ON BAYES PROCEDURES FOR A PROBLEM WITH CHOICE
OF OBSERVATIONS!

By T. W. ANDERSON

Columbia University

1. Introduction. In establishing statistical means to decide between two
hypotheses, H, and H,, an experimenter may have the choice of observing a
variable X alone or of observing two variables X and Y. While observation of the
two variables is more informative than observation of the one variable, it is also
more expensive. The question is whether it is worthwhile for the experimenter to
pay the greater cost necessary for the two variables. He must make the decision
whether to observe Y before the observation on X is made.

As an example, in a medical study X may be a sufficient statistic for a sample
of m individuals who have been treated with a drug and are undergoing observa-
tion. Because the treatment and observation take a long period of time, before
he has completed study of the first m individuals treated the investigator may
consider treating n additional individuals, Y being the sufficient statistic for the
second sample. This example is covered by the general study if X and Y are
the sums (or means) of the observations in the two samples, respectively, and
the measurements are normally distributed with known and common variance.

The situation considered here is different from the usual two-sample or se-
quential situation in that the decision whether to observe Y is made independently
of the observation X. As a matter of fact, this problem arose as a simple analogue
of a problem of finding Bayes and admissible procedures for deciding between
two hypotheses Hy and H; when observations are taken sequentially and after
the decision to stop observation has been taken, m more observations (cor-
responding to X)) are obtained, as for instance in clinical trials [Anderson (1964 )].

This study also applies to a problem of classification in multivariate statistical
analysis. Suppose that an investigator wants to classify an individual as coming
from one of two populations. The measurements he may make have joint normal
distributions in the two populations; the populations are the same in variances and
correlations, but differ in means. The investigator may be able to observe either
the set of measurements z;, - - -, z» or the set of measurements 21, « - -, 2nin ;
for example, the first m measurements may be made by one device and are
required, and the last n measurements may be made by another device and are
optional. Does it pay the investigator to observe the second set of measurements
in addition to the first set? This problem will be treated explicitly at the end of
Section 2 as a special case of the general problem.

We formulate our problem more precisely by assuming that there is a loss
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BAYES CHOICE OF OBSERVATIONS 1129

W, for rejecting H, when H, is true and a loss W; for rejecting H; when H, is
true. Let C be the cost of observing ¥ (or the difference between the cost of ob-
serving X and Y and the cost of observing X). We shall assume that X and YV
are independently distributed with densities (or probability functions) fi(x)
and g;(y) under Hj, , k = 0, 1, respectively. Then the best procedures (admissible
or Bayes) are based on the likelihood ratios fi(z)/fo(z) and fi(2)g1(y)/[fo(z)go(y)]
in the two cases. If only X is observed, the decision will be to accept H, or H,
according to whether log[fi(z)/fo(x)] is less than or greater than a number a.
If both X and Y are observed, the decision will be to accept H, or H; according
as log[fi(z)/fo(x)] + loglg:(y)/go(y)] is less than or greater than some number
b. In each case there may be randomization if the logarithm of the likelihood
ratio is equal to the constant.

If go is an a priori probability of Hoand g1 (= 1 — go) is the corresponding a
priori probability of H;, the expected loss in each case is minimized by taking
the constant as log[Wogo/(W1g1)]. The minimum expected loss when X is ob-
served, say p(go), is the weighted average of the two probabilities of errors in
that case; the minimum expected loss when X and Y are observed, say o(go), is
the weighted average of the losses in that case plus C. We ask for what values of
go p(ge) is less than, equal to, or greater than o(go), respectively. The specific
problem considered here is whether we can characterize the Bayes solutions in a
simple way.

If go = 0, the Bayes procedure in either case is to accept H; , and then p(0) = 0
and ¢(0) = C. Similarly, p(1) = 0 and ¢(1) = C. Thus for a small value of
go or a large value of g, the Bayes procedure is based on observing X alone. The
question we raise is whether the values of go for which the Bayes procedures are
based on X and Y constitute an interval.

The answer to the question depends on the distribution of X and Y. In Section
2 we show that for normal distributions (with variances common to H, and H;)
the values of gy for which the Bayes procedures use X and Y is an interval. In
Section 3 we give an example in which that set of g consists of several intervals.

