ON ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A
MULTIVARIATE MATRIX: DISTRIBUTIONS!

By Trro A. MiJARES
Unaversity of the Philippines

1. Introduction and summary. Elementary symmetric functions (e.s.f.’s)
of the roots of certain determinantal equations are often associated with test
statistics in multivariate analysis. The T” of Hotelling (1951) is related to the
first e.s.f. of the roots (this is also known as “sum of the roots” or “‘trace” of
its associated matrix). The \-criterion of Wilks (1932) appropriate to & samples
is related to the last e.s.f. of the roots (this is also known as “product of the
roots”). Except for these two e.s.f.’s of the roots, very little is known in current
literature of the other e.s.f.’s.

Non-symmetric functions, like the largest or smallest root of Roy (1957), also
arise in certain situations where their use are preferable to other known statistics.
This paper is not concerned with symmetric or non-symmetric functions as test
statistics. It is concerned with a unified treatment of the distribution problem of
the e.s.f. of the roots. It begins with the derivation of the joint distribution of the
e.s.f. of the roots of a multivariate matrix under null hypothesis (Section 2). The
next three sections concern with the moment problem of the distribution. Section
3 cites previous material necessary for obtaining determinantal expressions of
the moments. Section 4 deals with the proof by construction of obtaining de-
terminantal expressions for moments and product-moments which is applied
(Section 6) to the third moment of the second e.s.f. and the product-moments
of the first, second and third e.s.f. for illustration purposes. Section 5 gives an
evaluating formula for the determinantal expressions.

2. The joint distribution of the e.s.f.’s. Certain determinantal equations of
the form

[Ty — 6(Ty+ T2)| =0

arises often in multivariate analysis. T; and T are independent Wishart matrices
with certain degrees of freedom and 6 is a root of this determinantal equation.
Under null hypothesis, the distribution of the nonzero roots has been obtained
independently and almost simultaneously, by Fisher (1939), Girshick (1939)
for the case of two roots, Hsu (1939), Mood (1951) and Roy (1939). The
standard form of this distribution is
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(2.1) c(s,m,n)[1 671 —0.)"1](6; —6;) [[db.,0<0 <65 --- <6, <1,
7=1 >7 =1

where
s l .
(22)  els,myn) = P[] TBEm A I o4 i 42N
=1 T[3(2m + ¢ 4 2)I1[§(2n 4 ¢ 4 2)]1(4/2)
and m, n and s are functions of sample sizes and the number of variates depending

on the null hypothesis (e.g., see Roy, 1957, p. 52). Now define the e.s.f.’s of the
roots by

P =0+6+ -+,
;s) 9102 + 0103 + + 03—108)

(2.3)

V) = 6,0, -6, .

The V§ notation is the same as that given by an earlier paper (Mijares, 1961,
p. 1154). For the purpose of this section, however, if 6; for £ < s is missing, the
jth e.s.f. of the remaining s — 1 roots will be denoted by V;(6:, ---, k-1, kt1,

s, 0 s)'
The Jacobian of (2.3) with respect to the 8’s is

1 1 e 1
Vil -+, 6) Vi(61,65, -+ ,0:) cee Vuly, ce e, 05m1)
(24) .

Vs—1(02, cct 703) Vs—l(01,03, et ,08) et Vs—-l(ol, et ,oa—l)
It is not difficult to check from (2.4) that the Jacobian |J| with respect to the
Vi is
(2.5) V| = 1/I>I (8: — ;).
>

Hence, on substituting (2.3) in (2.1) and making use of (2.5), the joint distri-
bution of the V' is obtained. Thus

g(Vi?, -, V)Y IL AV = e(s, m, n)[VET"

: [1 -2 (—l)j'lVJ‘-"’] I ave,
1 7

(26)

where ¢(s, m, n) is given by (2.2). Obtaining the marginal distributions of the
V¥ j < s, from (2.6) appears, however, to be difficult. It is somewhat easier to
study the moments of V" using the distribution (2.1) instead.

3. Notations and previous results needed in this paper. The reader is assumed
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to be familiar with the results in Mijares (1961). The same notations are fol- .
lowed here generally except for slight modifications introduced for convenience,
some of which have already been given in the previous section.

