A COMBINATORIAL METHOD FOR PRODUCTS OF TWO POLYKAYS
WITH SOME GENERAL FORMULAE

By P. S. Dwygr! anp D. S. Tracy?

University of Michigan and University of Connecticut

1. Introduction and summary. Wishart has demonstrated and Kendall has
justified the application of a combinatorial method to products of k-statistics.
Wishart’s combinatorial method is, essentially, that introduced by Fisher though
modifications were necessary since Fisher’s method is applied directly to the
writing of cumulant results while Wishart’s method applies to products of
k-statistics. It is the purpose of this paper to show that the combinatorial method
may be further modified and extended so as to produce products of polykays
and to present general formulae resulting from the new combinatorial method.

2. Notation and background material. The notation, based on MacMahon
[9], is similar to that of [4] except that P represents any partition of order = and
not just one with no unit parts. Similarly @ is a partition of ¢ having order X
We use [P] as the augmented rnonomlal symmetrlc functlon [3], [8] and mp as
the average [P]. It is known that Emp = [l,p where up = ppl . ,u;,,,r We let
C(P) denote the combinatorial coefficient which is the number of ways the
partition can be formed from p distinet units. In this notation the general formula
for k, , see [2], becomes

= X2 (=D (r = DIC(P)m:
= 2 (=) (= = DIC(P)[P)/n.
This notation can be modified and extended to polykays [11], [12] with the use
of subseripts. Thus p; - - - p, is a specified partition of order = with p1 = p. =
- = p. . A partition of p,, of order =;, is indicated by P; with combinatorial
coefficient
(22) C(Pz) = p,'/(p“')r” L) (pis!)”’ﬂ'n'! e 7!'1'3! .

Then a partition of the specified P = p, - - - p which is obtained by partitioning
one or more of the p; is indicated by P; and the value of the generalized k-sta-
tistic [13] p. 2 is

(23) Fpyoop, = kp = 25 (=1 IT (e — DT CP)PI/ET

and for the product we have

(2.1)
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keko = 2 TT {(=D" (=) (xs — 1)1 (s — DIC(P)C(Q)))

2.4
@ [PQ,]/n®

where p is the order of P,Q, .

3. Modification of Wishart’s method. The problem is to expand the right
hand side of (2.4) in terms of polykays. This is more general than the problem
of Wishart which was, for products of two factors, to expand

(B.1) kg = 22 (=) H(=1)(r — DI (x — 1)1 C(P)C(Q)[PQI/n®

in polykays. The general procedure, following Wishart [13] is to take expected
values to obtain u’s, change these to parent cumulants, and then obtain the
formulae as linear functions of the polykays by estimation. This process, as
Kendall pointed out [7], is very similar to an application of the Irwin-Kendall
principle [6] though, in obtaining these products, no finite population is in-
volved.

The main task is the transformation from the u’s to the cumulants and modi-
fications can be made in Wishart’s method to do this for the more general prob-
lem here. The essential modification is based on the fact that only the biparti-
tions (arrays) which represent P, , and not all those of PQ, need be used in the
process. We define bipartitions of P;Q, to be admissible bipartitions of PQ.

We illustrate with the example of Wishart [13], p. 4 giving the combinatorial
development of k3 . There are 7 bipartitions listed by Wishart. In obtaining the

bipartitions appropriate to koky , the bipartitions 22 and gg are not admissible

since 2 in the second column is not a partition of 11. The admissible bipartitions
P,Q, are then

(@) (b) (¢) (d) (e)

21 20 11 11 10

(3.2) 01 01 11 10 10.
01 01 01

01

We form the combined bipartitions of a given bipartition by combining rows.
Those which are admissible are called the c-bipartitions of the bipartition. Thus
(a) and (c¢) of (3.2) have no c-bipartitions, but (b), (d), (e) do have ¢c-biparti-
tions since rows can be combined as long as the resulting second element is not
greater than 1. :

In the Wishart technique the n-coefficient, the non-combinatorial factor of the
coefficient associated with a bipartition, is obtained from (3.1). In our modifica-
tion the corresponding n-coefficient, obtained from (2.4) is

n-coeflicient

(83) — T (=D (=15 (s — DI — 1)@ /@ onEx0,
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The sum of the n-coefficients, for the bipartition and all its c-bipartitions, is
called the bipartition function. Thus the bipartition function of (a) in (3.2) is
(1/n)(1/n®).n® = 1/n since there is no c-bipartition, and the bipartition
function for (b) is (1/n)(1/2®) n® 4+ 2(1/n)(1/n®) .n® = 1. Similar treat-
ment of (¢), (d), (e) shows bipartition functions of —1/2®, 0, 0 respectively.
Since the combinatorial coefficient, the number of ways the bipartition can be
formed in (a), (b), (¢), is 2, 1, 2 respectively, and since the polykays have
subscripts indicated by the sums of the elements in the rows, we have

kau = 2]031/?7/ - 27022/n(2) + kzu .

