COMPARISON OF THE POWER FUNCTIONS FOR THE TEST OF
INDEPENDENCE IN 2 X 2 CONTINGENCY TABLES

By W. L. Harkness! axp L. Karz®

- Pennsylvania State University and Michigan State University

1. Introduction. One of the classical problems in statistical theory is that of
testing for independence in 2 X 2 contingency tables. Barnard [1] delineated
three distinet experimental situations, [termed the double dichotomy (DD), the
2 X 2 comparative trial (CT), and the 2 X 2 independence trial (IT)] which
lead to the presentation of data in the form of 2 X 2 contingency tables. Ap-
proximate power functions for tests of independence were considered by Patnaik
[10] and Sillitto [12] for the 2 X 2 CT, and Bennett and Hsu [2] have calculated
exact values of power for the 2 X 2 IT and 2 X 2 CT, in each case the test
used being the conditional test devised concurrently by Yates [14] and Fisher [5].
However, power calculations for the DD have not been made, and hence com-
parisons of the power functions in the three situations are lacking. This paper
represents a contribution in this last direction.

2. Distribution theory. Abstractly, the three experimental situations as out-
lined by Barnard are describable in the following manner:

1. Double Dichotomy (DD). A total of n similar balls is randomly selected
from an urn containing a large number of balls, each ball labeled A, or A, and
also labeled B; or B, . An observed result of the experiment is represented in the
form of Table I, where none of the marginal totals are fixed and ny, is the ob-
served number of balls labeled 4, and B; . It is assumed that the probabilities of
occurrence of the various markings of the balls is given by Table II, together
with the marginal sums.

I1. 2 X 2 Comparative Trial (CT). Samples of sizes n;. and n.. are drawn from
urns A; and A, respectively. The numbers of balls labeled B in the two samples
(i.e., nu and ny) constitute independent variables with binomial distributions,
where the proportion of balls marked B; in urn 4; is p;, ¢ = 1, 2. With this
type of experiment, one set of marginal totals is fixed in advance as in Table I,
namely, ny. and ns. .

III. 2 X 2 Independence Trial (IT). A total of n similar balls, 7;. marked A4,
and 7n,. marked A., are placed in an urn, then withdrawn randomly in order.
They are then placed in a row of n cells, of which n., have been labeled B; and
n.; labeled B, . The result of the experiment is presented in Table I, where n;;
is the observed number of balls marked A4, in receptacles labeled B, . Both sets
of marginal totals are fixed in advanced by the conditions of the experiment.

The probability of observing the sample point (74, 712, Nar , Nee) in the DD
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1116 W. L. HARKNESS AND L. KATZ

TABLE I
B; B;
4, N1 N1z ni-
A: N1 Naz Ne.
n.a n.2 n
TABLE II
B B,
41 T 12 1.
A, 21 o2 2.
T w2 1

is, by the multinomial probability law

2
(1) f(nu,nm,nzl,nzz) = n! 'Hl r?,?"'/ni,-!.
U)=

Replacing 11 by AL, T2 by 1!'1.(]. - )\7!'.'1), o1 by w1 (1 - )\1!'1.) and s by
1 — m. — 71 + AT, where max [0, (7I'1. + 71— 1)/(1r1.1r.1)] <AL
min [71), 71], and 133 by (n1. — na1), 7 by (n.1 — nu), and ny, by (n — ny. —
7.y + nu), (1) may be reparametrized as

(2)  f(ru, ., na) = b(m. 50, m1.)b(nu 5 M1, PO(N1 — N1 5 Na. , P2)

where p1 = My, p2 = ma(1l — Am.)ms., and

b(z; N, p) = @r) p*(1—p)" .

For the 2 X 2 CT, n;. is fixed, so that the probability of observing the two
numbers ny; and n.; = ny + 7y is obtained conditionally from (2) as

(3) f(nu , N l nl.) = b(’nu ; M., p1)b(’n1 — Ng1 ; N2., pz).