The arbitrary arguments z;, - -, x; in the elements of the (¥ + 1) ordered
triangular matrices (a) and (¢) of the former paper will now be replaced by
61, -, 6 . Denote thus

Vo 0 e 0 ®% 0 --- 0
@y (v = " Voo 0 @y =B B O}
(=% (=1)* Vit --+ Vo br Pra - B
where V; and ®; are understood to be the jth e.s.f. and complete homogeneous
symmetric functions of degree j, respectively, with complete argumentsin 6, , - - -,

6x . As before, determinants of lower order than & + 1 formed from (3.1) are to
be referred as V-determinants and ®-determinants, respectively.

Since there is no occasion here to consider the moment generating function of
theesf’sin6, ---,0,thetin U(gs, ---, q1 ; ¢) of the former paper is dropped.
The modified notation to be used in this paper now means

agsogs—l e agl

(32) U(Qs, e ,(11) = C(S,m,'ﬂ)f "'f I_Ilo?(]- ""az)ndoz
ogso‘{s-—l e 0‘{1

where c¢(s, m, n) is given by (2.2). Note that the determinantal expression of

(3.2), by (2.2) of the previous paper, may be reduced into the product of

I1:i(6: — 6;) and an s-ordered ®-determinant whose elements in the last row

are subscripted ¢, , - - -, g1 . Denote this s-ordered ®-determinant by U'(g,, - - -,

q1). For instance,

0 05 63 ®, B P
3

05 05 65| =]1(0: — 6;)|®s & &1.
>g

o 6} o I‘I’4 $; Py

The ®-determinant then is U’(4, 3, 2). Note also that (3.2) above may be
expressed as

(33) U(qs y T Ql) = E[U’(qs PR 91)],

where F denotes mathematical expectation.
As a further remark, in connection with formulae (2.2) and (5.8) of the

previous paper, the expression
a0 |2kl = [bay—snil = lad;—iuil

= {dy---di},
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which in group representation theory is the character denoted by {d;- - -di} of the
representation of linear group of signature d = (dy, - - dp), i = do = -+ =
dr = 0. ¢; and d; are respectively the complete homogeneous symmetric function
of degree ¢ and the order of the e.s.f., both of arguments z;, ---, xx . [See, e.g.,
Weyl (1946), formulae (5.15) and (6.5) of Chapter VII and footnote 12, p. 311
of bibliography of the same chapter.] d denotes the conjugate partition of d; its
use will be illustrated later in Section 6. I am indebted to one of the referees for
pointing out the relation to group characters.

4. A diagonalization theorem. Consider the first » < k& 4 1 columns of the
matrix (V) of (3.1). Suppose we form an r-ordered V-determinant

(4.1) (=) Vo, (G5 =1, -+, 7)

from the first r columns of (V'), where Vy; , is the ¢th diagonal element of the
determinant and V, = 0 for p < 0 from the definition of the e.s.f. The determi-
nant (4.1) can be conveniently identified given the d/s as that obtained from

rowsd; +4,¢ = 1, - .-, r of (V). The V-determinant can be denoted then by the
subscripts of the principal diagonal, viz.,

(42) (didsd) = [(=1)*" V]
The V-determinant (4.2) has an expansion given by
(43) Z £ Vi Vayoigy - Vaptr—i,

where the summation extends over all permutations (j1J2- - -J.) of the integers
(12---r) and the sign in each term of the expansion being either positive or
negative according as the set (j1js- - -j-) is an even or odd permutation.

If > iyd: = d, then one may observe that the polynomial expansion given
by (4.3) is homogeneous of degree d. It may also be noted that the expansion
need not contain r! terms. Denote now the terms of expansion (4.3) also by
their subscripts and distinguish them from V-determinants by using the pa-
renthesis (---) instead of the bracket [--.], ie., [dids---d;] is a determinant
obtained from the first r columns of (V') with diagonal elements, apart from their
signs, consisting of V4, , Va4, , -+, Va, in a non-decreasing order of subscripts
whereas (dids- - -d,) is a monomial which is a product of factors Vi , Vg, ,
..+, Va4, in a non-decreasing order of subscripts.

The following diagonalization theorem may now be stated.

TurorEM. The monomial (dy---d,) can be expressed as a linear combination
with integral coefficients of determinants of the type [d; ds- - -d:] where the d; ,
i =1, .-, r, form an r-part partition of d.

