (weak) sense
is represented by the convergence of the corresponding parameter points; (d)
the natural order of # values corresponds to a simple ordering of the elements of
F in terms of probability.

An example of such an ordering in terms of probability is 6, = 6, & Fe, (1) <
Fy,(¢) for all real ¢, this ordering of & being typical of cases where 6 is a location
parameter. An example of (d), with 8 a scale parameter is F; = the normal
distribution function with mean zero and variance 8; here 6, = 6. <= Gi(s) =< Ga(s)
for all real s, where Gy is the distribution function of the sufficient statistic s = #*;
in view of the one-one correspondence through 6, between the families {F}
and {Gy}, the probabilistic ordering of {Gs} corresponds to such an ordering for
{Fo}.

The main object of this paper is to study an arbitrary set F of distribution
functions which is simply ordered according to the following slightly stronger
order relationship: 8; = 6, & F,,(£)/Fo,(t) and [I — Fo, (¢)]/[1 — Fe,(¢)] are
nondecreasing functions of . This order relation is still weaker than the natural
order relation of monotone likelihood ratio families. It is shown, that for such
ordered families ¥, convergence in the weak sense is equivalent to convergence
in the strong sense (see Theorem 1). Thus, we obtain for ordered families much
stronger results than can be obtained in the general case. In general, conclusions
from weak convergence to a stronger type of convergence can be drawn only
if the limit function is continuous (see R. R. Rao (1962) p. 662, Theorem 3.1).

Furthermore it is shown that (except for certain pathological situations) the
order relationship defined above implies that ¥ is a one-parameter family for
which (a), (b) and (¢) hold (see Theorems 2, 3 and 4).

In Section 2 the relevant notions of order and distances are defined and dis-
cussed. The main theorems are stated in Section 3 and proved in Section 5 using
the lemmata of Section 4. In Section 6 it is pointed out that the present results
extend to probability measures on arbitrary spaces provided there exists a
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ORDERED FAMILIES OF DISTRIBUTIONS 1217

pairwise sufficient statistic, and an application is given to the problem of existence
of perfect tests.

2. Some basic definitions.

2.1. Orders. Let & be a family of distribution functions F on the real line.
We assume that § is totally ordered, i.e. that there exists an asymmetrie, irre-
flexive and transitive relation “<’ such that for arbitrary F;, F.e& with
F1 # Fyeither F; < Fyor Fy < F; . We shall consider the following three different
types of order relations:

(1) Fi £ F, if Fu(t) £ Fi(t) forallt

(2) Fy £ F, if both

(2") Fy(t)/Fi(t) is nondecreasing in ¢, and
2") (1 — Fu(t))/(1 — Fyi(t)) is nondecreasing in ¢;

Fi £ Fy if Fi(t) = 0 implies Fo(t) = 0 and if
(3) [Fa(t”) — Fo()/IFL(t") — Fi(t)] is nondecreasing in both variables
¢ and t” whenever Fi(t') < Fi(t").
If F; < Fsand F, # F; we shall write F; < F.. It is easily seen that the rela-

tions < defined by (1), (2), (2”) or (3) are asymmetric, irreflexive and transi-
tive. The first two properties are obvious in all cases and the transitivity except
in case (3), too.

In case (3) the relations F; < Foand Fy < Fyimply: If F1(¢) = Othen Fy(t) = 0
and therefore also F3(¢) = 0. Now, we assume Fi(t') < Fi(¢”). If F5(t") = 0
then F3(t”) = 0 and therefore also F)¢) = 0. Hence [Fs(t”) — Fst)]/
[Fy(t”) — Fi(t)] = 0 and therefore this ratio is trivially nondecreasing. If
Fy(t”) > 0,then 0 < Fo(t")/F1(t") = limss [Fz(t”) — F2(0)]/[F1(t") — F1i(t)]
< [F(t") — Fo()/IFL(t") — F1(¢')], whence Fy({') < Fy(t"). Therefore the
desired result follows from

Fy(t") — Fy(f) _ Fy(t") — Fa(t)  Fo(t”) — Fs(t)
Fi(t") — Fu(t) Fi\(t") — Fi(t')  Fo(t”) — Fo(t) -~

Order (3) is equivalent to “monotony of likelihood ratios” or—more cor-
rectly—“monotony of relative densities.”

We say that F; has a monotone relative density with respect to Fy if there
exists a function Hs(¢) which is nondecreasing for all ¢ such that Fy(¢)=

t o Ho dF: for all ¢ with Fi(t — 0) < 1. (We choose Hy(t) = + o for ¢ with

Fi(t — 0) = 1.)