In most problems the set of Bayes procedures is also the set of admissible
procedures. In the type of problem considered here, if the set of go for which the
Bayes procedures use X and Y is an interval, the admissible procedures can be
classified into five cases. For small probabilities of Type II error and relatively
large probabilities of Type I error admissible procedures for our problem are
admissible procedures for the hypothesis-testing problem with X alone (cor-
responding to go small); for intermediate probabilities of Type I and Type II
errors, admissible proceédures for our problem consist of admissible procedures
for the hypothesis-testing problem with both X and Y observed (corresponding
to intermediate values of go); for relatively large probabilities of Type II error
and small probabilities of Type I error admissible procedures here are again
admissible based on X alone (corresponding to g, large ). Between each successive
pair of the above classes is a class of admissible procedures, each of which is a
randomization between an admissible procedure based on X alone and an ad-
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missible procedure based on both X and Y (each such class corresponding to a
single value of go).

We treat in this paper only simple hypotheses Hy and H; . Some problems
involving composite hypotheses can be related to these; for instance, if the
variance of a normal distribution is known, good procedures for deciding whether
the mean is negative or positive may be approximated by good procedures for
deciding whether the mean is a given negative number or a given positive
number. However, the more common statistical problem of deciding about the
mean when the variance is unknown is not easily approximated by a problem
of simple hypotheses.

2. Normal distributions. Suppose that X and Y are independently normally
distributed with means —vy and —u under H,and y and p under H; and variances
7 and o°, respectively. The logarithm of the likelihood ratio for X is 2yz/7°
(Section 6.4 of [1], for example), and the logarithm of the likelihood ratio for
X and Y is 2yz/7° + 2uy/o". Then 2vz/7" = u, say, has the normal distribution
N(=£\ 2)), where A = 2+4°/7°, and 2uy/¢” = v, say has the normal distribution
N(=£v, 20), where v = 24%/0".

A procedure based on u alone will accept H, if v < a and accept H, if u > a.
Then the probability of rejecting H, when it is true is

(1) Pr{u>a|Ho}=<I><_—(a2)\—;—*—)‘),
where
2) a(w) = [ sy d,  9(t) = @m)7

Similarly, the probability of rejecting H; when it is true is
a—X\
(3) Priu <a|H} =& (W)
Given gy, the Bayes procedure is to accept Ho if w < log [Wogo/(Wig1)] and
accept Hi if u > log [Wogo/(Wig1)]. The expected loss (or risk) using « alone is

(4) Wogo® (—log[Wo gtégj)’?l gl — )\) S Wi (log[Wo go/(gg; g1)] — )\> '

Similarly, the expected loss (or risk) using » and v is
—log[Wo go/ (W1g1)] — (A + V))

Wogo® ( 2O+ )P
log{Wo go/(W1 g1)] — (N + »)
Wi 20+ 97 )+e

The difference between the two expected losses [(4)—(5)] as a function of g, is
—C at go = 0 and go = 1. We show that the set of go for which the difference is

(5)
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nonnegative is an interval by showing that the derivative of the difference be-
tween the two expected losses is positive in an interval 0 < go < k for some k
and negative in an interval ¥ < go < 1. Hence the difference is a function of g,
that is monotonically increasing in the interval 0 < go < k, has a maximum at
go = k, and is monotonically decreasing in the interval & < go < 1.

If the logarithm of the likelihood ratio Z in any Bayes problem has a density
under each of the two hypotheses, the Bayes procedure is defined by a value a to
minimize
(6) Wogo Pr{Z > a|Ho} + W1 Pr{Z < a| Hy};

this value of @ makes the derivative of (6) 0. Insertion of this value as a function
of go, say a(ge), makes (6) the Bayes risk. Then the derivative of the Bayes risk
with respect to gy is
Wo Pr{Z > a(go) | Hi} — W1 Pr{Z = a(go) | Hi}
a=a(ao)]
-‘% = WoPr{Z < a(go) | He} — W1 Pr{Z < a(go) | Hi}.
0
The derivative of the difference between (4) and (5) is

+ Wigi S Pr{Z S o | H)

d
(7) +[W0g0%Pr{Z>a|Ho}

a=a(go)