Proor. This theorem may be proved by showing how, by construction, each
V-determinant with diagonal elements having subscripts which form an r-part
partition of d may be expanded in a systematic way.

Write the expansion of [d; ds- - -d,] in terms of a polynomial in (- - -). Further,
rearrange the terms of the expansion in a lexical manner such that the term
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(dads - - -dy) pre,cedes the term (dy ds - - -dy ) if, for some m such that 1 £ m < r,

dy=di, -, dny = dpyand dy, > dy . Call this the lexical order. Then
(44) [dide---d)] = (didy---d) + a(dyda---8,) + B(dyds---8,) + ---

where , 8, - - - have values either 4+1 or —1 according as the terms (d; 8- - -3,),
(dy 83 - -8,), ete. are even or odd permutations of integers (12 - -r). Call (4.4)
the lexical expansion of [dyds- - -d,]. The first term of the lexical expansion re-
sulting from the natural ordered set (12---r) consists of elements from the
principal diagonal of the V-determinant [dy dz---d,]. The other permutations
either give a first d-subsecript equal to or less than d; . If the first d-subscript is
less than d; , then the term in the expansion corresponding to this permutation
comes after (dyds- - -d,) by the lexical expansion. If it is equal to d;, then the
second subscript cannot be greater than d, for j, in this permutation cannot be
equal to integer 1 or 2. Hence, the second subscript §; of the second term in the
expansion is either equal to or less than d;. The argument for the case of the
first d-subscript may be repeated for the second subscript and so on. In this way
the lexical expansion shows that no term precedes the diagonal term (d; ds- - -d;)
in the expansion of [d; d;- - -d,].

Now perform the following:

(a) Take determinants having diagonal elements whose subscripts form an
r-part partition of Y d; = d and arrange them down the column in the lexical
order.

(b) Take the lexical expansion of each determinant [- - -].

The procedures (a) and (b) may be written in the form of an array as shown
in Table 1.

The numbers «, 81, B2, 71, Y2, & - - - may or may not be zeros depending on
whether the corresponding terms are found in the expansion. The sums of all
terms in the lexical expansion, except the first term (d; dz- - -d.), can be made
equal to 0’s by properly multiplying the successive determinants [- - -] by certain
constants; that is,

TaBLE 1
Terms of expanston in lexical order

(d—1ds—~1---

Determinants (lexical order) (dids - ++ dr) (Eldf d,. —Iilrl_)1 o drl:lr_— Ilt)ir e (00 +-- d)
ldids -+ dv] 1 o 81 v m
ldy ds -+ dpy — 1 dp + 1] 1 e B
[di—1d;—1---dr_y — 1d,+ r — 1] (Zeros below principal 1 8
. diagonal) .

[00---04d] 1
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Coefficient of (didy- - -dpy — 1d,+1):
[dl dz' . dT] — Ol[dl dz' . ~dr_1—1 dr-l-l] = 0, for some o

Coefficient of (di—1dy—1- - -d,y—1d,+r—1):
[dl dz- . dr] - aﬂz[dl d2 .. ‘dr—l_ 1 dr+ 1]
+ .. + Bldi—1dy—1..-d,y—1d,+r—1] = 0, for some g;

Coefficient of (00--.d):
[dids---d] — ayeldida- - -dry—1dp+1] + -+ + BO[di—1de—1---
d1—1d+r—1] + --- + §[00---d] = 0, for some &".
Hence
(didy---d,) = [dhde---d)] — ofdydp- - -dra—13d,+1] + -+
+ Bldi—1dp—1---dy—1dy+r—1] + --- 4 8700 - .d].
This ends the proof of the theorem by construction.

5. An evaluating formula.

TueoreM. The s-fold integral U(qs, - -+, q1) given by (3.2) may be evaluated
using the formula

C(S; m, ’ﬂ)

c(s— 2,m,n)y(m + n + g + 1)

(5.1) [ > (i)B<2m+qt+qu+1,2n+2)-U(q:_2,.~,qi)]

t=s,t5t’

m + gy
+m+n+gi,+1U(qsy ey Quga, Qi — 17QL’—1, "',Ql)

for arbitrarily fixed ¢, where
(i) B(a, B) is a beta function with parameters o and B given by

1
B(a, B) = fo 1 —2)de, 0<z<],

(ii) the sign (=) 4s used according as the total, less unity, of number of columns
preceding those having q» and q. is even or odd,

(iii) U(qs_g , -+ qu) 1s an (s — 2)-fold integral with subset (qs_z, cee q;)
which is the complement of (q:, qv) tn the set (gs, - -+, ¢1), and

(iv) ¢c(s, m, n) s given by (2.2).