That monotony of the relative density implies (3) is obvious. That (3) in
turn implies the existence of a monotone relative density can be seen by taking
(see e.g. Doob (1953), pp. 611-612):

(4) Hu(t) = limp.w [F2(t) — Fo(t — B))/[F1i(t) — Fi(t — h)]
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forallt e S where 8 = {¢: Fy(t) > Fi(t — h) for all k. > 0}. Obviously [s dF; = 1,
and therefore Hy is defined Fr—a.e. We can complete the definition of Hy ,
preserving monotony, by Hyx(t) = inf {Hy(s):t < se 8} for tg S with
Fi(t — 0) < 1and Hy(t) = + o« for t with (¢t — 0) = 1.

Orders (1) and (3) correspond to orders A and C considered by Lehmann
(1955). The order relations (1), (2), (3) are of increasing stringency. It is
straightforward to show that order (3) implies order (2) and order (2) implies
order (1). (More accurately: each of (2') or (2”) implies (1), which can be seen
by considering the limit as { — o or { — — oo, respectively.) That (2) is actually
stronger than (1) follows, for example, from the fact that any location parameter
family is ordered (1), but not all of them are ordered (2), (e.g. the location
parameter family of Cauchy distributions is not ordered (2).) That (3) is
actually stronger than (2) can be seen from the following example: Let P; and
P, be two probability distributions having their probabilities concentrated on
the points 1, 2, 3, 4. Let P1(2) = 1/4,for ¢ = 1, ..., 4 and Py(1) = 1/14,
P2(2) = 4/14, Py(3) = 3/14, P2(4) = 6/14. Then, F; < F, in the sense of order
(2). They are, however, not ordered (3).

2.2. Distances; convex support. In the following, we will consider the family &
of distribution functions as a metric space with two different distance functions
d and d”:

(5) d'(Fy, Fs) = sup {|Fi(t) — Fa(t)|: — 0 < t < + oo}
(6) d”(F1, F2) = supg.s |P1(B) - P2<B)l

where

) P(B) = [ ar,

PB being the field of all Borel sets of the real line. We remark that from Py(B) —
Pi(B) = Pi(B) — P3(B) we have

(8) d”(F1 , Fz) = SUP3Bes (PI(B) - P2(B))-

Furthermore, d’ (Fy, Fy) = 0 is equivalent to d”(Fy, F3) = 0.

Let 4 be a measure on the real line, such that P; and P, are absolutely con-
tinuous with respect to u. Such a measure always exists, e.g. u = Py + P».
In applications, usually the Lebesgue measure or the counting measure has this
property. Let p, be the Radon-Nikodym derivative of P; with respect to u,
ie. Pi(B) = [spidu. Then

(9) d”(Fy, Fy) = Py(By) — Pa(By)
where
(10) Biy = {t :pu(2) > pa(t)}.

It is obvious from the definitions (5) and (6) that
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(11) d(Fy, F,) £ d"(F., F,).

Therefore, if & is ordered (2’) or (2”), according to Theorem 1 both distance
functions induce the same topology, say D. The important consequence of this
fact is that d’-convergence is equivalent to d”-convergence which in turn is
equivalent to convergence in the mean.

In the case of order (3), both distance functions are identical. For, py(¢)/ps(¢)
= Hy(t) (F1 + F,)-a.e. with monotone Hy and hence By, is a semi-infinite
interval.

Both distance functions assume values in [0, 1] only. The value 1 plays the
role of an “infinite” distance. This can be made more intuitive by introducing
the concept of a ‘“‘convex support”’. Let s(F) be the smallest convex set which
has probability one. s(F') is the intersection of all convex sets with probability 1,
whence

(12) s(F) = N{(t, ta) :F(t — 0) — F(t) = 1}

where (%, t2) denotes the open interval with end points ¢ , ¢, . This concept of
“convex support” is not identical to the usual concept of support (see e.g.
Bourbaki (1952) p. 67 ff.).

The convex support is an interval except in the case of degenerate distribu-
tions (having their probability concentrated in a single point), in which case the
convex support reduces to a point. The boundary points of the interval belong
to the convex support iff they are of positive probability.

It can be easily seen (Lemma 1) that d'(Fy, F,) = 1 if and only if s(F1) n
8(F 2) = ,@

If Fy and F, are ordered (2) or (2”), then d” (F; , Fs) = 1 implies d'(Fy, Fy) = 1
(Lemma 4).