4. Rules for pattern functions. The application of (3.3) to bipartitions and
c-bipartitions makes possible the determination of certain rules for general
bipartition functions. We first define a pattern to be a generalized bipartition in
which the positions of the specific partitions of the P; and @, are fixed though
rows or columns may be interchanged. Thus

Pu ¢1
P12 @21
P2 Qo2

is a pattern and other equivalent patterns are obtained by interchanging rows or
columns. Any pattern resulting from admissible combination of the rows of a
pattern is a c-pattern of the pattern. Thus the pattern above has no c-pattern
since only parts of the same partition of p; or ¢; can be combined. This concept
of pattern is more general than that of Fisher and Wishart and becomes a pat-
tern in the Fisher-Wishart sense only when the first column consists of a single
partition of p (with perhaps 0 terms) and the second column consists of a single
partition of q.

For the general bipartition called a pattern the results of the section above
give, with pattern function replacing bipartition function:

RuLE 1. General rule. The pattern function may be obtained by applying (3.3)
to the pattern, to each of its c-patterns, and by adding the results.

For the Fisher-Wishart results, (3.3) becomes

(4.1) n-coefficient = (—1)""(—=1)*"(xr — ! (x — 1)1 /nPn®

and, since all rows may be added, the partition parts of p and ¢ may be replaced
by the unspecified z.

We see at once that the bipartition functions for all bipartitions having the
same pattern are the same no matter what the values of p; and ¢; provided only
that the partition parts exist. Thus

RuLE 2. Pattern rule. The bipartition functions of all bipartitions having the
same pattern are identical and equal to the pattern function.

In the Fisher analysis this becomes the Fisher rule of patterns.

We next have a very useful rule.

RuLk 3. First rule of O elements. The pattern function is 0 for any pattern
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(bipartition) which has at least one row with a zero element, the other element
not being either a p; or a ¢, . Thus the pattern function of

Pu 91300 but that of Pt &

P12 0 P2 0
is not. The proof consists in adding the n-coefficients for the pattern and all its
c-patterns. Tukey’s rule [12], p. 45 as applied to bipartitions is a special case of
this rule since any unit subscript over and above the subscripts of the original
set must result from associating a unit part of a partition with a 0 in the same
row. But the first rule of 0 elements, as applied to patterns, is more general in
that it eliminates patterns which Tukey’s rule does not. Even for Wishart
analyses, the rule appears to be more adequate than the Wishart recommenda-
tion [13], p. 4 which applies to unit parts.

We define an extended pattern to be one which consists of an initial pattern
plus additional rows in which the elements are p; , but not parts of p; , matched
with 0 or ¢; matched with 0. Then we have

RuLE 4. Second rule of 0 elements. The pattern function of the extended pattern
equals that of the initial pattern. :

This rule is very useful in appropriate cases in simplifying the calculation of
the factor pattern since, in determining the coeflicient, one may cross out any
row in the pattern in which a p, term or a ¢; term is in a row with a 0. It should
be applied after the first rule of 0 elements. Suppose there are R rows of the initial
pattern with both p and ¢ elements, S with ¢ elements only, and 7' with p ele-
ments only. If the contribution of the signs and factorials is indicated by C,
the value of the n-coefficient is Cn®+ /nF+H9E+D - Consider an extended
pattern which results from adding the row p; 0. Then the contribution to the
partition function from the c-patterns resulting from combining the new row
with the initial rows in all possible ways, but not the initial rows with themselves,
is

CpEHHTHD  RETD R4S | gy RESED) jy (RETHD ) (R

which reduces to the value of the n-coefficient above. Since this result holds for
each c-pattern of the initial pattern, it follows that the two pattern functions
are the same. A similar argument holds when 0 ¢, is added.

It follows as a corollary of Rule 4 that any patterns composed only of rows
with p; or ¢; paired with 0 have pattern functions unity. Thus all rows except
one may be crossed out by Rule 4 and the coefficient is then (1/n)(n) = 1. In
general the application of the two rules of 0 elements leads us to partitions with
no 0 terms which we now consider.