To illustrate the reduction of U(6, 3, 1, 0), we may choose the first column
with g» = 6. Then, by (5.1),
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c(4,m,n)
c@,m,n)(m +n 4+ 6 + 1)
J[B(2m 43 +6 +1,2n +2)U(1,0) — B2m + 14+ 6 + 1,2n + 2)U(3,0)

+B(2m+0+6+1,2n+2)U(3,1]+m+’Z'_|':2+1U(5,3,1,0).

U(6,3,1,0) =2

Now put M = 2m, P = 2p, p = m + n. Since
I(y/2) = «-27Ty{Tl(y + 1)/2]}"

we have
(4, m,n) _ (2p + 5)(2p + 6)T(2p + 9)
c(2, m, n) 8T(2m + 4)I'(2n + 4) )
The two-fold integrals, by using the expansion (5.1) repeatedly, give
U(1,0) =

U(3,0) = (2’” + 3)[(2m + 2)(2p + 6) + 2(2m + 6)(2p + 5)]
’ @+ 5@ + 6@ + 9

2(2m + 2)(2m + 3)(2m + 5)
Cp+52p+6)2p+8

U@3,1) =

Hence,

_ 10M(4,5,6) .
U(6,3,1,0) = (8,9, 10. 11, 14) (10m* + 10mn + 73m + 27n + 117)
m + 6

p+7

where M(a, b, ---) = (2m + a)(2m + b)--- and P(d’, b, --+) = (2p + d’)
(2p +0b)---

This theorem may be regarded as a special case of that given by Roy (1957),
p. 201, after a repeated application of the reduction formula and, separately, by
Pillai (1956) p2 1110, both of which have been developed for entlrely different
purposes. If ¢ = s in the formula here, and in Pillai’s formula ¢ =1landt=0,
the two formulae will be seen to be equivalent. It may be observed that Pillai’s
formula has a long expansion especially if the difference of exponents in the
first two columns of U is large, i.e., if ¢, 3> ¢s—1 . The evaluation using the formula
here shortens the reduction process if ¢’ is properly chosen. The development may
be found in Mijares (1962).

6. The moments and product-moments of the e.s.f. Nanda (1950) obtained
the first three moments of the sum of two roots under the condition m = 0 of
the distribution (2.1) for the case of s = 2. The moments were obtained by
expanding directly the moment generating function of the sum of two roots
under the given condition, collecting like terms and integrating term by term.

+ - U(5,38,1,0)
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Pillai (1956) obtained a recursion formula for the sum of s roots in terms of
(s — 2) roots using hypergeometric expansions. He also obtained the first four
moments of the sum of 2, 3 and 4 roots. Orense (1958) obtained the first three
moments of the sum of 5 roots using Pillai’s recursion formula. However, since
the expansion becomes tedious as the order of the moments or the number of
the roots s gets large, the method of differentiation, first used by Mijares (1958),
was used for obtaining also the fourth moment of the sum of 5 roots. Mijares
obtained the moments of the sum of s roots in determinantal forms and used
them to derive a general form of the first four raw moments. These results are
given in Mijares (1958) and in Pillai and Mijares (1959). Ting (1959), using
these results, transformed the raw moments into central moments. Her results
may be found in Pillai (1960). An inverse derivation of these moments (Mijares,
1961) used certain properties of the V’s and ®’s which extended the derivation
to any moment of any e.s.f. of s roots.

A more systematic procedure for deriving the moments will be illustrated in
(a) below for the third moment of the second e.s.f. This procedure will be
extended then to the product-moments of the first, second and third e.s.f. It
will be shown next in (b) that certain moments using the procedure here are
identical with results already well known.