If 5 is ordered (1), then d’ is monotone in the sense that F, < F; < F, implies
d'(F,, Fl) < d'(F, ) Fy). If § is ordered (2) and s(Fy) = s(Fy) = s(F.) we
have d'(Fy, F1) < d'(Fy, Fy) if F, < F, (see Lemma 6 and its Corollary).

Let Y be a set in a metric space (Y, d). As usual, we define the diameter
D(Y) by
(13) D(Y) = 8sup {d(yl’y2) :yl,y2€Y}’

and the distance of two sets Y1, Ys by d(Y1, Y,) = inf {(d(y1, %) :the Yy,

y2 & Yo}, We call a set Y linked, if it is not the union of two sets of distance 1.
We denote the union of the convex supports of a class of probability measures

F by

(14) s(F) = U{s(F) : F £5}.

Using this concept, we also can say: A class of distribution functions is linked if
it is not the union of two subsets &;, §, which are separated in the sense that
8(%1) n 8(F,) = . Statistically this means that it is impossible to partition
the family into two subfamilies between which we can distinguish deterministic-
ally.
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If  is linked, by Lemma 8 and 1 to each pair Fy, F; ¢ § there exists a chain
Fi,Fs, .- Fo, Foya = Fosuch that s(F,) ns(Fia) # S fori=1,2, ... n.

From the corollary to Lemma 9 we have that any linked set is a countable
union of sets of diameter less than one.

2.3. Parameter space. We call a topological space (0, 3) a parameter space of
the family &, if there exists a homeomorphic (i.e. 1-1 and bi-continuous) mapping
(F, D) «> (0, 3). If Fis ordered, it is natural to take for ® a simply ordered space
and to require in addition the mapping & <> © to be order isomorphie.

A topological space with an order relation is called an ‘“‘ordered topological
space” if the given topology is finer (contains) the order topology (based on the
open intervals). An important example of an ordered topological space is the
Euclidean real line. More generally, any metric space with monotone distance
functions is an ordered topological space. Therefore, (F, D) is an ordered topolo-
gical space.

We remark, that for two connected ordered topological spaces, every homeo-
morphic mapping either preserves the order or reverses it (Eilenberg (1941),
Theorem 4.1, p. 42).

In the applications, the parameter space usually is an interval on the real
line. Therefore, if § is ordered (1), for any homeomorphic mapping of (F, D)
on the real line the order of ¥ is represented by the order of the parameter
values.

3. The main theorems.

TuroreM 1. If § is ordered (2') or (2”), both distance functions d' and d”
induce the same topology, say D.

The proof is obvious from (11) and Lemma 5.

Let & be the D-completion of . Then, we have

TuroreM 2. If F is ordered (2) and of diameter less than 1, then § s compact.

The order of & can be extended to & in an obvious way: Let F’, F” be two
elements of ¥ and {F,}, {Fn} two fundamental sequences d-converging to
F' and F”, respectively. Then, if F' = F”, it is easily seen from Lemma 6 that
there exists 7o , such that either F, < F or F,, > Fn for alln = ng. Then, we
define the order between F’ and F” as F' < F” or F' > F”, respectively. As
d-convergence implies pointwise convergence of distribution functions, the order
relations (1)—(3) defined in terms of distribution functions immediately extend
to §~. This means: if [F, >] is ordered (k), 5~ is the D-completion of F and [F~, >]
is the ordered space obtained from [F, >] by extension of the order as outlined
above, then [F-, >] is ordered (k) also.

If (0, 5) is a parameter space of the family (F, D) the completion (60—, 37)is a
parameter space of (F—, ©), where 5~ and £~ are the topologies corresponding
to 3 and D, respectively.

TuarorEM 3. If § is ordered (2) and contains at most a countable number of
degenerate distributions, then § is D-separable and hence dominated.

The proof of Theorem 3 is given in Section 5.
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The assumption that & contains at most a countable number of degenerate
distributions is essential for separability (and hence domination) as the follow-
ing trivial example shows: Let § be the family of all degenerate distribution
functions Fe(t) = 0 or 1 according as ¢t < 6 or ¢t = 6 with 6 [0, 1]. Then & is
ordered by For < Fy if 6/ < 6” in the sense of order (3). & is, however not
separable. (It contains a nondenumerable number of degenerate distributions.)

As every ordered separable space is homeomorphic to a subset of the real
line, we have:

TueoreM 4. If F fulfills the assumptions of Theorem 3, then it has a parameter
space which is a subset of the real line.