Finally, conditional on fixed values of ni. and 7.1 , the probability of observing
ny in the 2 X 2 IT, is easily seen to be

(4) o | ma. 1) = (e, 1) <Zi;) (n'l m nn) -

where )
_ m. TNa. i B
= [3(3) (2]
and

= (mume)/(mera) = (P1g2)/ (Pet1)
= [)\(1 — . — T.1 —|" )\1r1.1r.1)]/[(1 - )\1!'1.)(1 - )\7!'.1)], q. = 1-— Di, 1= ]., 2,
with0 < ¢t < 4.

o~



POWER FOR TEST OF INDEPENDENCE 1117

3. Tests of independence and exact power functions. In each of the three
cases described above, we may be interested in testing for independence of the
two classifications. For the DD, the hypothesis of interest is that mi; = w71
for the 2 X 2 CT we wish to test the equality of the two binomial proportions
p1 and p. ; while for the 2 X 2 IT, the null hypothesis is that the markings A,
or A, are independent of the labelings B; or B, . If the hypothesis is correct, the
conditional distribution of 71 , given n.; and n;. , is the hypergeometric distribu-
tion, corresponding to putting ¢ = 1 in (4). Since 7y = m.m1, p1r = P2, and
t = 1if and only if A = 1, we may specify the null hypothesis by Hy:\ = 1, for
each case. Any alternative hypothesis may be expressed as Hi:\ # 1, for any
of the three cases, so that H; is composite. In terms of A, H, is simple. The nuisance
parameters 7. and 7., make it composite, also.

We proceed to test the independence hypothesis in each case using the uni-
formly most powerful unbiased size « test (UMPUT), as described, for example,
by Lehmann [8]. This test is a conditional test based on the two tails, the test
statistic ¢n,. ..,(z) for given values of n;. and n.; being given by

Ony.ma(r) =1 if z < ci(ne., my) or x > co(nr, ny)
= €; ifz = Ci('n1. , 'nq), 7 = 1, 2
=0 if er(mr. , ma) < z < ey, 1)

where ¢; and ¢; are constants uniquely determined by the two equations
(1) Elen.n.(2)] =« (i) Elzen,, n,(2)] = aBlz]

and where the expectations are taken with respect to the hypergeometric dis-
tribution, that is, (4) with ¢ = 1. The first equation (i) reflects the fact that the
test is similar (on the boundary of Hy and H,) whereas the condition that the
test be unbiased leads to the second equation (ii). The randomization feature
of the UMPUT arises directly from these considerations. As a consequence, the
type I error is exactly equal to «, whereas in the Fisher-Yates test, the size of
the test is usually considerably less than the nominal a-value, at least for small
samples.

The exact power functions for the unconditional tests of independence in the
DD, 2 X 2 CT and 2 X 2 IT are then seen to be, respectively

Pn()\y ) O 7|'-1) = i zn: Z ¢n1.,n.1(x)f(xy ny. , n-l)

ny1.,=0 n,1=0 2

O XCNATSED JD NN GUET IS

n. 1=

R (1 l Ny, Ng) = Ez: ¢n1.,n.1(x)f(x | 1., Na1).

Harkness [7] has computed (for the UMPUT of independence) exact values of
P.(\, m., 1) for n = 10, 20, and 30 and (m., m.1) = (.1,.1), ---, (.5, .5),
with a wide range of values for . Also, @.(p:, 2| n1) was computed for n =
10, 20, and 30 for ny. = 2, ---, n/2 and (p1, p2) = (.1,.1), ---, (.9, .9). An
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extensive set of values of P,(¢| 7. , n.1) were also computed for n = 10, 20, and
30 and selected values of n,., 7.1, and ¢. The results of some of these calcula-
tions are given in Tables A, B, B, and B;. A brief discussion of the implica-
tions of these calculations follow our next remarks on an investigation of power
in large samples.

4. Asymptotic power. Our main tool in investigating the large sample behavior
of the various power functions is the following theorem due to Hannan and
Harkness [6].