—log[Wo go/(W1g1)] — A log[Wo go/ (W1 g1)] — A
Moo ( @ ) —he ( @ )
—log{Wo go/ (W1 g1)] — (X + »)
® -woa( B0+ T )
log[Wo go/(W1 g1)] — (X + »)
+ e 20+ )7 )

The derivative of (8) with respect to w = log [Wogo/ (Wig1)] is
W <—w — x) bW, <—w - (A + v)>
(€28 (20} 2\ + ) 20\ + ») [

(9)
W, w—A\ W w—(\+»)
~ oy ? ( <2x>*> BT ¢< D) )
= (2m) (2O + )T exp (=0 + (N 4+ »)/140N + )]}
— (20)Fexp {—[w® + NN} (Wo e + Wy ™).

Study of (9) shows that it is 0 for w = — o, is positive for w in an interval
— o < w < —h, is negative in an interval —h < w < h, is positive in an in-
terval h < w < o, and is O for w = co. Then we see that (8) is 0 for g =
O(w = — =), is positive in an interval 0 < gy < k (corresponding to a value of
w between —h and &), is negative in an interval k < go < 1,andis0at 1(w = ).
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Thus the difference (4)—(5) is —C at go = 0, increases to a maximum at go = k,
and decreases to —C at go = 1. If the difference is positive at go = k the set of
go for which it is positive is an interval; otherwise there is no g, at which it is
positive.

For example, if Wy, = W, , we can take Wy = W, = 1. Then k = %, and the

maximum difference [(4)—(5)] is
(10) o — ) — of — B+ )P} — C.
Given values of X and » (that is, v, 7°,  and ¢°) and C, (10) can be evaluated to
determine whether it is positive. If W, % Wi, the value of go making (8) equal
to 0 could be approximated numerically by trial and error; then the difference
(4)-(5) could be evaluated at this point.

In general, let the interval for which observation on both X and Y is preferred
be (g5, g5 ). The endpoints can be determined numerically by trying out values
in (4) and (5). Since the difference is increasing in the neighborhood of g and
decreasing in the neighborhood of gj and the evaluation of the derivative (8) in-
volves the same function, numerical procedures are relatively easy to carry out.

An interesting case is where the investigator has the choice of observing m
independent observations from a normal distribution, say 21, -« - , 2m, 0rm + n
observations, say 21, -, 2min, &b an additional cost of C = nc. Then X =

e, Y = D ori12a, N = 2mb’, v = 2n6’, H, is the hypothesis that the mean
of the distribution divided by the standard deviation is —6, and H; is the hy-
pothesis that this ratio is 6. Then if the difference (4)—(5) is positive it is worth-
while to observe the additional n observations. The main result of this section
shows that the set of go for which the difference is positive is an interval. This
is equivalent to the statement that if it is worthwhile to take the second set of
observations for two values of gy, it is also worthwhile to do so for any value of
go between those two values.

The main result derived here as well as the method depends on properties of the
normal distribution, specifically (9). This will be made evident by the example
in Section 3.

A more general problem can be reduced to the above. Suppose that the vector
2" of m components has the distribution N ( —u®, =11) under Hyand N (u®, Z11)
under H; and that z has the distribution N(—u, £) under Ho and N (g, Z) under
H, , where

) @)
2 [ Zn Eu)
11 2 = N = E — .
( ) <z(2)> 3 I (M(2)> ) (Egl oo

Let C be the difference in cost between observing z and 2. The statistic for
testing H, against H, based on 2" is the logarithm of the likelihood ratio,
u = 2u""=3 2@, which has the distribution N (=), 2)\), where \ = 2’z u®.
Observation of z is equivalent to observation of Y and w = 2% — 2272, The
two vectors are independent and w has the distribution N{==( p® — oz iu®),
Se — Zu211212)]. The statistic for testing H, against H; based on " and w is
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the logarithm of the likelihood ratio,

(12) w + v = 2002720 + 2(® — 22T u®) Co — ZuZiZa) .
The linear function of w, namely v, has the distribution N (v, 2v), where
(13) » = 2(® — ZuZ0e®) (C2 — ZuZ0Za) T (W® — ZuZuu®).

Thus % and v here are equivalent to « and » at the beginning of the section. The
statistic (12) is the classification statistic 2u'='2, and 2(A + ») = 4u'='u is
the distance between the two distributions. (See Section 6.4 of Anderson (1958),
for example.)