We say that a distribution F, ‘“fits” into an ordered family of distributions,
if it is in an order relation (according to one of the definitions (1), (2), (3)) to
each element of & and if there exist F', F” ¢ & such that F' < F, < F”.

THEOREM 5. Assume that § is ordered (2), order dense, linked and D-complete.
Then  is complete in the sense that each Fo which fits into § vs actually cantained
mng.

The proof of Theorem 5 is given in Section 5.

4. A few lemmata.

Lemma 1. d'(Fy, Fu) = 14f and only if s(F1) n s(F) = .

Proor. Assume that there exists &, ¢ s(F;),7 = 1,2. Then, Fi(%,) > 0,7 = 1, 2.
Without loss of generality: 0 < Fy(t) < Fi(ty) < 1.If Fi(#) < 1, thend' (F,, F;)
< max (Fi(t), Fo(to — 0) — F1(tp — 0), 1 — Fa(t)) < 1. Therefore, F1(t) = 1.
Asty e s(Fy), wehave Fy({p — 0) < 1. This implies d'(F, , F;) < max (Fi(ty — 0),
1 — Fa(ty)) < 1. This establishes that d'(F; , F,) = 1implies s(F1) ns(Fz) = .
The converse follows easily from the fact that s(#) is an interval.

LeMMA 2. Let F be the distribution function defined by F~(t) = 1 — F(—t — 0).
Then F1 < Fy in the sense of order (2”) is equivalent to Fy < Fy in the sense of
order (2'). Furthermore, d(Fy , Fs) = d(Fy, F7) for both distances d = d’, d”.

Proor. Trivial. We remark further that s(F~) = —s(F); F~ (t) = F(1).
Let P(B) and P~ (B) be the probability measures defined by ¥ and F, re-
spectively. Then, we have P~ (B) = P(—B), where —B = {z : —z ¢ B}.

LemMA 3. Lett’ < inf B and ¢’ = sup B and assume that Py(B) + Py(B) > 0.
If Fy < F; according to order (2'), we have

Fy(t')/Fi(t') = Po(B)/Py(B).
If F1 < Fs according to order (2"), we have
Px(B)/Pi(B) = [1 — F(t" — 0)]/[1 — F.(t" — 0)].

Proor: We give the proof for the first assertion. The proof of the second
assertion follows from Lemma 2. To each ¢ > 0, there exists a finite union of
disjoint intervals B, = U}, such that P;(BA B,) < ¢ ¢ = 1, 2 (see Halmos
(1950), p. 58). Without loss of generality, we can assume that for each j =
1, ---, n at least one of the values Pi(I;), Ps(I;) is positive. For, if there exists
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josuch that Py(Ij,) = Py(I;,) = 0,then B,_; = U}, ;. I; satisfies P;(BABi_;)
< ¢ ¢ = 1, 2. Therefore, we can assume that none of the expressions Py(I;)/
Pi(1I;) is of the indeterminate form 0/0. As r = ¢ for all 7 ¢ B, we can assume
without loss of generality that r = ' forall r ¢ B, ,as P{(BAB,) < ¢ 1= 1,2
implies P;(BA (Bon {r:7 = 1})) < ¢4 = 1, 2. Therefore, if F; < F, we have
from (2) :Fo()/Fi(f') = Pu(1;)/Py(I;) for j = 1, ..., n, which implies
Fy(¢)/F:(t') £ Pa(B,)/P:(B,). Since ¢ > 0 is arbitrary, this implies Fy(t')/
Fi({) < Pu(B)/Py(B).

CoRroLLARY. If Fy < Fs according to order (2'), then F1 is absolutely continuous
with respect to Fay in s(Fs). If F1 < F, according to order (2"), then F, is absolutely
continuous with respect to F1 in s(F1). (This corollary is due to R. Borges.)

Proor. The first assertion implies the second one by Lemma 2. To prove the
first assertion, we have to show that for any B < s(F:), Pi(B) > 0 implies
Py(B) > 0.

At first let B; < s(F,) with Py(B;) > 0 and ¢; € s(F.) for ¢t; = inf B; . Lemma
3 implies 0 < Fa(t;)/F1(t;) < Pa(B;)/Pi(B;) whence Py(B;) > 0. Since any
B C s(F.) with P,(B) > 0 can be written as a countable union of B;, the
assertion follows.

LemMa 4. If (2) or (27) is satisfied, then d” (Fy , F») = 1impliesd (Fy, Fs) = 1.