TaeoreM 1. Let P;,Q: (0 < P; < 1,Q; = 1 — P;) be the unique solutions of the
equations

(6) = (P1Q2)/(P2Q1), Py + na.Py = n.y .

Let H® = niPQ: (i = 1,2), H = Hi + Hj, and X,.,, = H(nu — n.Py).
Then

i) f(nu | n , ma) ~ Ho(X,,) as H, HX.,, —0

b
(i) X fru|m., ny) ~ &(Xpy) — ®(X.y) as H, HX:, HX; — 0

ni;=a
min(ni.,n.1) '
(iit) > f(rul|m, na) ~ 1 — ®&(X.y) as H, HX; — 0
n11=a
where o(z) = (2r)F exp (—2%/2), ®(u) = [0 ¢(z) dz, and “~ means the
ratio of the two sides tends to one.

In general, it may be rather difficult to determine the values of ny for which
HX3,, — 0, but for the important special case when (n../n) — 6, , and (n../n) —
6, , it can be shown that HX5, , — 0 if and only if n~*(ny — n.P1)* — 0, or
equivalently, n*X%  — 0, which is Feller’s [3] condition for the validity of his
normal approximation theorem to the binomial.

Solving the equations in (6) for P, and P, noting, according to Theorem 1,
that the mean and variance of the distribution given in (4) are asymptotically
given by u = n..P; and * = H” respectively, it is found that

2 —1
M= N P1 = )\*(nl n.l/n), 0’2 = [ijz_:l (1/7['?])]

where P, = {—d + [d® + 4mnt(l — OB/200 — )}, d = n —
(m. +n1)(1 — t), \* = (nP1)/(n.), and the =}; are the =; in Table II
expressed in terms of A, m. , w1, with A¥, (ny./n), (n.1/n), replacing \, m1. , .1 .
(The equations in (6) lead to a quadratic equation which P, must satisfy
—one root is discarded since it leads to impossible values for P, .) If ¢ = 1, then
M= (nl.n.l)/n and 0’2 = [nl.ng.n.ln.2]/[n2(n — 1)] = hz.

Under the conditions of Theorem 1, asymptotically Ho:A = 1 is rejected if
[nu — (Run.g/n)| = hugs , where uy)s satisfies ®(ua2) = 1 — «/2. Thus, as an
immediate consequence of Theorem 1, we have
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THEOREM 2. If ¢ ‘[huas + (1 — ) (na/n)] — 0, then
Rn(t I . , n.l) ~ fI)[—ua/g(h/a) + (1 -_ )\*)(nlnl/na)]
+ ®[—uapp(h/0) — (1 — \*)(mpna/no)].

If ¢ is kept fixed as n;. , n.,, » — oo, then the power of the test for independ-
ence tends to one (meaning, of course, that the test is consistent). In order to
examine the situation in which power is not close to one in large samples, we
must either let the significance probability decrease to zero, or consider a se-
quence of alternative hypotheses converging to the null hypothesis. We discuss
the second case. In the following “—”’ always means “as the relevant variables
tend to + «.”

THEOREM 3. If |[ny. — nm| = o(n™®) and |n., — nms| = o(n*®), 0 < n; < 1,
i=1,2,then

R.(t|my., na)le, — B(—Uaz + 8) + D(—Ua2 — 6)

where & = m(l — g)ne(l — p)cand ta = 1 — n’ k.

Proor. The hypotheses imply (n1./n) — 91, (n.,/n) — 7, . Since ¢ is positive,
the choice of P; and P, in Theorem 1 ensure that ¢ — =+ . Hence we need
only to show that '

(8) (u.,,,gh + n_lnl.n.l - nl.Pl)a'l > Uq/2 + 9

as ni., n.a, n tend to o, since then the hypothesis of Theorem 2 will be ob-
viously satisfied. Noting that P,, P, satisfy (6), with £, = 1 — n7%, and n
sufficiently large, it is easily established that P, and P, both converge to 7
(note that P, and P, depend on 7, but we shall not indicate this explicitly).
Since Py = (1 — cQn?)™,

n(Py — Py) = (n} — cQ) ™ n¥ePiQi — ma(1 — no)e.
Similarly, ¢*/n — g (1 — 71)m2(1 — 752), so that

H
Ny. Ng. Ny N N
hu, T = Ugq — 3 | ™ U2 .
a/2/ /2 [ n3(n 1) 2] a2

(7)

Finally,
[P 'mng — nPile "t = nune.Py 4+ ne.Py — nPi)(ne)”
= (m./n)(1 = [n1./n])(¢*/n) (P, — P1) — [m(1 — m)ne(1 — mo)el’.