We collect each row which can not be combined with any other row at the
lower part of the pattern and indicate this collection by A, having a rows. The
pattern above A is called the reduced pattern. Then the signed factorial con-
tribution to every n-coefficient of each c-pattern, and hence to the pattern
function, is the same. This is denoted by C4 and is the product of the signed
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TABLE 1
Pattern functions for patterns with given specifications
Eormu]a Specification Pattern Function
umber
(4.1) All rows are p; 0 or 0 ¢; 1
4.2) Pattern is all A Cy/n®
4.3) ry=8 =2 n/n®
(4.4) rn=38 =3 n2/n®
4.5) ry=8 =4 nn + 1)/n®
(4.6) rn=s8=2=5 n3(n + 5)/n®
4.7 =8 =p > (u — 1)1a%(00) /n@y
(48) = 2, 81 = 2, R, = 3, S, =1 —n/n<3)
(’I‘1=2,81=2,R2=1,S1=3)
4.9) rmn=28=2R=1,8=1 (n — 1)/n®
(4.10) ry = 2,8 = 2 with other R; =1, (n — a)/nt®
S; =1
(4.11) rn=8 s =3 R =18 =1 (n — 1)2/n®
(4.12) r1 = 3, 81 = 3 with other B; =1, (n — a)2/n6t®
S; =1
(4.13) rL=8 =2,79 =8 = 2 (n? — 3n + 1)/n®
(4.14) ry=8 =3,7s =8 =2 n(n? — 5n + 5)/n®
(415) T = 81 = 4, re = 83 = 2 (n—- 1)(n3——5n2+n+4)/n“)
(4.16) rp=8 =3,79 =8 =3 (nt — 8n3 + 26m2 — 91n + 196)/n(®
(4.17) ri=4,8=2,8 =2 —n®/n®
(1‘1=2,7‘2=2,81=4)
(4.18) rp =258 =3,8 =2 —n2(n — 1)/n®
(ry=8,ra = 2,8 =5)
(4.19) ry=6,81 =3,8 =3 —n®(n2 — n + 4)/n®
(7‘1 = 3,7‘2= 3,81 = 6)
(4.20) ry=6,8 =4,8 =2 —n®n — 1)(n + 4)/n®
(1‘1—4,7‘2‘:2,81 —6)
(4.21) rr=2,r3=2,7r3 =2 (n® — 9n? + 23n — 14)/n(®
(31 —2,82=2,33=2)
(4.22) r1=06,8 =2,8 =283 =2 2n® /n (6
(rn=2,12=2,7r3 =2,8 = 6)
(4.23) ri=4,r2=2,81=2,8=2,8 =2 —(n — 2)(n? — 5n + 2)/n(®
(r1=2,72=2,73=2,8 = 4,8, = 2)

factorials in 4 excluding all parts of partitions which have parts in the rows
above A.

In developing a notation for more complex situations we let r; be the number of
parts of a partition of p; appearing in the reduced pattern and E; the number of
parts appearing in the pattern. Similarly s; and S; are the numbers of parts of
g; - Once the values of €4 and a are determined, we need pay no more attention
to the elements of 4 in determining the pattern function. Specification of the
r’s and §’s enables us to identify groups of reduced patterns which are covered
by a general formula for the pattern function. Thus ry = By = p, s1 = 81 = p
identify the p-row, two-column patterns of Fisher [5], pp. 223-226. Formulae for
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pattern functions are presented in Table 1 for patterns specified by values of
7i, 87, R;, and §;. Unless otherwise specified it is understood that R, = r;
and S; = s; for 4,7 > 1 and that all the unspecified r; and s; are 0. The formulae
(4.3)—(4.7) featuring only r; and s; were given essentially by Fisher.

As an illustration, some results of this section are applied to the bipartitions
(3.2). The bipartition functions of (d) and (e) are 0 by the first rule of 0 ele-
ments; that of (a) is 1/n since the second row may be crossed out by the second
rule of 0 elements; that of (b) is 1 by the corollary of the second rule of 0 ele-
ments or by (4.1); and that of (¢) is —1/2® by (4.2) with C, = —1 and
p = 2. The results of this section are applied to obtain general formulae in the
next section.

5. Some general formulae. The section above gives the pattern function for
many patterns. The subscripts of the associated polykays are obtained by adding
the row entries in the bipartition. The numerical coefficient is obtained com-
binatorially. Thus the numerical coefficient in (3.2) is 2 for (a), 1 for (b), and
2 for (c).

The determination of the numerical coefficient for specific bipartitions can
be a real task [8] [14]. It is commonly less difficult for general formulae since the
results are not stated so specifically, though the specific results should be obtained
readily. In this section combinatorial concepts are used in stating the results so
that the determination of the combinatorial coefficient is simple. The combina-

torial method is illustrated by application to k,, k.. Here the pattern Z ! (2)
2
represents the bipartition z’ g as well as the bipartition Py (2) and the pattern
2 2

Py } represents 2 bipartitions, for distinet units, since the units can be associated
2

with the p’s in 2! ways.