Proor. Let d”(F,, Fo) = 1. Then (9) and (10) imply Pi(By) = 1 and
Py(Byy) = 0. Define By = Bipn {7 :Fi(r — 0) < 1}. Let t ¢ B; .

Then Pifr:7 =2 t} = 1 — Fi(t — 0) > 0. Hence from P;(By) = 1, we have
Pi(Binfjr:r=1t}) > 0.If F; < F,and (2') is satisfied, then Lemma 3 implies

F2(t)/F1(t) =< Pg(Bln {T:T = t} )/Pl(Bln {T:T = t}) = 0.

Therefore, Fa(t) = 0. Since sup{Fi(t):te By} = 1, we have d'(F:, F;) =
sup{F1(t) — Fas(t):t € Bi} = 1. The proof for (2”) is analogous, q.e.d.

That order (1) is not sufficient to establish Lemma 4 can be seen from the
following example: Let P1(1) = P1(3) = % and Ps(2) = Py(4) = %. Then for
Py, P, relation (1) is fulfilled. We have d”(Py, Py) = 1, but d'(P;, Ps) = .

LemMA 5. If Fy and Fs are ordered (2') or (2”) we have

d”(Fy, Fy) < 2d'(Fy, F.).

Proor. Let F1 < Fyand put 8 = d'(Fy, F.). Inasmuch as the lemma is trivial
for 6 = 0 and 6 = 1, we can assume that § ¢ (0, 1).

(a) Assume that Fy and F, are ordered (2'). Let &, = sup{t:Fi(t) < &'}. At
first we prove

(15) ‘ Py(B) — Py(B) £ &

for B C {r :7 = t,}. For Py(B) = 0, (15) is trivial. For Py(B) > 0, order (2')
implies by Lemma 3:

1 — Py(B)/Py(B) £ 1 — F(t1)/F1(t) = 3 < 8/Py(B).
The second inequality follows from Fi(t,) — Fa(t1) < 8 and Fi(t) = &
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On the other hand Py(B) < Fi(ty — 0) < & for B with B C {r:7 < t}.
Hence (15) holds also in this case. From

B=[Bn{r:r<t}lulBn{r:r = t}]

we obtain for arbitrary B ¢ B that P;(B)Py(B) < 2 & Hence it follows from (8)
that d” (Fy, F») < 26

(b) If F, and F, are ordered (2”) the assertion follows by Lemma 2.

LemMA 6. If § is ordered (1), we have d'(Fo , i) = d'(Fo , F2) whenever Fo =
F,£F,.

ProoF. Fy < F, < F, implies Fo(t) = F1(t) = Fo(t) for all ¢, whence

(16) 0 = Fo(t) — Fi(t) S Fo(t) — Fy(2).
Hence
(17) d'(Fo, F1) = sups(Fo(t) — Fi(t)) < sup(Fo(t) — Fa(t)) = d'(Fo, Fy).

CoROLLARY. Let s(Fy) = s(F.1) = s(F;) and Fo £ F1 £ F, in the sense of
order (2), then d'(Fo, Fy) = d'(F,, F») implies F, = F,. Therefore, if F is
ordered (2), d’ is strictly monotone increasing.

Proor. Since F,(t) is continuous from the right, there exists a f, such that
d'(Fo, F1) = Fo(to) — Fi(to) or d’ (Fo, F1) = Fo(ty — 0) — Fi(to — 0). Hence,
by (16) and (17) d'(Fo, F1) = d'(F,, F») implies

(18) Fi(ty) = Fa(to)
or
(19) Fi(to — 0) = Fa(to — 0).

Since s(F;) does not depend on , both quantities are in (0, 1).
From (2') we obtain for ¢ = ¢

Fa(to — 0)/F1(to — 0) = Fy(te)/Fi(te) = Fo(t)/Fa(t) £ 1,
and from (2”) for ¢ < ¢,

1 — Fo(te) 1 — Fa(to —0) _ 1 — Fu(2)
=) ST —0 S1=R@ = -

Both relations together yield F1(t) = F.(t) for all ¢, regardless of whether (18)
or (19) are true.

That both (2') and (2”) are necessary to establish strict monotonicity can be
seen by supplementing the example at the end of Section 2.1 with P3(1) =
P3(2) = P3(3) = 4/21, P;(4) = 9/21. Then, the order F;, < F; < F, fulfills
(2') and we have d'(Fy, Fy) = d'(F,, F;) = 5/28, though P, 5 P;.