Thus, (8) is established, so that the theorem follows.
Now consider a sequence of 2 X 2 tables with fixed marginal probabilities
m1. and 7.1 . Applying Theorem 3 with 9, = 7., 9, = 7.1, and

t=M1—m. — 71+ Mema)/(1 — A ) (1 — A1),
withA = 1 — 7ty = \, it is readily verified that n}(1 — ¢) — y(mpm.) ™ Thus,
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(9) Rn(t | n. , n‘l)])‘n - ‘I’(—’ua/z + 6) + q’(_uaﬂ - 6)

where 8 = y’rym.y /s .
Using (9), Theorems 1 and 3, and applying Tchebycheff’s inequality, we see
that if 0. — nr.| = o(n*®), then

(10) Qu(pr, P2 [ 7)), = B(—Uaz + 8) + B(—Uns — 5)
where p1 = M.y, p2 = [m.1(1 — Am.)]/ms. , and also
(11) P,,()\, 1. 7I'.1)])\,l - ‘f‘( —Ua/2 + 5) + <I>(—ua/2 — 3)

Thus, (9), (10), and (11) assert that the three power functions have the same
limit, when evaluated at A = 1 — n™%y = 2,

Finally, we consider two special cases of Theorem 2. First, putting n., =
n1.p1 + Ne.p; = vin (7) and ¢ = pigs/pegqi , we obtain, after some simplification

(12) Ro(t|m., v) ~ ®(—Huajps” + ') + &(—httaps’ — 6)
where &' = [m.nev(n — »)/n*(n — D, ¢ = (o1° + 02°) 7, 6" = [(nav/n) —
n.pile’] and oF = n:Pgi, © = 1, 2. (Note that p;, p; are now solutions of
(6), and that \* = nPy/n.,). .

Secondly, if ¢ = M1 — m — w1 4 M) /(1 — M) (1 — Arr.y), replacing
n1. and n.; by nm. and nr., respectively, yields
(13) Ru(t|nm., nry) ~ S(—h"uapor" + 0) + S(—h"uapos — )

where h” = [n'm.mmams/(n — D, 0% = a[ X% i 75170 = n(1 — N)mymaos,

and the mi;, 4, j = 1, 2, are the cell entries in Table II expressed in terms of
\, 7., and .1, as suggested following (1).

5. Remarks. The power functions Q.(p:, p:|m.) and P,(\, m., m.,) are
expressible as weighted averages of the power function R.(t | ns. , n.1). Explicitly,

(14) Pﬂ()" 1. 7"'1) = E(ﬂl.,n.l)[Rﬁ(t l n., nl)]
and
(15) Qn(pl y P2 | nl') = E(n.llnl.)[Rn(t | n. , n-l)].

In (14), t = N1 — m. — w1 + Mm))/[(1 — M )(1 — Ary)] and
Ewy.n.0 [RBu(t] M., m.1)] denotes the expected value of [R,(t|n.. , n.;)], with
respect to the joint distribution of n,. and n.,. In (15),¢ = D192/ D21 and the
expectation is taken with respect to the distribution of n.,, conditional on
fixed values of (n:.). Thus, R.(¢{|n., m.,) is an unbiased estimator of
Pn(N, m., m1) and Qu(p1, p2|n.1), in the sense of Lehmann ([8], p. 140).
Since » = n1.p1 + Na.p is the mean value of the distribution of #.; in the 2 X 2
CT, and nm. , nr., are the mean values of 7. and n.; respectively, in the DD,
the motivation for considering the approximating (12) and (13) becomes clearer.