70 p 2 P11 pu 1 p 0
Pattern P20 20 pp 1 Pz 1 pa 1
0 2 D2 0 D22 1
Pattern function 1 1/n -1/ —1/(n—1) —1/(n —1)
Combinatorial coefficient 1 1 1 C(P:]2) C(P:|2)

The pattern function is determined from the results above. The combinatorial
coefficient for the pattern is determined by application of (2.2) to all partitions
of p; and ¢;. We denote 2-part partitions of p; by P;|2 with C(P;|2) the
associated combinatorial coefficient. We indicate the collection of polykays
having the same pattern function and combinatorial coefficient by a symbolic
addition of the P and @ which is here represented by @. Thus ke, as applied
to this problem, is kp 42, 4 £p;,ppt2 80d kpour = 2kp,41,p,+1 . Furthermore we
denote P with pap» @ 11 replacing p; by P:P;|2 & 11. The patterns above
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then give the general formula
Kopypoks = kpky = kps + kpas/n — kpeu/n®

+ 25 C(Pi|2)kp.p120u/(n — 1).
An illustration helps to clarify the symbolism and to show how easily the

general formula is applied to specific cases. Thus with p; = 4 and p, = 2, we
have

(5.1)

kawke = ko + (ko + kaa)/n — 2ks3/ n®

(5.2)
+ 2(4]9422 + 310332)/(7), - 1) + 2]9422/(77/ - 1)

as given in [10] p. 141.

The formulae of this section feature subseripts. To simplify the typing and
typesetting we use kp = k(P). Then (5.1) can be generalized to give, for a
specific P = p; - -+ pr, with the logical extension of notation

k(P)k(2) = k(P2) + k(P ® 2)/n — k(P & 11)/a®
+ > C(P:|2)k(P:P:|2 @ 11)/(n — 1).
A combinatorial treatment of kzky; gives
k(P)k(11) = k(P11) + 2k(P @ 1, 1)/n + k(P & 11)/a®
(®. — > C(P;|2)k(P:P;|2 @ 11)/n®.
As special cases of (5.3) and (5.4) when P is p we have, since 11 can not be
“added” to p,
k(p)k(2) = k(p2) + kip + 2)/n
+ 22 C(P|2)k(pr + 1, p2 + 1)/(n — 1)
k(p)k(11) = k(pll) + 2k(p + 1, 1)/n
— 220 C(P|2)k(py + 1, p2 + 1)/n®.
Formulae equivalent to (5.6) were given by Barton, David and Fix [1] for
p = rodd and p = r even using binomial coefficients. The need for two formulae

is avoided by using the combinatorial coefficient C(P | 2) rather than the bi-
nomial coefficient.

Values of k(P)k(Q) for Q of weight 2 are available in Table 2. The entry in the
divisor column divides each entry to its left. Thus (5.3) and (5.4) immediately
result.

Values of k(P)k(Q) for @ of weight 3 are available in Table 3.

The notation of Table 3 is a logical extension of that above. Thus
P + 1:P;|2 & 11 indicates all the terms in which 1 is added to an element of
the specified P and another element p; is replaced by P; |2 @ 11. The divisor is
used as in Table 2. Thus the first formula is

(5.5)

(5.6)
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k(P)k(3) = k(P3) + k(P @ 3)/n — 3k(P @ 21)/a®

1181

+ 2k(P @ 111)/n® + 3n)_ C(P:|2)k(P:P;|2 & 21)/n®

5.7
(5.7) + n*). C(P:|3)k(P:P;|3 @ 111)/n®
— 3n), C(P;|2)k(P & 1:P;|2 @ 11)/n®.
TABLE 2
Values of kE(P)k(Q) when Q is of weight 2
Product
Term
EPQ)  k(P)k@A1) Div. n2k (P)k}
k(P2) 1 1 n
k(P11) 1 1 n?
kP & 2) 1 n 1
k(P &®1,1) 2 n 2n
k(P & 11) -1 1 n® 1
> C(P: | 2)k(P:P; |2 & 11) n -1 n@ 0
n2k (P)k? n n? Check
TABLE 3
Values of k(P)k(Q) when Q is of weight 3
Product
Term
EPEB)  k(P)k(21) k(P)k(111) Div. n%k(P)k}
k(P3) 1 1 n
k(P21) 1 1 3n?
k(P111) 1 1 n?
kP @ 3) 1 n 1
kP @2 1) 1 n 3n
kP ®1,2) 1 n 3n
kP ®1,11) 3 n 3n?
k(P @ 21) -3 1 n®@ 3
kP @ 11,1) -1 3 n® 3n
k(P @ 111) 2 -1 1 n® 1
> CWP; | 2)k(P:P; |2 @ 21) 3n -1 n® 0
> CP; | 2)k(P1:P; |2 & 11) n -3 n® 0
> CP: | 3)k(P:P; |3 ® 111) n? —n 2 n® 0
SCWP: [Dk(P @ 1:P; |20 11) —3n n+1 -3 n® 0
03k (P)k} n 3n? n? Check
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Values of k(P)k(Q) for @ of weight 4 are given in Table 4.