Another example due to R. Borges shows the necessity of the assumption that
s(F;) is independent of 7. Let P1(0) = Pi(1) = 1/2, P1(2) = 0; P»(0) =
P2(2) = 0, Pz(l) = 1, P3(0) = 0, Pg(l) = P3(2) = 1/2 Then Fl < F, < F3
in the sense of order (2), but d'(Fy, F,) = d'(F:, Fs).
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According to Helly’s weak compactness theorem (see e.g. Loeve (1960) p.
179) any sequence of distribution functions {F,} contains a subsequence, con-
verging to a limit function F at all continuity points of F. This limit function
is nondecreasing. It is, however, not necessarily a distribution function.

LeMMA 7, If § is ordered (2), then any sequence {F,} with D({F,}) < 1 contains
a d—convergent subsequence.

If, in a metric space, each bounded sequence has a Cauchy subsequence, then
this metric space is totally bounded (precompact). Thus, we have the following:

COROLLARY. If & is ordered (2), then any subset of F with diameter less than 1 s
totally bounded (precompact).

Proor or LEMMA 7. From the sequence {F,} we select a monotonesubsequence,
which will be assumed nonincreasing. In order to simplify our notation, we also
denote this subsequence by {F.}. As Fo(t) = Fnu(t), lim,.. F,(t) exists for
each ¢. It will be denoted by F(t). Obviously, F(t) is nondecreasing, F(— «) = 0
and F(+ ») =

At first, suppose that there exists & such that 0 < F(f,) < 1. Since the order
(2" is tra,nsitive F.(t)/Fn(t) is nondecreasing for m = n. Hence letting m — oo,
F,(t)/F(t) is nondecreasing. By 0 < F () < 1 thisimplies that [F(t) — F,(¢)| =
F)(1 — F.(t)/F(t)) = 1 — Fu(to)/F (&) for t = to. Similarly order (2”)
implies |[F(¢) — Fo(¢)| = (1 — Fu(t))/(1 — F(&)) — 1 fort < # . Letting
n — o, the last two inequalities yield that F,({) — F(¢) as n — o uniformly
on the extended real line. Hence F(¢) is a distribution. For, the uniform limit
of right continuous functions is right continuous. Thusd (F, , F) — 0asn — .

If there exists no ¢, with 0 < F(t) < 1 it follows that F(¢) = 0 or 1 according
ast < typort > o for some &, . We can assume that ¢, is finite, since the order (2)
and the distance function d’ is invariant against a monotone transformation of
the extended real line on the interval [0, 1]. By choice of the sequence F, we
have |F.(t) — Fa(t)] < 6 < 1 for all n, m and ¢. Hence, letting m — « we
obtain |F(t) — F.(t)| < & for all n and ¢. Letting ¢ — ¢ + 0 we obtain that
0 <1 — 8 £ Fu(t) for all n. Therefore by (2) Fn(to)/Fm(to) £ Fu(t)/Fu(t)
forallt = t{yand all m = n. Letting m — <« we obtain that F,({)/F(t) < Fn(t);
letting ¢ — ¢, + O we obtain that F(f,) = 1.Since |F(t) — Fa(t)| = 1 — F.(t) <
1 — Fo(t) fort = tpand 0 = F(t) = F,(t) otherwise, it follows that d'(F, , F)
— 0 which completes the proof for monotone nonincreasing sequences.

The proof for monotone nondecreasing sequences follows from this result and
Lemma 2.

Lemma 8. Let (Y, d) be a metric space with a distance function d(y1, yz) bounded
by one and Y a linked set in Y. Then for each yo, y1 ¢ Y there exists a chain y, ,
Y2, s Yn, yn+18u0hthatyn+1 =Y, Y: € Yandd(yz ’ yi+1) < 1f07'1: =12 .-n
n being some integer depending on yo , y1 . (This lemma due to R. Borges.)

Proor. Let 41 ¢ Y be given. Denote by Y the set of all y ¢ Y such that a chain
Yi,Y2, -y Yn, Ynp1 = Yy with the properties stated in the lemma exists.

Assume that ¥ — Yy is not empty. Then, d(Y,,Y — Y1) = 1,asd(y,¢y") = 1
for all y' ¢ Yy and y” ¢ Y — Y, . This, however, contradicts the assumption that
Y is linked.
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Lemma 9. Let (Y, d) be a totally ordered metric space with a monotone distance
function bounded by 1. If Y s linked, then any order bounded set is a finite union
of sets of diameter less than 1.

CoROLLARY. If Y s linked, then Y is a countable union of sets of diameter less
than 1.