We also observe that an application of the results of Mitra [9] shows that if
the parameters m1. and ., are assumed to be unknown in the DD, and are esti-
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mated by n:./n and n.;/n respectively, then the limiting power function of the
asymptotically equivalent frequency chi-square test is given by the non-central
cgli-square distribution with one degree of freedom and non-centrality parameter
6.

6. Comparison of exact and approximate power. The test for independence
in each of the three distinct experimental situations outlined in the introduction
is carried out in terms of the same conditional test, so that the exact power
functions in the 2 X 2 CT and DD (as previously noted) are weighted averages
of the power function R,(f| 7., n.1) in the 2 X 2 IT. It is therefore of some
interest to compare the values of these power functions.

In the 2 X 2 CT, we put p1 = Ar.q, p2 = [71(1 — A )]/m. and 0y = .,
and in the 2 X 2 IT we let

¢t = )\(1 —_ M. — T + )\'7!'1. ’7I'.1)
N 1 = A )(A — Ary)

where )\, 7., and w.; are the parameters in the DD. Then for large samples
the three power functions P,(\, m1. , 1), Qu(p1, D2 | nm.) and R.(¢ | ny. , nar.y)
should be very nearly equal, in view of (9), (10), and (11). In order to examine
the rapidity with which these power functions converge together, some exact
values of these functions are given in Tables B, , B:, and B;.

On examining these tables, it is seen that in general values of power in the
2 X 2CT and 2 X 2 IT are greater than those for the DD, with power greatest
in the 2 X 2 CT for small A, while for large values of A, power is greatest in the
2 X 2 IT. For n = 10, there are very substantial differences in power between
the three cases, but for n = 30, these differences tend to be negligible. It can
also be seen from these tables that for n = 30 there is an ordering in the values
of power, with R,(¢ | nmy. , nr.1) > Qu(pr, p2 | nw) > Pa(\, m., 7.1). Thelevel
of significance & = .05 was used in all computations of power in the tables which
follow. We note that the approximations (9), (12), and (13) coincide for the

. = nm., and ng = nmr,

TABLE III
Comparison of exact and approximale values of power in the 2 X 2 CT
P1 P2 Patnaik* Sillitto* (12)1' Qso(pl ) p2|15)
(@nd Approx.) (Approx.) (Approx.) (Exact)
.3 1 .316 .293 .241 .254
.6 1 .925 .871 .876 .852
7 2 .860 .824 .812 .802
.8 2 .967 .941 947 .932
7 3 .634 .617 .585 .587
.6 4 .199 197 .180 .186

* Calculation of values of Patnaik’s and Sillitto’s approximations given here were car-
ried out by the present authors.
1 Values computed using the normal approximation given in Equation (12).
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particular choice of parameters in Tables B;, Bz, and B;. For n = 30, their
common value has been calculated for several values of A and tabulated alongside
the exact values of the three power functions which it simultaneously approxi-

mates.