The formula (5.3) and (5.7), and others of the tables, are very general and
have special cases which are also quite general. For example with p; = r and
T = s, (5.3) and (5.7) become

E(r)E(2) = k("2) + sk(r + 2, s ) /n — sPk({r + 1}7° %) /n®
+ 2>, C(R|2)k( Y ri + 1, 7y + 1.)/n(2).
(59) k(r)(3) = k(r°3) + sk(r + 3,7 ) /n — 3sPk(r + 2,7 + 1, %) /n®
+ 2s%k({r + 1}*7%)/n®
+ 3ns>, C(R | 2){k(r ™" ri + 2,7 + 1)
+ k(4 1, 4+ 2))/a®
—6ns® Y C(R|2)k(r + 1,7, 1+ 1,70 4 1)/n®
+ 60’ C(R|3)k(r Y, sy + 1,80+ 1,8 + 1)/n®.

(5.8)

Formulae (5.8) and (5.9) are general enough to include many products needed
in making moment estimates of moment functions [10] and also certain formulae
with » = 2, 3 given by Barton, David and Fix [1].

We complete this section with the formulae for expansion of k(p)k(g) and
k(17)k(1?) where, without loss of generality, p = ¢. In the first case we have the
Fisher technique. Then, in the notation of this paper,

(5.10) k(p)k(g) = k(pg) + 22 p(n)C(P | p)C(Q | p)k(P [p & Q| p)

where p(n) = 2, (u — 1)1A%(0° )/n™u as given by Fisher and where
k(P|p & Q| p) represents the sum of p! k& values obtained by adding the p!
permutations of @ | p to the values of P | p for fixed @ and P. The coefficients
in the expansion of k(p)k(q) — k(pg) are those of Fisher’s «(pg) is terms of
cumulants and are tabulated [5], pp. 210-213 for many values of p and g.

In the second case the combinatorial procedure is very simple. With p the
number of rows containing 2 units, the formula is

K17k = 22 <f> (Z) pl B(2°17F77%) /P

— Z p(p)q(p)k(2p1p+q—-2p)/n(p)p!.

6. Checking. These formulae have been checked by various methods. A useful
formula for checking k(P)%(Q) simultaneously for all @ having a given weight
uses [4]

(6.1) E(P)kI = D (1:) C(U) X C(Tk(POU, T)/n"

(5.11)

where 0 < w £ r,t = r — u, 7 is the order of 7, v is the order of U and
k(P & U, T) is the sum of 7 k-functions having subscripts which result from
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adding the v values of U to v values of the P in every possible way and suffixing
the other = — v values of P and the 7 values of 7. Thus when r = 2

k(P)ki = k(P11) + k(P2)/n + 2k(P @® 1,1)/n
+ k(P @ 2)/n’ + k(P & 11)/n’.

Expanding %} we get k(P){k(2)/n + k(11)} and application of (5.3) and (5.4)
gives (6.2). This technique is shown in Table 2 where the values of 2’k(P)k; are
expanded by rows and by columns. The entries in the last column are obtained
by multiplying the element in the row by those in the last row, dividing by the
divisor, and adding. Corresponding checks are provided for Table 3 and Table 4.

Another method, useful when the specified @ has unit parts, is to apply the
result to deviates [4], express in terms of polykays with no unit parts, and thus
arrive at a formula which may be determined independently. Thus (5.4) becomes,
in the notation of [4], with P not having unit parts

k(P)d(11) = d(P11) + k(P @ 11)/n® + 2d(P & 1, 1)/n
— > C(P;|2)k(P:P;|2 ® 11)/2?

which, with d(11) = —k(2)/n, d(P11) = k(P @® 2)/n* — k(P2)/n,
dP ®1,1) = —k(P & 2)/n, gives (5.3). The method can also be applied to
specific cases when p and ¢ have unit parts. Thus the simple combinatorial result
k3 = 2ks/n® + 4ko/n + ki leads easily to the formula for %3 .

(6.2)

(6.2)
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