Proor. Starting from an arbitrary value y;, we construct a sequence {y,}
according to the following procedure:

(a) If sup{d(y1,y) :y = y1} < 1then theassertion is trivial. If sup{d(y:,¥) :y
= i} = 1, we have to distinguish two cases:

(b) First, we assume that d(y:,y) < 1 for all y = y;. Then, we construct a
sequence {y.} such that d(yi, ¥a) = 2112 % terminating the sequence in
case sup{d(yn, ¥) :y = ya} < 1 should ever occur. As d(y1, y») < 1, each
distance d(Ys—1, ¥») is also less than 1. Whatever the value y > y; might be,
there exists an n, such that 1y 27° = d(y:, y), which implies y < ya .

(e)If Y, = {y:d(y1, y) = 1, y = i} is not empty, there exists a value
y2 < Y, such that d(y., Y») < 1. (Otherwise, Y would not be linked.) From
the definition of Yy, wehave y; < g2 and d(y1,92) < 1.Let Y3 = {y : d(y2,¥y) =
1,y = ys}. Obviously, Y; C Y, . If Y, is empty, we proceed as in (a) or (b) for
the case of y; . If Y3 is not empty, there exists y3 £ Y2 — Y3 such that d(y;, Y3)
< 1. (Otherwise, Y would not be linked.) From the definition of Y, and Y3,
we have . < y; and d(y2, ¥3) < 1. Proceeding in this way, we might either
arrive at case (a) or (b) or remain in case (¢). For the latter case, we have to
show that to each y > y: there exists an n, such that y £ y. . Assume, that this
isnot the ecase. Then, the set U of all y which are upper bounds of {y,} without
belonging to {y.} is not empty. As  is linked, there exists 4 < y”, ¥' 2 U,
y” ¢ U, such that d(y', y”) < 1. Sincey ¢ U, there existsn, such that 5’ < y, .
Therefore, d(y. , y”) < 1, which implies that y” < Y,41. Since ypi2 & Yui1, we
have y” < Yn42, which is a contradiction.

Therefore, the sequence constructed above reaches every value y > y; within
a finite number of steps. As the same procedure can be applied for y < y;, this
proves the Lemma as well as the Corollary.

Lemma 10. Let (M, d) be a metric space with a distance function bounded by 1.
Then, Y is the union of linked components of distance 1.

Proor. Let @,, the class of all linked sets containing y,. Then, C, =
U {C :C e €,,} is called the linked component of y, . The linked component C,
itself is linked, as any union of linked sets with nonempty intersection is linked.
Furthermore, if Cy and C; are two linked components with distance less than 1,
then Cou C; is linked. As yo € Cou Crand as C, is the largest linked set containing
1o , we have C; C C, . By the same reasoning, we obtain C; D Cowhence C; = (.

5. Proof of the main theorems.

Proor oF TuEOREM 3. By Lemma 6 (F, d’) is a totally ordered space with
monotone distance functions. By Lemma 10 & is the union of linked components
of distance 1. Each of these linked components—except those consisting of a
single degenerate distribution—has a support which is an interval. As the linked
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components have distance 1, the supports have pairwise empty intersections.
As the number of intervals with pairwise empty intersections on the real line is
-countable, and since furthermore the number of isolated degenerate distributions
is countable by assumption the number of linked components of § is countable.

By the Corollary to Lemma 9 each linked component is a countable union of
:sets of diameter less than 1 and hence ¥ itself is a countable union of sets of
.diameter less than 1. Therefore by Theorem 2 & is separable.

As F is D-separable, more specific: separable under the metric d”, it is domi-
nated according to a well-known theorem (see e.g. Lehmann (1959) p. 352,
"Theorem 1).

ProoF oF THEOREM 5. Let §1 = {F :Fe%, F < Fo} and F, = {F :F e,
F > Fy}. Since F, fits into ¥, none of these sets isempty. SinceF is linked, there
exists F; eF;, such that d(F,, F.) < 1. Therefore, sup{d(F.1, F) :F e,
F > Fy} £ d(F1, F,) < 1. From Lemma 7 there exists a least upper bound
(D), say F¥. As ¥ is D-complete, we have Fi ¢ . The same reasoning shows that
F, has a greatest lower bound, say F &%, . From the definition of &;, we have
F¥ < Fy < Fi. However, Fi < Fj would contradict the assumption that & is
order dense in itself. Therefore, FY = F3 = Fye . q.e.d.

6. Abstract sample spaces. Statistical applications. Let Q be a class of prob-
ability measures @ on a measurable space (X, @).

