ON A MEASURE OF ASSOCIATION

By S. D. Smwvey
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1. Introduction and summary. The problem of obtaining a satisfactory measure
of association between two random variables is closely allied to that of obtaining
a measure of the amount of information about one contained in the other. For
the more closely associated are the random variables the more information
about one ought to be given by an observation on the other and vice versa. It
is not, therefore, surprising to find that there have been several suggestions for
basing coefficients of association on the now celebrated measure of information
introduced by Shannon [9] in the context of communication theory. (See Bell
[1] for certain of these and for references to others). Now Shannon’s measure of
information was based on the notion of entropy which seems to be much more
meaningful for finite probability spaces than it is for infinite spaces, and while
Gel’fand and Yaglom [2] have suggested a generalisation of Shannon’s measure
for infinite spaces, there remain difficulties, as indicated by Bell [1], about de-
riving from it coefficients of association or dependence between random variables
taking infinite sets of values.

In the present paper, by adopting a slightly different attitude to information
from that of communication theory, we shall obtain a general measure of infor-
mation which yields a fairly natural coefficient of dependence between two
continuous random variables or, more generally, between two non-atomic
measures. The next section provides the motivation for the introduction of this
measure of information and a general definition is given in Section 3. In Section
4 we discuss some of the properties of this measure regarded as a coefficient of
agsociation along the lines suggested by Rényi [8]. Finally, in Section 5, we
indicate the relevance of this measure to estimation theory.

2. Motivation. A naive geometric picture of close association between two
random variables & and § is that of a distribution concentrated in some sort of
way about some sort of curve in the plane. Before we can proceed from this point
we require an analytic interpretation of this somewhat vague picture. In view
of the affinity between the notions of association and information, it is not sur-
prising to find that in the literature on communication theory initiated by
by Shannon [9], and continued by McMillan [7], Khinchin [5], Joshi [4] and many
others is implicit the following analytic interpretation. The nature and extent of
association between two random variables # and § is described by the Radon-
Nikodym derivative ¢ (&, §) of their joint distribution with respect to the product
of their marginal distributions. (We assume for the moment that ¢ exists:
the possibility of singularity or part-singularity of one distribution with respect
to the other will cause only a slight difficulty with which we shall deal later.)
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If ¢ = 1, then % and § are independent. If ¢ takes large values with probability
near 1, Z and § are “closely associated” over most of their ranges.

If it is accepted that the random variable ¢ describes association, then measur-
ing association by means of a single number may be interpreted as focusing
attention on some particular aspect of its distribution. Which aspect we wish to
concentrate on and so which measure of association we use, depends on the
problem in hand. This point was made emphatically by Goodman and Kruskal
[3] in their comprehensive papers on measures of association for cross classifica-
tions. The measure of association which we shall propose is motivated by the
kind of considerations underlying communication theory, or rather by their
statistical interpretation so clearly stated by McMillan [7].

The information theory outlook on assocation between random variables
% and § is as follows. If Z and 7 are associated then most observations z on % give
information about # in the sense that the conditional distribution of 7, given z,
is more concentrated than its unconditional distribution. There are various ways
of measuring this difference in concentration which will lead to reasonable
measures of the information about § provided by . The most obvious possibility
is to use standard deviation as a measure of concentration. But this is lacking in
generality since we may obviously have association and consequent increase
in econcentration of a conditional distribution without standard deviations being
defined. Shannon [9] in the particular case of random vectors taking only a
finite set of values introduces entropy and substitutes decrease in entropy for
increase in concentration. However, as we have said, the notion of entropy loses
some of its significance when we move outside the finite case and this is reflected in
difficulties of deriving general measures of association from it.