(a) For further simplicity of notation, the superseript (s) of the jth e.s.f.
V§? will be dropped whenever there is no danger of confusion. Consider V3 =
Va-V2-V, for the case of third moment of the second e.s.f of s roots. The sum of
subscripts ) d; = 6. Partition the integer 6 into at most three parts and trans-
form each partition into a determinant by enclosing it with [ ]. Arrange these
determinants in lexical order column-wise and take the lexical expansion of each
determinant using the diagonalization theorem of Section 4. V3, which is (2 2 2),
can then be expanded in terms of the [--.] in lexical order by successively
multiplying each [- - -] by proper integers. Thus,

(222) (123) (114) (033) (024) (015) (006)

[222] 1 -2 1 1 —1

2 [123] 2 —2 -2 2
[114] 1 -1 -1 1
[033] 1 -1

3 [024] ‘ 3 -3

2 [015] 2 -2
[006] 1

1 0 0 0 0 0 0
That is,

(6.1) V3= (222) = [222] + 2[123] + [114] + [033] + 3[024] + 2[015] 4~ [006].

The next step is to transform each V-determinant of (6.1) into their equivalent
®-determinants using relation (5.8) of the previous paper cited (Mijares, 1961,
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p. 1158), then to use relation (2.2) of that same paper to obtain the necessary
U’-expressions of the type given by (3.3) of this paper. For instance, to trans-
form the V-determinant [123] to its equivalent ®-determinant, it should be
noted that the determinant has rows 2, 4 and 6 and columns 1, 2 and 3 of (V).
Denote [123] by ¢(246; 123; V) and its algebraic complement in (V) by
5(13578 --- s+ 3;45 -.- s 4+ 3; V). The corresponding element in & of
0(246;123; V) will have rows and columns labelled by the columns and rows,
respectively, of (13578 ... s+ 3;45 ... s + 3; V). Denote this correspond-
ing element by ¢(--- ; --- ; ®), then

0(246;123;,V) =0(45 ---5s+3;13578 ... s+ 3;®)

of (®) in (3.1) for k = s 4+ 3. This means taking the 1st, 3rd, 5th, 7th, 8th, - - -,
kth columns of (®) for £ = s + 3. Th subscripts of the ®’s in the last row are

s+2,5,8s—2,8s—4,8s—5,---,1 0. Hence,
123 =U'(s+2,s,s—2,s—4,5s—5,---,1,0).
By (3.3) the expected value
E123]=U(s+2,8,8s—2,s—4,s—5,.--,1,0).

Similarly, other V-determinants in (6.1) are transformed into #-determinants
to obtain the U’-expressions which are easily converted to U-expressions by
taking the expected value of U’. Thus, the third moment of V3 is

EVy) =U(s+2,s+1,s—3,s—4,s—5,---,1,0)
+2U0(s+2,8,8s—2,s—4,8s—5,---,1,0)
+U(s+2,s—1,8s—2,8s—3,s—5,---,1,0)

(6.2) +U(s+1,8,s—1,s—4,s—5,--.,1,0)
+3U(s+1,s,8,—2,s—3,s—5,s—6,..--,1,0)
+2U(s+1,8s—1,s—2,s—3,s—4,5s—6,s—7 ---,1,0)
+U(s,s—1,8—2,s—3,s—4,s—5,5s—7,8s—8,---,1,0).

By using the evaluating formula of Section 5 the third moment of thesecond
e.s.f. for specific values of s may be obtained in terms of m and n, just as the
first and second moments of the second e.s.f. for s = 2 in (b) below have been
obtained.

The product-moments of the first, second and third e.s.f.’s may be obtained
by forming the triangular array starting with [12 3] and then successively
multiplying each [- - -] by appropriate numbers to make the coefficients of the
corresponding ( - - -) add up to zero. That is,
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(123)  (114)  (033)  (024)  (015)  (006)

[123] 1 -1 -1 1
[114] 1 -1 -1 1
[033] 1 -1
2 [024] 2 -2
2 [015] 2 -2
[006] 1
1 0 0 0 0 0

Thus
(ViV.Vs) = [123] + [114] + [033] + 2[024] + 2[015] + [006].

Hence, E(V1V.V;) can be obtained easily by transforming each [---] to its
equivalent U-expressions which are already given in (6.2).