3. Some nonnormal distributions. We shall give an example of discrete distribu-
tions in which the set of go for which observation on both X and Y is preferred
is not an interval. The distributions are given in Table 1 below. The probabilities
for the likelihood ratio for X alone are given in Table 1 and for X and Y in Table
2. The cumulative distributions of the likelihood ratios are given in Table 3.

Let the cumulative distribution of the likelihood ratio be P(2) under H;
when X is observed and @:(z) under H;, when X and Y are observed (k = 0, 1).
A Bayes procedure based on a given likelihood ratio z when Wy = W; = 1
is to accept Ho if 2 < go/g1, accept Hy if 2 > go/g1 , and accept either hypothesis
if 2 = go/g1 . To make the procedure unique we shall accept H, in the last case.
Then the expected losses if X is observed and if X and Y are observed are,

TasLE 1
Distributions of two random variables
X Y
Prob. Prob. Likelihood Prob. Prob. Likelihood
Value under Hy under H, ratio Value under Hy wunder H; ratio
a 1/3 1/6 3/6 A 1/2 1/3 2/3
b 1/3 2/6 6/6 B 1/2 2/3 4/3
c 1/3 3/6 9/6
TABLE 2
Probabilities of the likelithood ratio for two random variables
Value X Y Probability Probability
under H, under H;
2/6 a A 1/6 1/18
4/6 a B 2/6 4/18
b A
6/6 c A 1/6 3/18
8/6 b B 1/6 4/18
12/6 ¢ B 1/6 6/18
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TaBLE 3
Cumulative distributions of likelihood ratios

Likelihood X X Xand Y Xand Y
ratio under H), under H, under H, under H;
0 0 0 0 0
2/6 0 0 1/6 1/18
3/6 1/3 1/6 1/6 1/18
4/6 1/3 1/6 3/6 5/18
6/6 2/3 3/6 4/6 8/18
8/6 2/3 3/6 5/6 12/18
9/6 1 1 5/6 12/18
12/6 1 1 1 1
TABLE 4

Ezxpected loss functions

go go/1 — go) #(go) a(go) — C p(go) — a(go) + C
0 0 0 , 0 0
1/4 ‘ 2/6 1/4 0
1/3 3/6 1/3 1/54
2/5 4/6 11/30 0
1/2 6/6 5/12 7/18 1/36
4/7 8/6 8/21 1/42
3/5 9/6 2/5 1/30
2/3 12/6 1/3 0
1 ® 0 0 0
respectively,

olgo) = gu [.1 — B (1 30 .‘]0):| + (1= h <1 z" 90> ’

a(g0) = go [1 — Qo (1 3090):| + (1 — go)@ <1 _g_o g0> + C.

Since the cumulative distribution functions are constant on intervals of the
likelihood ratio, p(go) and o(go) are linear on intervals of go. In Table 4 these
functions are specified by giving their values at the end points of the intervals.
The difference p(go) — o(go) is, therefore, linear on intervals, and it is also
specified in Table 4.

As can be seen from Table 4, if C, the cost of observing Y, is 0, the use of X
and Y together has a smaller expected loss than the use of X alone except on the
interval 0 < go < 1/4, at the point go = 2/5, and on the interval 2/3 < go < 1.
However, if C has a value satisfying 0 < C < 1/54, the expected loss using X
and Y together is less than the expected loss using X alone for gy in an interval

(14)
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between 1/4 and 2/5 and in an interval between 2/5 and 2/3, and the expected
loss using X and Y together is greater in an interval between 0 and 1/3, an
interval between 1/3 and 1/2 and an interval between 3/5 and 1.

This example shows that the set of a priori probabilities go for which it is
worthwhile to pay for, and use, another observation is not necessarily an in-
terval. Thus, the nature of the solution to the problem of choice of observations
depends on the distributions.

This example could be stated in terms of densities by replacing the probability
of a, b, or ¢, by a constant density of X over (0, 1), (1, 2) or (2, 3), respectively,
and the probability of A or B by a constant density of ¥ over (0, 1) or (1, 2),
respectively. Moreover, small modifications of the constant densities would yield
likelihood ratios with densities. Thus the discreteness of the example is not
essential.
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