Another way of looking at this, one which has something in common with the
idea underlying the measures proposed by Goodman and Kruskal [3], is as
follows. If Z and % are closely associated then there exist sets of values of §
whose conditional probabilities, given a value x of Z, are much larger than their
unconditional probabilities. This suggests the following possibility, in the dis-
cussion of which we will not be preoccupied with rigour since the object is
simply to provide motivation. Suppose that for each given x we set

d(z) = Pr{Y.|z} — Pr {Y,}

where Y, is a set of values of § chosen to maximise the difference between con-
ditional and unconditional probability. Then d(x) is a possible measure of the
amount of information about % contained in the observation z on &. It takes
values between 0 and 1. If Z and § are independent it obviously is zero. If & and §
are continuous and their distribution is concentrated on a curve, i.e. if they are
mathematically related then usually d(z) = 1, for every z. In intermediate
cases the naive picture previously mentioned suggests that increases in associa-
tion will be reflected in increases in d(x), for most z. Now if we average over z
we obtain an average measure of the information about § provided by Z. This
measure we shall denote by A. It always lies between 0 and 1 and might there-



ON A MEASURE OF ASSOCIATION 1159

fore be used directly, without normalizing, as a measure of the dependence of
7 on Z. Since, as we shall see in the ensuing non-rigorous argument it turns out
to be symmetric in Z and 4, it is a natural measure of association between them.
In fact, Y., chosen to maximise Pr {Y | 2} — Pr {Y} is, if we assume existence
of appropriate densities denoted by p, clearly given by

Yo={y:p(ylz) > p(y)} = {y: é(=, y) > 1},
where ¢(z, y) = p(=, y)/[p(x)p(y)]. Then

d(x) - ‘/;u:¢(x,u)>l! [p(y | 517) B p(y)] dy
and

A= E(d) = [: d(z)p(z) dx

B ff [p(z, y) — p(2)p(y)] dz dy.
{(z,0):¢(2,0)>1)

This displays the symmetry of the suggested average measure and also points
the way to a quite general definition. :

3. General definition. Suppose that (X, F, u) is a probability space and that
corresponding to each z ¢ X is defined a probability measure », on a measurable
space (Y, §). Then the measure u on X and the family v, , z € X, on Y define a
joint probability measure w, say,on (X x ¥, F x G) and a marginal probability
measure v, say, on (Y, G). We shall denote by »* the product u x », a proba-
bility measure on (X x Y,F x G), and by ¢ the Radon-Nikodym derivative of
w with respect to w*. Here we allow a generalised derivative which may take the
value + ; i.e., if w is not absolutely continuous with respect to ™ so that there
exists a set 4 such that 0*(4) = 0 and w(4) > 0, we set ¢(z, y) = =+ o« for
all (z, y) ¢ A, and then define [4¢ dw® to be w(4).

Now let W = {(z, y):¢(z, y) > 1} and define

A= fw (do — do™) = fw (¢ — 1) do™.

This number A is the generalised version of the coefficient introduced in Sec-
tion 2 as a coefficient of association between two random variables. In this
general form it may be regarded as a coefficient of association between random
variables which are not necessarily real-valued. We shall now investigate certain
of its properties from this viewpoint.

4, A as a coefficient of association. Rényi [8] has stated seven properties which
should be satisfied by a measure of dependence of two real random variables
and whether or not one agrees that a measure providing a very drastic summary
of a complex situation should, irrespective of the object of the summary, in-
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variably have specific properties, Rényi’s postulates provide a very useful basis
for discussion.

4.1. The first demand is that a coefficient & of association should be defined
for any pair of random variables of which neither is constant with probability 1.
In fact A is even more generally defined, for it is defined for any pair of random
variables. If one of the random variables is constant with probability 1, then
A,= 0 as one would hope, for then w = w®.

4.2. Trivially from the definition A is symmetric, that is

A(f}, g) = A(g: z).
43.0 £ A £ 1,since A = [41(¢p — 1) do™ = 0, while obviously A <

fXxY dw = 1. a
44. A = 0iff w = w*. Obviously w = ™ implies A = 0 while A = 0 implies

w = o because
0=f (dw—dw*)=f (6 — 1) do* + A.
XxY o<1

Now A = 0 = P*(¢ > 1) = 0 directly, and from the above equality, A = 0 =
P*(¢ < 1) = 0 also. (Here P and P* refer to probabilities defined by the
measures  and w”* respectively.) Hence P*(¢ = 1) = 1 and so w = ™. In-
terpreted for the particular case where we are dealing with association between
two real random variables, this says that A = 0 iff the random variables are
independent, which is Rényi’s fourth demand.

