EXTREMAL PROCESSES?

By MEYER Dwass
Northwestern University

1. Introduction. Suppose X;, X, -- - is a sequence of independent and identi-
cally distributed random variables, and M, = max (X;, ---, X,), n = 1, 2,
- -+ . Necessary and sufficient conditions for the existence of sequences of con-
stants {a,} and {b,} such that lim,., P{(M,» — a.)/b. < t} = F(t) should exist
for every real ¢, with F' being a non-degenerate c.d.f., are well known. It is also
known that up to a location or scale parameter, F must have one of the following

three forms:

Fi(t,\) =0, t =0,
= exp —A %, t>0;
(1.1) Fy(t, \) = exp —A(—1)7, t =0,
=1, : t>0;
Fs(t, \) = exp [—A(exp —1)], —0 << ®;

\ being a positive constant, [3]. (In deference to a long-established usage, we
wish to point out that the usual notations for Fy , F,, Fs are ®,, ¥, , and A re-
spectively.)

The purpose of this paper is to study the stochastic processes, Y (¢), which
are in a natural sense the “limits,” as n — «, of the processes

Yn(t) = (M[tn]+l - am)/bn, O é t < o0,

(A study of the passage to the limit is given in the following paper by John
Lamperti, [4].) The “limiting” process, Y (¢), will be defined rigorously in Sec-
tion 3. There are, of course, three possible processes, according to whether the
X ’s belong to the “laws of attraction” F, Fy, or F; respectively. We will refer
to these processes as extremal processes of types 1, 2, 3.

Extremal processes bear a natural analogy with stable processes. Thus, sup-
pose that Uy, Uz, -- - is a sequence of independent and identically distributed
random variables, S, = Ui+ -+ + U,,n = 1,2, ---, and {c,} and {d,.} are
sequences of constants such that {(S. — ¢.)/d.} converges in law to a non-
degenerate distribution, which is necessarily a distribution of stable type. Then

if we define a process

IIA

Zn(t) = (S[ln] - Cn)/dn’ 0 1 < o,
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there is a “limiting” process Z(¢) which is in a natural way obtained from
Z,(t) as n — . This Z(¢) is a stable process of appropriate type, and is ex-
plicitly a process such that the joint distribution of Z (i), - -- , Z(iw) is exactly
the limiting joint distribution of Z,(#1), - -+ , Z.(tx), as n — o, for every choice
of positive constants ¢, -+, {», and any positive integer m. This is exactly
how extremal processes are being defined, except the role of the sum is now being
played by the maximum.

Finally we remark that maxima and sums are only two special cases of fune-
tionals which give rise to processes which have interesting structure; it would
seem worthwhile to study additional cases of this sort.

2. Preliminary results. The purpose of this section is to give several prelimi-
nary results which are of independent interest and will motivate some of the
results about Y'(¢) which will be given in Section 4. As before, we assume that
{X,} is a sequence of independent and identically distributed random variables,
with continuous c.d.f.’s. However, in this section it is not necessary to assume that
(M, — a,)/b. converges in law for any choice of constants {a.}, {b.}. We suppose
that A, u are two constants such that 0 < A < u. Let N,(A, u) denote the num-
ber of indices 7, among [nA], [#A] + 1, - -+, [nu] for which X; = M, . In other
words, N,(\, u) is the number of new maxima occurring among Xy, -,
Xng - The assumption of continuous c.d.f.’s guarantees that ties among the
X’s occur with probability zero, and hence with probability one the successive
maxima are sirict maxima. We will also want to refer to the indices at which
these maxima occur. We find it convenient to index these by counting from right
to left. Thus let W;,, be the index of the jth maximum among indices 1, - - -,
[nu], counting from the right, (7 =1, -+, [nu]).

TuEOREM 2.1. As n — «, (a) N.(A, n) s asympiotically Poisson distributed
with parameter 1ogk , (1) Winw/Tty Wons/Wins s *++ s Wana/ W g—nynu are asymp-
totically independent and uniformly distributed in (0, 1).

Proor. Let C(7) equal 1 if X; equals M;, and 0 otherwise. It is an elementary
but very useful fact that C'(1), C(2), -- -, form a sequence of independent ran-
dom variables with EC(¢) = 1/7. (More generally, if R(7) denotes the rank
of X; in the set X;, ---, X;, then R(1), R(2), --- form a sequence of inde-
pendent random variables, B(7) being uniformly distributed on the integers 1,
- -+, 4. This was pointed out by Dwass, Theorem 1 [1], and was discovered again
by Rényi [5].) The proof of (a) is now routine using the fact that N.(\, u) =
> {ﬁ;’} C(). Part (b) follows from (a) by a routine argument which we leave to
the reader.