We assume throughout this section that there exists a real valued statistic
T'(x) which is pairwise sufficient of Q. (For the concept of pairwise sufficiency
see Lehmann (1959) p. 56, Problem 9 or Halmos and Savage (1949) p. 234 ff).
It will turn out that all of our considerations are immediately concerned with a
finite or countably infinite number of probability measures only. The fact, that
a pairwise sufficient statistic is sufficient for a finite or countably infinite
number of probability measures explains why it is sufficient for our purpose to
consider the family & of distribution functions induced by T(x) — ¢ on the real
line: Fo(t) = Q{z : T(x) < t}. We shall say @1 < Q: in the sense of order (k),
k= 1,2o0r3,if F; < F, (we write F, instead of Fo,) in the sense of order (k).
We assume that Q is ordered in the sense of order (k).

Furthermore, let d'(Q1, Q) = d'(F1, F2) and d”(Q1 , @:) = supace| Q1(4) —
Q:(A)|. Since there exists a pairwise sufficient statistic T'(x) we have

(20) d"(Q1, Q) = d"(F1, F).
For, let @ = @ + Q. and let ¢;(x) be the @-measurable density of @; with
respect to o . Then,

Supaee [0(4) — @A) = [ (as — 02) Ao

21 (2)>q2(2)

If T is sufficient for {Q: , @} then the densities ¢;(z) can be taken to be functions
of T(z), i.e., ¢.(x) = p:(T(z)). Therefore, using (7),
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[ (@) = a@) @ = [ (pt) = put)) dPoD)
q1(2)>q2(2) P

1()>p2 ()

= sups.q |P1(B) — Py(B)|.

This proves (20).

Therefore all theorems and lemmata concerning the order (k) and the distance
function d”(F1, F:) in the real case extend immediately to the present case of a
family of abstract probability measures, possessing a pairwise sufficient statistic
and ordered (k).

We obtain as a corollary to Theorem 3:

TueorEM 6. If Q s ordered (2) and contains at most a countable number of
degenerate distributions, then T is suffictent for Q.

Finally, Theorem 4 shows that a conjecture of R. A. Fisher (1934 ) pp. 294-296
is essentially true. At least it is possible to interpret his statement such that it
is true. Fisher’s statement was, that a family of probability measures possessing
an uniformly most powerful test for each level of significance must have a
sufficient statistic and has only one parameter. Some phrases in Fisher’s paper
suggest’ that in talking about uniformly most powerful tests he actually had in
mind tests which are most powerful for. testing any hypotheses & against any
alternative & > &y . If tests of this kind exist for arbitrary levels of significance,
then the family of distributions has monotone likelihood ratios, i.e. it is ordered
(3), as was shown in [12]. If, in addition, this family contains at most a countable
number of degenerate distributions, we obtain from Theorem 4 that it also has
1-dimensional real parameter space. As in [12], we call a test function ¢ everywhere
most powerful in an ordered family £ of probability measures, if ¢ is most
powerful for @, against @; with Q) < @Q: as long as Ew > 0 and Eip < 1. A
family & of test functions is called perfect with respect to L, if the following
three conditions are satisfied: (i) all test functions contained in ® are everywhere
most powerful, (ii) for each Q¢ Q and for each « ¢ [0, 1] there exists a test
function ¢ ¢ ® with Ew = a, (iii) for « = 0(1) there exists a test function
¢ € ® which is most powerful for @ against any @ with @ > @, (for any Q against
Qo with @ < Qo). Therefore, we have proved the following

TaEOREM 7. A family of probability measures which has a perfect family of tests
and contains at most a countable number of degenerate distributions is D-separable
and therefore dominated. Furthermore, it has a parameter space which s a subset
of the real line.

The counterexample, given by Neyman and Pearson (1936), pp. 122-123
(see also Lehmann (1959) p. 110, Problem 2 (ii)) showing the existence of a
family of distributions with two real parameters having uniformly most powerful
tests, is of no relevance as it fails to meet the requirement that each of these
tests is most powerful for every pair of probability measures of this family. In

2 See e.g. p. 295: . . . the contours defined by the ratio of the likelihood of H; and Ho
shall be the same as those defined by the ratios of the likelihood of any two hypotheses in
the class.
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the example by Neyman and Pearson, to each hypothesis specified by the pa-
rameter value (a0, bo), there exists a test most powerful against the class of
alternatives {(a, b) :a = ao, b =< bo}. This test has, however, no optimal proper-
ties against alternatives (a, b) witha > ay, b > boora < ay, b < by.
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