4.5. The first potential objection to A as a coefficient of association is en-
countered when we consider Rényi’s fifth demand which is that if one random
variable is a function of another, a coefficient of association between them should
take the value 1. In general A = 1iff P(¢ > 1) = 1 and P*(¢ > 1) = 0 and
this can oceur iff P(¢ = «) = 1, ie. iff w is completely singular with respect to
w*. Now if we particularise to the case of discrete random variables w is never
completely singular with respect to »”, not even if one random variable is a
function of the other. The most we can say in this connection is that if one
random variable #, say, is a function of the other, having the property that
w{z :§(z) = k} = 0, for every k, then the coeflicient A of association between
them is 1. (This condition imposed on the functional relationship between § and
# excludes the possibility that either random variable is discrete.) Thus with
respect to Rényi’s fifth demand, A is well-behaved for continuous random
variables—more generally for non-atomic measures ¢ and »—but not for discrete
random variables.

One of the many measures of association discussed by Goodman and Kruskal
[3] was suggested originally by Steffenson [10], [11] and involves essentially the
idea of integrating ¢ — 1 over the region for which ¢ > 1. However preoccupation
with the object of having a coefficient which would take the value 1 whenever
the random variables concerned were functionally related resulted in a measure
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lacking in the operational interpretation advocated by Goodman and Kruskal.
It is possible to retain operational interpretation and at the same time to have
a coeficient satisfying Rényi’s fifth demand simply by considering G = [451 dw as
a coefficient of association between two general random variables. It is easily
seen that G has the first four properties discussed above. So far as the fifth
demand is concerned, @ is not subject to the same criticism as A in the case of
discrete random variables. And since A = 1 implies @ = 1, G is otherwise at
least as well-behaved as A with respect to Rényi’s fifth demand. However we do
not suggest that G is to be preferred to A as a measure of association on this
account. Indeed it is easy to see by looking at a 2 X 2 contingency table that G
can take values slightly greater than 3 with “very little” association between the
factors in the table. This may be regarded as an unsatisfactory feature of G in
certain contexts. Indeed the outcome of the discussion of Rényi’s fifth demand
is to lend further support to the argument of Goodman and Kruskal [3] that so
far as measures of association are concerned, operational interpretation (either
practical or theoretical ) should be the main consideration, and not a pre-ordained
set of postulates.

4.6. Rényi’s next demand again concerns random variables & and § and states
that a measure §(&, ) of association between them should have the following
property. If f and g are Borel-measurable, 1-1 mappings of the line into itself
then 8[f(&), g(7)] = (&, §). This property is obviously possessed by both A
and G. We can “change the variables” in the integrals defining them to obtain
the required results.

4.8. The last of Rényi’s seven demands is that, in the case where & and § are
jointly normally distributed with correlation coefficient p, §(%, §) should equal
[p|. Bell [1] has criticised this as being too restrictive and replaces it by the
demand that 8(Z, §) be a strictly monotonic function of |p|. Since we are using
these suggestions as a basis for investigating properties of A rather than for
justifying it in any way, we content ourselves with the remark that both A and
@ satisfy Bell’s demand, but not Rényi’s. While it is very easy to convince
oneself that this is so, a formal proof at least in the case of A is surprisingly
difficult. Part of the reason for this difficulty emerges from the following dis-
cussion.

It has already been suggested on the basis of a naive picture that increases in
association between two real random variables will be reflected in increases in
d(z), for most xz. To be more explicit about this we refer to Figure 1. In this
figure the curve (i) represents p(y). The curve (ii) represents p(y|z) for a
typical z in the case of random variables & and § which are associated. The
curve (iii) represents p(y | ) for the same « in the case of random variables
# and § having the same marginal distributions as # and 7 respectively, the
same “shape” of association, but an increased degree of association. By the
same shape of association we mean concentration of the bivariate distribution
about the same curve in the plane and this is reflected in the fact that (ii) and
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Fig. 1

(iii) have the same mode. Now if d(z) is the measure of the amount of infor-
mation about § contained in z introduced in Section 2, and d’'(z) is the same
quantity for §, it is clear that in the situation described by Figure 1, d’(z) > d(z).
For d(z) is equal to the shaded area in the diagram since

[: [p(y | z) — p(y)ldy = 0
and so
f p(y [ z) — p(y)]dy = f [p(y) — p(y | )] dy,
#>1 $<1

and similarly d'(z) equals a larger area.