ReMARK. We should point out that (a) follows easily from (b) by the follow-
ing elementary fact. Suppose W1, W, - - - is a sequence of independent random
variables each uniformly distributed in (0, 1). Let N be the number of indices ¢
for which J]i=1 W;liesin (¢,1), where¢isin (0, 1). Then N is Poisson distributed
with parameter —log ¢ by the following argument. Since N equals the number of
indices ¢ for which 2= (—log W;) lie in (0, —log t), and since {—log W}
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forms a sequence of independent, exponential (parameter 1) random variables,
then N is Poisson distributed with parameter —log ¢. Using this fact and (b)
it is now easy to conclude that (a) follows.

For the next theorem we define for v < v, J(u, v) = number of indices ¢ for
which X; = M, and v < X; < v. In other words, J(u, v) + 1 is the number of
new maxima that must be achieved in order to bring M ; from a height below %
to a height above ». Denote P(X, < t) = G(¢).

TaEOREM 2.2. Same assumptions as for Theorem 2.1. Let u, v be such that G is
strictly increasing at u and v and 0 < G(u) < G(w) < 1. Then J(u, v) is Poisson
distributed with parameter —log [1 — G(v))/[1 — G(u)]-

Proor. Consider the random variables G(X;:), G(Xs), - -+ . These are inde-
pendent and uniformly distributed in (0, 1). Maxima occur for the {G(X,)}
sequence at exactly the same indices at which they occur for the original {X,}
sequence. Moreover, 4 < X, < v if and only if G(u) < G(X,) < G(v). Let
Ni, N,, --- be the succession of indices at which the maxima occur, exceeding
u, that is X; = M; > wu. It is easy to verify that G(Xy,) is uniformly distributed
in (G(u), 1), G(Xy,) is uniformly distributed in (G(Xw,), 1), etc. Hence, de-
fining K(z) = —In (1 — G(z)), K(Xn,) — K(u), -+, K(Xw) — K(Xu,_,)
form a sequence of independent, exponentially distributed random variables,
and the required result is a standard one relating exponential random variables
with the Poisson distribution.

REmARKs. It is interesting to compare this theorem with the previous one.
Here the result is not an asymptotic one, whereas in Theorem 2.1 the result
is asymptotic. On the other hand, the result of Theorem 2.1 does not depend on
the form of @, whereas the result of this theorem does.

3. Definition of the extremal processes. In order to simplify somewhat the
discussion that follows, we will suppose that X, is a sequence of independent
and identically distributed random variables, whose common c.d.f. is one of
the “extreme-value” distributions F,, F,, or F; . Much of what follows would
remain the same if we suppose only that the X,,’s “belong to the domain of attrac-
tion” of these distributions, that is that (M, — a,)/b, converges in law to one
of these three distributions for appropriate {a.}, {b.}.

Corresponding to each of the three possible distributions for the X,’s Fy,
Fy, or F; as defined in (1.1), we define random processes V,1(f), Ya..2(2), or

Y.3(t), as follows: for 0 < ¢ < oo,

Yaa(t) = Mimu/n''®,  Yas(t) = M un1+1n”°‘,

(3.1)
Y,,,3(t) = Mumj41 — log n.

The following is easy to verify and we omit the proof.

LemmA 3.1. For any constants &, -+, & satisfying 0 S 4 < & < -+ < &,
the asymplotic joint distribution as n — o of the vector [Ya,:(t1), <+, Ya,i(t)]
18 the same as the distribution of a vector [Uy , max (U, U,), - -+, max (Ui, U,

, Ux)] where Uy, Uy, - - -, Uy are independent random variables whose c.d.f.’s
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are F;(t, M), F;((, N(b — t)), -+, Fs({, N(tx — t)), ¢ = 1, 2, 3. This lemma
suggests defining stochastic processes Y;(¢) whose finite dimensional distribu-
tions are exactly the limiting finite dimensional distributions of Y, ;(¢) described
above. We formalize this in the following definition.

DrFINITION. By an extremal process of type i (¢ = 1, 2, 3) we mean a stochastic
process Yi(1), 0 < t < o, defined so that for 0 £ 4 < &y < -+ < i the joint
distribution of Yi(t1), Yi(ta), -+ -, Yi(t) ts the same as the distribution of

Ui, max (Ul, U2) y U 7m3’X(U11 UZ, ) Uk))
where Uy, ---, Uy are independent random variables whose c.d.f.’s are
F'i(t) Atl)y Fi(t; >\(t2 - tl))) ] F'i(t7 )\(tk - tk~1)); 1= 1; 27 3.

It is evident from Lemma 3.1 that the above defined processes satisfy the
consistency requirements of Kolmogorov, and hence a measure space exists on
which such a process can be consistently defined. Moreover, we can suppose,
without loss of generality, that we have separable versions of these processes
whose sample functions are non-decreasing with probability one. In fact, Theo-
rems 4.2, 4.3, 4.4, below, will give such representations of these processes ex-
plicitly. :

4. Properties of extremal processes. The first properties to be described are
completely expected as they are the limiting analogues of those given in Theorem
2.1. In fact a direct proof based on that theorem and an appropriate “invariance
principle” argument should not be too difficult. However, we approach the mat-
ter directly. Let Y () denote an extremal process of any one of the three types.