The U-expressions of (6.2) can be quite readily obtained also by using the
idea of conjugate partition in group representation theory. If the partition
(2 2 2) is represented by rows of dots of lengths respectively equal to its parts,
the following is obtained .

The conjugate partition is now the respective lengths of dot (3 3) represented
by the columns and on adding

s—1,8—2,s—3,---,2,1
+ 37 37 07"'70’0
s+2,s+1,s8—3,---,2,1

Thus [222] = U'(s +2,s+ 1,5 — 3, ---, 2, 1), the expected value of which

is the first U-expression of (6.2).

(b) Some moments and product moments of higher-order e.s.f. may be found
in current literature. For testing complete independence, Hotelling (1936) used
the distribution of ¢ = =Zryr. for positive values of ¢ and derived two forms of
its moments. One form of the moment is given by

i = | (= D) e (2 ) /o () r (L )
() (G ) /2 (5 (5 +4)m]
(1= ) fol P x)n—l%hh

where » is one of the two correlation coefficients between the two sets of variates
which is not zero and ¢ is the number of variates in the second set. Thus for the
second moment

(6.3)
[x(t/2)+h—1(1 _ Vx)—(nﬂ)] dx
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t—1 — 1 nnn
4 = 1- e <
R R = (RS
where F is the ordinary hypergeometric series. For the null hypothes1s of com-
plete independence, » = 0, so that (6.4) reduces to

(6.5) pe = t(t — 1)/n(n — 1).
Using the diagonalization theorem, V3 can be expanded using
(2 2) (13) (0 4)
[2 2] 1 -1
[1 3] 1 -1
[0 4] 1
1 0 0

Thus V,- Ve = (22) = [22] 4+ [13] + [04]. Since V,, like ®,, equals O for
p > s = 2 (the number of variates in this case), the last two V-determinants
vanish and hence, (22) = [22]. Also, note that (02) = [0 2]. Thus,

= E(V.-V,) = E[22] = U(3, 2),
= E(V,V.) = E[02] = U(2, 1).
Use the evaluating formula of Section 5 for s = 2 to get
w=U(3,2) — {U D}
= M(2,3,4,5)/P(5,6,7,8) — M(2,2,3,3)/P(5, 5, 6, 6),

where M(a, b, ---) and P(a’, b, - - ) are, respectively, (2m + a)(2m + b) - --
and (2p + a’)(2p + b') --- with p = m + n. Under the null hypothesis of
complete independence for s = 2 and degree of freedom n’ (which is Hotelling’s
n), substitute

m=%t—3), n=3n—1t-2)
in us above to obtain
pa = t(t — 1)/n'(n" — 1)

which conforms to (6.5).

In the paper by Girshick (1939), product-moments have been obtained for
gq=rms - roand Z = (1 — r)(1 — r3) --- (1 — r2) in the case of s variates
in the first set and ¢ variates in the second set. From his result

s r T+ at 1 — DI — i+ 28+ 1 — )Tl + 1 — )]
©6) 2'2") = I 5 T — o = (F T — OB F ok 26 F 1 =]

the ath moment of the sth e.s.f. of s roots can be obtained by putting 8 =
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Note that the a'th moment of ¢* equals the 2a’th moment of g. Assuming ¢ > s
the notations of Girshick in terms of the distribution (2.1), with 7, n replaced
by ¢, n’ and under null hypothesis of independence, are equivalent to

(67) t=2m+s+1, n=2n0"+2m+25+2, 7= 0ps.

Replace ¢ and 7 in (6.6) by (6.7), /2 by o’ and ¢ by s + 1 — 4. This gives

the «’th moment of ¢* which is

fI T[a(2m + ¢ + 1) + 0L (2m + 2n + ¢ + s + 2)]

s TECm + 2n + 7 + s+ 2) + ITE@Cm + ¢ + 1)] °
Alternatively, using the diagonalization theorem the lexical expansion of the

product V.-V, --- to o factors is simply (s, ---, 8) = [s, ---, s], since all

V-determinants in the lexical order after the leading one vanish by noting that

V, = 0for s’ > s. Hence, applying the method earlier

por = E{(@)} = B(V,, ---, V)
=U2s—1,25—2,---,8s+ 1,8)

(6.8)

= C(S, m, n,)/c(s; m + a,7 n,))
which can be checked easily to be equivalent to (6.8).
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