However, when we are dealing with bivariate normal distributions and con-
sidering the result of increasing the correlation coefficient p, Figure 1 is not
appropriate because, as we increase p while keeping the marginal distributions
fixed the mode of p(y | ) does not remain fixed. Nevertheless d(z) does increase
for each z with |p|. For the following proof of this result, which replaces a much
longer proof in an earlier version of the paper, the author is indebted to a referee.

Lemma 1. If A(p) s the above-defined coefficient of association between two jointly
normally distributed random variables with correlation coefficient p, A is a monotonic
increasing function of |p|.

Proor. Without loss of generality we may assume that each of the normal
random variables Z and § has zero mean and unit variance. Also A(—p) = A(p),
so that it is sufficient to consider 0 < p < 1. Let

d(z, p) = f [p(y | ) — p(y)]dy,

2 W|2)>p(W)

where p(y | z) is the N (pz, 1 — p°) density and p(y) the N (0, 1) density, so that
A(p) = E[d(%, )]

Now p(y|z) > p(y) in an interval I(p, ) represented by the line AC in
Figure 2 where, when z > 0, AB > BC;whenz < 0, AB < BC.Alsop(y | x) =
p(y) at the end-points of I(p, z). Hence
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9r)t @ ﬁ[ 1 [__l_(y—pw)]:l
( 7r) d(a:, p) = j;(p,,> 3 T =7 exXp | —5 T~ dy
_ P _1(y— px)z:l
(1) S a= ft(m ¥(z, v, p) eXP[ 51— dy

_ ) 1 1(y — pw)2]>
¢ fw 3y ((1 — e"p[ 5 1—p J)%
where

1 — 2
L A I Pk

/f”mex [ ;(%_—I:»x):ldy'

The first of the two terms in the right hand side of (1) is positive since

fon o= mren[ 342 0/ [ oo 342 o

=E{(§— p2)' |5 =u§ellpa)} <E{(§—p2)"|&=2}=1—p,

the inequality holding because I(p, x) contains pz and the conditional distri-

bution of § given z is symmetric about px.
The second term in the right hand side of (1) also is positive, since it is

[atgper[54=F .

and when x > 0, the square bracket term is negative because AB > BC; when
z < 0 the square bracket term is positive because AB < BC.
Hence (3/dp)d(z, p) > 0 and it follows immediately that (d/dp)A(p) > O.
This completes the proof of the lemma. It is easier to prove that G shares this
property with A, and we omit a proof of this statement. However while A — 0
as p — 0, this is not true for G. In fact G — } as p — 0, confirming a possibly
unsatisfactory feature of G noted earlier. We may conclude from the discussion
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motivating its introduction and from the foregoing investigation of its properties
that A is a respectable average measure of association between two conttnuous
random variables. Now we have suggested that the Radon-Nikodym derivative
provides an analytic interpretation of a naive picture of association in this case,
that in particular the random variables are closely associated if and only if ¢
takes large values with probability near 1. (We emphasize that now we are
discussing the continuous case: in the discrete case ¢ may not take very large
values even when one random variable is a function of the other.) This suggestion
has been advanced without any real justification though some support is lent to
it by the fact that A, derived from considerations not directly involving ¢,
turns out to depend on ¢ in a very crucial way. More direct support is given by
the following result with which we conclude this section.

Lemma 2. A/(1 — k') = Pl¢ > k} = 1 — (1 — Ak, for any real k > 1.

The first of these inequalities shows that, if for large &k, P(¢ > k) is near 1,
then A is near 1, while the second shows that if A is near 1, say A = 1 — &, then
for example P(¢ > 67') = 1 — 6.

Proor.