In the 2 X 2 CT, Patnaik [10] and Sillitto [12] have also supplied normal
approximations for the power of the two-sided test for equality of the proportions
p1 and p, . In Table III we compare their approximations to that given by (12),
with n = 30, and ny. = 15. Bennett and Hsu [2] have made a similar comparison
for one-sided tests with ‘“‘exact” values of power based on the Fisher-Yates test
using Finney’s [4] tables. Whereas in the UMPUT the size of the test is exactly
a, for the test based on Finney’s tables the effective size is almost always con-
siderably less than the nominal « value. Consequently, the “exact’” values of
power given by Bennett and Hsu are, in general, much less than those given by
the approximations of Patnaik and Sillitto. An examination of Table III shows
that this phenomenon is not present when the UMPUT is used.
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TABLE A
Values of exact power for UMPUT test of independence in double dichotomy
T .5 4 .3 .2 .1
A Plo()\, .5, 7r.1)
.1 .801 .527 .297 .146 .071
.2 .647 .416 .238 124 .066
.3 .497 .319 .189 .106 .062
4 .365 .240 .149 .090 .059
.5 .258 .176 .116 .077 .056
.6 176 127 .091 .067 .054
7 118 .092 .073 .060 .052
.8 .079 .068 .060 .054 .051
.9 .057 .054 .052 .051 .050
1.0 .050 .050 .050 .050 .050
A Pyo(n, .5, m.1)
.1 .998 945 758 .434 .144
.2 .975 .849 .624 .344 .122
.3 .899 714 .491 .268 .104
4 .758 .558 .369 .205 .089
.5 577 .406 .266 154 .077
.6 .392 274 184 114 .067
7 .239 172 123 .085 .059
.8 131 .102 .081 .065 .054
.9 .069 .063 .058 .054 .051
1.0 .050 .050 .050 .050 .050
A Pso(n, .5, m.1)
1 1.000 .996 .940 .705 .263
.2 .999 .970 .844 .573 212
.3 .985 .897 711 .448 .170
4 .923 .766 .558 .336 135
.5 .781 .591 .407 .243 .108
.6 571 .407 .275 .169 .086
7 .352 .249 .173 115 .070
.8 .181 .135 .103 .078 .059
.9 .081 .071 .063 .057 .052
1.0 .050 .050 .050 .050 .050

P,(1 — 1, .5, 1) = P.(1 + A, .5, m.1) by symmetry.
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TABLE B,
Comparison of the three exact power functions P, , Q. , R.* and normal approximation
e = W = 5
N n =10 n =20
P n Qn Rn P n Qn Rﬂ
1 .801 .933 .998 .999 1.000
.2 .647 .786 .805 .975 . .983 .991
.3 .497 .617 .620 .889 .916 .939
4 .365 .457 .447 758 .783 .812
.5 .258 .321 .308 577 .602 .626
.6 .176 215 .206 .392 412 .426
7 118 .139 134 .239 .250 .256
.8 .079 .088 .086 131 .136 137
.9 .057 .059 .069 .069 .071 .071
1.0 .050 .050 .050 . .050 .050 .050
n =30
A
P, Qn R, N.A.
1 1.000 1.000 1.000 1.000
.2 .999 .999 .999 1.000
.3 .985 .988 .991 .995
4 .923 .932 .942 .947
.5 .781 .796 .809 .805
.6 571 .587 .598 .585
7 .352 .363 .368 .357
.8 .181 .186 .200 .180
.9 .081 .083 .090 .078
1.0 .050 .050 .050 .050

* Here and in Tables B; and B;, Py = Pa(\, m1. , 1), @ = Qu(p1, p2lnm.); Ry =
R.(t|nm. , nwa), 1 = AMray, P2 = wa(l — Mrp)/mea

t=A1 — m. — 71+ Amewa)/A — A ) (A — A7),

and N. A. is the normal approximation given by the equivalent expressions (9), (12), or (13)
for the particular parameters used here.
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TABLE B,
Comparison of the exact power functions Py , Qn , Rn and the normal approximation
T =7a = 4
\ n =10 n =20
Py, 09 R, P, QOn R.
.1 .333 .410 .309 .806 .851 .849
.2 .266 .323 .266 .669 .713 .695
.3 .209 .251 .222 .528 .565 .547
4 .163 .192 .181 .397 .426 .412
.5 .126 .145 .142 .285 .305 .298
.6 .097 .109 110 .195 .208 .205
7 .076 .083 .084 .129 .135 .135
.8 .061 .064 .065 .084 .087 .087
.9 .053 .054 .054 .058 .059 .059
1.0 .050 .050 .050 .050 .050 .050
1.1 .053 .054 .054 .058 .059 .059
1.2 .062 .065 .066 .084 .086 .089
1.3 .077 .083 .086 - .128 134 .140
1.4 .099 111 115 .192 .203 .216
1.5 .128 .148 .154 .277 .294 .317
1.6 .167 .195 .206 .380 .404 .439
1.7 .214 .254 271 .497 .527 .573
1.8 272 .325 .353 .620 .654 .707
1.9 .341 .407 .451 737 772 .824
2.0 .420 .501 .565 .838 .870 .913
2.1 .508 .604 .689 .914 .940 .967
2.2 .603 712 .810 .963 .980 .992
2.3 702 .821 .912 .988 .996 .999
2.4 .798 .921 .978 .997 1.000 —
n =30
A
P, On R, N.A.
.1 .959 .969 .975 .996
.2 .874 .890 .895 .923
.3 744 .763 .769 —
4 .588 .606 .613 .594
.5 .430 .444 .452 —
.6 .290 .299 .307 .282
7 .181 .186 .191 —
.8 .106 .108 .111 .105
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TABLE B,—Continued