Lemma 4.1. Suppose0 < t < t2 < -+ < b . Definefor0 < a < b,C(a,b) =
14 Y(b) > Y(a), O otherwise. Then C(t:, t), C(ta, t3), -+, Cte—1, t) are
independent random variables. Also, EC(a, b) = a/b.

Proor. Define C.(a, b) = 1 if Y,(b) > Y.(a), O otherwise, where Y (?) is
one of the processes defined in (3.1) of the same type as Y (¢). If &1, €2, - - -,
ex—; are each 0 or 1, then

P{(Cﬂ(tl ) f/l) = €1, ", Cn(tk——l ) tk) = ek}

(4.1)
= P{Cn(tl , tz) = 61}' R 'P{Cn(tk_l, tk) = ek}

simply because of the independence of the random variables {C(7)} described
in the proof of Theorem 2.1. The independence asserted in the theorem will be
established if it is permissible to let n go to « in (4.1) and then conclude that
the limits of the probabilities equal the same expressions with the n deleted.
This is permissible since any of the events in (4.1) are determined by Y,(#),
-+« , Y,.(&) whose distribution law converges to .that of Y (&), ---, Y (&).
Finally, using Lemma 3.1, we conclude that

BC(a,b) = P(Y(3) > ¥(a)} = [ [1 = F(4,M(b — a))]F(dL 2a)
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where F is either Fi, F, or F; , according to the corresponding type of Y (¢). The
integral is easily evaluated to be 1 — a/b in each case.

TreoREM 4.1. If 0 < a < b, then with probability 1, any extremal process Y (t)
18 a step function with only a finite number of jumps in [a, b]. The number of jumps
18 Potsson distributed with parameter log b/a.

Proor. Since Y (¢) is separable, and its sample functions are non-decreasing

with probability 1, then

C(a,a+[b —al/m) + -+ + C(b — [b — a]/m, b) = Dy,

converges with probability one as m — « to the number of discontinuities of
Y (t) in [a, b], which number may possibly be «. By a routine computation,

limmow P(Dm = k) = (exp — In b/a)(In b/a)*/k!.

Since the sum of these probabilities for £ = 0, 1, 2, - - - equals 1, there are only a
finite number of discontinuities with probability 1 and this number is Poisson
distributed with parameter log b/a.

REeMARKs. Denoting the ¢th discontinuity from the right of Y (¢) in (0, a) by
Wi, (a > 0), then Wi/a, Wo/Wy, -+, is a sequence of independent random
variables, each uniform in (0, 1). Also, the jump points of the process V(t) =
Y (e') form a regular Poisson process.

Thus far a description has been given only of the discontinuity places in ex-
tremal processes. In what follows we want to give a simple representation for
extremal processes in terms of certain sequences of independent random variables.
This will be analogous to (but more complicated than) the well-known represen-
tation of a Poisson process in terms of the successive independent, exponential
random variables which represent the waiting times for new jumps.

The following theorems give explicit representations for extremal processes
Y(t), for t in (s, ) where s > 0. By a representation we mean a stochastic
process whose finite dimensional distributions in (s, « ) agree with those of the
processes Y;(t) as defined in Section 3. For simplicity, and without loss of
generality we suppose hereafter that the parameter X is equal to 1 throughout.

TueorEM 4.2 (representation of extremal processes of type I). Let Y, , Z;,
Zy,+++, Vi, Vo, - be independent random variables, Y, having the c.d.f.
Fi(-, 8), the Z’s being identically distributed exponential (parameter = 1) random
variables, the Vs being identically distributed and uniform on (0, 1). Define the
process Y(t), t in (s, ©), s > 0, as follows)

Yi(t) = Y., tinfs, s + Y5Z,) = [s, 81),
Ya/Vila, tin [s1, 81 + Y5Zy/V1) = [s1, 82)
= Ya/(V1V2)1/a, tin [sy, s2 + Yf‘Za/V1V2) = [sy, 83),

etc. Then Y1(t) is a representation of Y(t) for t in (s, ©).
ReMARK. In other words, the process Y (¢) evolves as follows. At time s the
height is ¥, . The process remains at that height an exponentially distributed
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E—
Yo/ (V,V, V) /2 {
Ys/(vlvz)l/a f
1/a
W/ |
Ys
6 s\____yé_/ — u' J - — )
%4 Ys Za/vl Ys Zs/vlvz

Fiag. 1

amount of time, ¥7Z; and then jumps to a new height, ¥,/V1'® It remains
at that height an exponentially distributed amount of time which is that height
raised to the ath power times Z, and then jumps to a new height which is the
last height divided by V3%, ete. Every time the process reaches a new height it
remains in that height an exponential amount of time which equals the ath
power of that height times the next Z. It then jumps to a new height which is
the last height divided by the (1/a)th power of the next V. (See Figure 1.)