(i) P(¢ > k) = [t do.
Therefore f ko< do” < P(¢ > k), and so

do® < E'P(¢ > k).
>k

Hence
A= f (do — do*) = f (do — do®) = (1 — EHP(¢ > k),
¢>1 o>k
the penultimate inequality holding because
f (dw — do*) = / (¢ — 1) do* = 0.
1<¢<k 1<¢p<k

(ii) f1<¢§k do = f1<¢§lc¢ do* < kfl<¢§k do®.
Therefore

A= f (do — do™) + f (do — do™) = (1 — K f dw
1<¢ <k >k 1<¢ <k

+ [ do= (1= KDL= PG > k)] + P(g > k).
o>k

It follows that P(¢ > k) = 1 — (1 — A)k, and this completes the proof of the
lemma.

5. A as a measure of information. McMillan [7] has drawn the analogy between
the communication problem from which arose information theory and the
problem of parameter estimation, while Lindley [6], in a Bayesian setting, has
used Shannon’s mutual information as a measure of the information about a
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parameter contained in an experiment. In this section we shall discuss the
coefficient A in the same spirit. We start with one or two general remarks.

We have already stated that A, which until now we have been regarding as a
coefficient of association, may also be regarded as an average measure of infor-
mation, subject to a suitable interpretation of information. If, for random
variables & and § taking values in spaces X and Y respectively, the coefficient
A is near 1, then most “observations” z in X should provide a lot of information
about a corresponding unknown observation in Y, in the sense that to most x
should correspond a “small” set Y, (small being taken to mean that »(Y,) is
near 0), whose conditional probability, given z, is near 1. Thus if A is near 1,
knowledge of z should enable us relatively to ‘“pinpoint” a corresponding un-
known value y, with a small probability of error. What exactly can be said about
this? The following lemma indicates what is possible, in general.

LEmMA 3. If A = 1 — € then for each x in a set of probability =1 — ¢/, the
set Y, is such that v(Y,) £ aand v,(Y,) = 1 — a.

This result is essentially the same as one proved by Joshi [4] (Lemma 8, p. 126).
Since A is the expected value of the random variable d, where

d(z) = Pr{Y, |z} — Pr{Y,}

and since 0 < d =< 1, all we are really saying is that a random variable, taking
values in (0, 1) and having mean near 1, must take values near 1 with high
probability. Indeed it is trivial to prove that Pr{d > 1 — a} = 1 — ¢/a and
this implies the result stated.

In the context of Bayesian estimation of an unknown parameter we wish to
think of the space X as a parameter space and to emphasize this we shall now
denote it by © and its typical point by 6. The measure u on this space may be
regarded as a prior distribution on the parameter space. Let us suppose that, for
each n, we have a family {»§™, 6 ¢ ©} of probability measures on a sample space
Y™, This family, together with u, defines a marginal measure »™ on Y™ and a
measure ™ on ® x Y™, So we can define the coefficient of association A, ,
between & and §™. Often in cases of practical interest this will be the formal
mathematical description of a situation in which it is intuitively clear that we
ought to be getting ‘“more information about 6" as n increases, that in fact, A,
should tend to 1 as n — . Let up suppose that this is so. The implications
regarding Bayesian estimation which follow from Lemma 3 are fairly obvious.
By choosing n large enough (so large that A, = 1 — ¢’) we can ensure that, to
each ™ in a set of »™-measure = 1 — ¢, there corresponds a set O™ in © whose
prior probability is less than e and whose conditional probability, given y™, is
greater than 1 — ¢; this being so for arbitrarily small positive e. Thus A, — 1
as n — o implies a kind of consistency in estimation which involves a measure
rather than a metric on the parameter space. It implies that, if n is large, we can,
for most “observations” y™, find a very “small”’ Bayesian confidence set with
confidence coefficient near 1.

In the context of this Bayesian approach to inference, Lindley [6] has suggested
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using E(log ¢) as a measure of the information provided by an experiment and
he has also put forward the suggestion that experiments may be partially ordered
according to how informative, in this sense, they are. It is obvious that we might
partially order experiments in the same way, using A rather than E(log ¢) as a
measure of information. While we do not wish to suggest that the use of A
provides in general a better ordering than the use of E(log ¢), it might be
argued that it provides one which is susceptible to more direct interpretation so
far as Bayesian estimation is concerned. However we do not propose to press
this point since if we are thinking about how informative an experiment is, in
the final event we ought to be discussing the question ‘“In what aspect of this
complex notion of information are we primarily interested?”” The answer to this
question will decide which measure of information should be used.
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