N n = 30
P, QOn R, N.A.
.9 .064 .064 .065 —
1.0 .050 .050 .050 .050
1.1 .064 .064 .065 _
1.2 .105 .108 112 .106
1.3 178 .184 .196 —_
1.4 .282 .293 .313 .293
1.5 .413 .429 .459 —
1.6 .559 .579 .617 .584
1.7 .702 .724 .763 —
1.8 823 .844 877 859
1.9 .912 .927 .949 —
2.0 .964 .974 .985 .985
2.1 .989 .994 .997 —
2.2 .998 .999 1.000 1.000
2.3 1.000 1.000 1.000 —
2.4 1.000 1.000 1.000 1.000
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TABLE B;
Comparison of the three exact power functions P, , Q. and R, for v, = m. = .3
n = 10 n = 20 n = 30
P, On R, P, QO R, P, O R,

.1 122 125 .101 .343 .367 .306 .602 .642 779

.2 .106 .109 .093 272 .290 .254 .473 .501 .573

.3 .093 .095 .085 214 .226 .207 .362 .381 .439

4 .081 .083 .077 .166 175 .166 .270 .282 .318

.5 .072 .073 .069 .128 134 131 .196 .204 .225

.6 .064 .065 .063 .099 .102 .102 .140 .145 .156

7 .058 .058 .058 077 .079 .080 .099 .101 .107

.8 .053 .054 .054 .062 .063 .063 .071 .072 .074

.9 .051 .051 .051 .053 .053 .053 .055 .055 .056
1.0 .050 .050 .050 .050 .050 .050 .050 .050 .050
1.1 .051 .051 .051 .053 .053 .053 .055 .055 .056
1.2 .054 .054 .055 .062 .063 .064 .071 .072 .073
1.3 .061 .059 .058 077 . .079 .082 .097 .100 .101
1.4 .065 .067 .071 .099 .103 .108 .136 .140 142
1.5 .073 .077 .084 .128 134 .142 .186 .193 .195
1.6 .084 .089 .101 .164 174 .184 .247 .257 .261
1.7 .098 .105 124 .208 .221 .234 .319 .333 .337
1.8 .114 124 152 .259 .276 .292 .400 417 .422
1.9 .133 .146 .186 317 .339 .356 .485 .507 .513
2.0 .155 171 227 .380 .408 .426 573 .598 .606
2.1 .180 .201 .275 .448 .482 .500 .658 .687 .696
2.2 .208 .234 .330 .520 .558 .576 737 .768 778
2.3 .240 .272 .393 .591 .636 .651 .806 .838 .848
2.4 .275 315 .464 .661 711 724 .864 894 .904
2.5 .313 .363 .539 727 .781 792 .909 937 .946
2.6 .355 .416 .619 .787 .843 .853 .943 966 .973
2.7 .400 .475 .700 .840 .896 .904 .966 984 .988
2.8 .448 .540 778 .885 .938 .944 .981 994 .996
2.9 .499 .611 .849 .920 .968 972 .990 .998 —
3.0 .552 .689 .910 .947 .986 .989 .995  1.000 —
3.1 .605 774 .956 .966 .996 .997 .997  1.000 —
3.2 .659 .866 — .979 .999 — .999  1.000 —
3.3 712 .965 — .989 1.000 — .999  1.000 —