TrarEoREM 4.3 (representation of extremal process of type II). Let Y., Z,
Zy, -+, Vi, Vo, - be independent random variables, Y, having the c.d.f.
Fy(-, 8), the Zs being identically distributed exponential (parameter = 1) ran-
dom variables, the V’s being identically distributed and uniform on (0, 1). Define
the process Ya(t), t in (s, »), s > 0, as follows

Yz(t) = Yg , tin [3, S + ZI/('—Y-!)“) = [‘S’ 81),
= Y.Vi'", tin[si, 1 + Zo/(=Y,)%V1) = [s1, 2),
= Y (ViVo)''%,  tin[ss, 2 + Zs/(—=Y,)ViVe) = [s2, 83),

etc. Then Yo(t) is a representation of Yo(t) for t in (s, »).

TrrorEM 4.4 (representation of extremal process of type III). Let Y,, Z,,
Zy, -+, Vi, Vg, - be independent random variables, Y, having the c.d.f.
Fs(-, s), the Z;’s and Vs being identically distributed exponential (parameter =
1) random variables. Define the process Y3(t) as follows:

73(t) =Y, ) tin [3, s -+ eY"Zl) = [81 Sl))
=Y, 4+ Vi, tin[si, 81 + €°TZy) = [s1, s2),
=Y, +Vi+ 7V, y tin [82 , So -+ 9y3+V1+V2Z3) = [32 , 33)7

etc. Then Y3(t) is a representation of Ys(t) for t in (s, ).
Proor oF THEOREMS 4.2, 4.3 and 4.4. It is clear from the definitions of ¥;(¢)
and Y;(t) that these are Markov processes with stationary transition functions.
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For Y(t) this follows from the role of the exponential variables {Z} in every
case. The proof of the theorems will be accomplished by showing that an appro-
priate version of the infinitesimal generators of the processes Y;(t) and ¥.(t)
coincide. To be specific, it is not hard to verify that these processes satisfy the
requirements of Theorem 2 of [2]. Hence it will suffice to show that for any
bounded, real-valued, measurable function f,

lim o {f[Yi(t + 5)] — f[Vi(s)] Yi(s) = x}

t
[¥i(t + 8)] — fI¥i(s)]
t

(4.2)

= lim.oF {f Vi(s) = yc}
(It would actually be sufficient to show this for a smaller class of functions, the
class B, in Dynkin’s notation [2].)

The relevant calculations are given below:

BiflY (s + )] Y(s) = =} E{flY (s + 0] | Y (s) = x}
Type I f(x) exp —z~=t + f(x) exp —x™t + o(t) +
J2 atr-@+D exp —tvof (v) do Jo [o f@/vti=)z= exp — (272)
: ’ eexp —[z7w( — u)] du dv
Type II  f(z) exp — (=)t + f(@) exp —(—z)2t + o(t) +
J2 at(—v)= exp —t(—0)%f (v) dv Jo J§ f (@v¥e) (—a)= exp — (=)=
‘ eexp —[(—x)w(t — u)] du dv
Type IIT  f(z)(exp —e™t) + f(z) exp —(e72t) + o(¢) +
[ tlexp —e*t) (exp —v)f(v) dv [ [s @ + v)(exp —z)(exp —e™=u)

eexp —[e™*7?(t — u)] du dv

It is now easy-to verify that the limits asserted in (4.2) exist and are equal to
@R+ a [l @ (-2t a [ S0
and
—f(z) exp — = + [nf(x +v)(exp —x — v) dv

for types I, IT, III respectively. This completes the proof.

Finally, by means of the representations ¥;(¢) we can prove counterparts of
Theorem 2.2. '

TueoreM 4.5. Suppose s > 0 and Y.(s) = u. Let J(u, v), (u < v), be the
number of discontinuities in Y (1), t > s, up to the time for which Y(t) first
exceeds v. Then J(u, v) is Poisson distributed with parameters indicated by the
following table.
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Process type Restrictions on u, v Poisson parameter
I OI<u<ov< w alog (v/u)
1I —o <u<v<0 a log (u/v)
II1 —o <Uu<v< ® v — U

Proor. We give the proof only for case I. The others are similar. Using Theo-
rem 4.2,

J(u, v) = last k for which w/(Vy -+ Vi)'* <
k
= last k& for which >, — log V: < alog (v/u).
1

Since the —log Vs are independent and exponential (parameter 1) random
variables, then J(u, v) is Poisson distributed with parameter « log (v/u).
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