CONVERGENCE OF THE LOSSES OF CERTAIN DECISION RULES FOR
THE SEQUENTIAL COMPOUND DECISION PROBLEM

By EsTER SAMUEL
The Hebrew Unaversity of Jerusalem

1. Summary. This paper is a continuation of [8], and considers the sequential
compound decision problem for the case where the component decisions are of
the simple versus simple hypothesis testing type, and thus can be stated in terms
of testing whether 6 = 0 or 6 = 1. The loss for the compound decision is taken to
be the average of the losses in the component decisions, and the risk for the com-
pound decision is defined correspondingly. Let R( ) denote the Bayes envelope
function of the component problem. In [8] two sequences of compound decision
rules {T%} and {7} are exhibited, such that for n sufficiently large, the risk
incurred by T, never exceeds R(z?,,) + ¢ where ¢, is the average of the true

6-values in the n first components and this holds umformly in all possible
sequences of @’s: for Th a correspondmg statement is valid provided B( ) is
differentiable for all 0 < 4 < 1. Here we prove that for any sequence of 8-values,
the difference between the loss incurred by 7, and R(#,) converges to zero in
probability, and under the differentiability assumption a corresponding state-
ment holding with probability one is proved for Ts . Numerical data is provided
to indicate the rate of convergence.

2. Introduction. For convenience we shall briefly review some of the concepts
and notation introduced in [8]. Since this paper leans heavily on [8], familiarity
with the latter is desirable.

We are confronted with a sequence of independent random variables,
X, Xz, ---, and “parameter values,” 6, 65, --- , where each 6; equals 0 or
1, and X; has distribution function Py, , where Py and P; are two completely
specified distribution functions, given in terms of their densities f(z, 0) and
f(z, 1), with respect to some measure u. The sequence of §’s is unknown, and the

statistician is required to decide, for each ¢, 7 = 1, 2, --- whether ¢, equals 0
or 1. A sequential compound decision function is one where the decision about
f; may depend upon the observed values x; = (21, %2, -+, 2:) of X; = (X;,
X, R Xz)

The component problem is thus to decide whether the random variable X
has distribution function P, or P;, on the basis of an observation z on X. We
assume that the loss structure is the following
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SEQUENTIAL COMPOUND DECISION PROBLEM 1607

Let ¢ be a decision function for the component problem, i.e. ¢ is a measurable
function with 0 =< {(x) = 1, where t(z) and 1 — {(z) denote the probabilities
with which one decides 6 = 1 and 6 = 0 respectively, when X = z is observed.
The risk of ¢ as a function of 4 is thus given by

R(t,0) = bEy(t(X)) forg = 0
aBe(1 — t(X)) foro =1,

where Ej denotes the expectation with respect to Py, 6 = 0, 1. The function
(1 — 9)R(&, 0) + 9R(¢, 1), for fixed 4, is minimized with respect to all possible
decision functions ¢ by any measurable ¢, of the form

t(z) =1 if (1 — 9)bf(x, 0) < naf(x, 1)
(2) =0 if (1 — 7)bf(z, 0) > naf(z, 1)
= arbitrary in [0, 1] if (1 — 9)bf(x, 0) = qaf(z, 1)

and we denote by ¢y the particular non-randomized function where the arbitrary
part in (2) is taken to be zero. (Notice that ¢, is a “Bayes rule with respect to a
priori probability 5’’, when one considers 6 as a random variable with P(6 = 1) =
n =1 — P(6 = 0).) The minimum value

min, [(1 — 7)E(¢,0) + 4E(¢, 1)] = (1 — n)B(t, 0) + 2R (4, 1)

is denoted R(n) and R( ) is called the Bayes envelope function.

Let Q° denote the set of all possible infinite sequences of 0’s and 1’s, and let
Q" denote the set of all 2" n-vectors of 0’s and 1’s. For any 0 £ 2 let 0, ¢ Q"
denote its initial n-vector.

By a (n-step) compound decision rule we mean any n-vector T, = (&1, t2,
-+« , t,) of measurable functions where 0 < ¢; = #;(x;) < 1 and where ¢; and
1 — ¢; denote the probabilities with which one decides 6; = 1 and 8; = 0 respec-
tively, when X; = x; is observed. Corresponding to (1) we therefore have the
risk on the 7th decision

R(t:, 0;) = bEy,(t:(X:)) for 6; = 0
aEei(l —tz(Xz)) for 6; = 1,

where Ejy, denotes the expectation under the product probability measure
Ps, X -+ X Py, = Pj, . It should be noticed that (3) is a function not only of
6; , but of all 0, . The risk of T, at the point 0, is thus defined as

I

(1)

Il

(3)

(4) R(T.,0,) = n—lz::lR(ti, 0:).

Correspondingly we denote the (random) loss incurred in the 7th decision by
(5) L(t:(Xs), 0:).

(Notice that L(t;(X),0:;) depends not only on X; but also on the independent
random variable U, introduced in order to carry out the randomization required
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by ¢;, except in the case where #;(X;) = 0 or 1 with probability one, i.e., the
case where {; is non-randomized, and no such random variable is required. In
the latter case

R(t:, 8;) = By, (L(t:(X:), 0:),
whereas generally
R(ts, 0:) = Eg;Ev,(L(t:(X:), 0:).

Thus the notation (5) is in fact incomplete.) Corresponding to (4) we have
(6) (T, 8,) = 0" 27 L(t:(X), 65).
=1

We shall now describe the compound decision rules 7% and T, discussed in
[8]. Let h(x) be an unbiased estimate of 6, and define, for7 = 1,2, - --

pi = pi(x:) =0 if 725 k() =0
(7) =D G h(z) OS2 iak(z) S 1
=1 1= T b))
andfset po = % Then Th = (&, - -+, tn) is defined by
(8) 1= (%) = to_y(w),

where the right hand side of (8) is defined by (7) and the particular version of
(2). Let ¢; = 1> % _16;. Thus, to decide on 6;, T’ uses a rule which is Bayes
with respect to the estimate p;_; of ¢y .

Theorem 1 of [8] states that if the Bayes envelope function R(7n) has a de-
rivative for 0 < n = 1 then for every ¢ > 0 there exists N(¢) such that for all

n = N(e)
(9) R(T% 0,) — R(8,) < ¢ uniformly in 0, Q"

Notice that (9) is a one-sided inequality, i.e., B(¢,) + € is an upper bound for
R(T%¥,0,). Since one is interested that the risk should be as small as possible,
an upper bound is of particular interest. Intuitively one would however not
expect that R(T%, 0,), for n sufficiently large, could be less than R(¢,) — e
We shall in fact show that if B(y) is differentiable for 0 < 5 < 1, then

(10) limn-no 'R(T;l:, en) - R('&n)l =0

uniformly in all 6 £ 2.
We shall make use of the following vector notation introduced in [8]. For any
Y = (yi, ) withys = 0,92 = 0, and 41 + y2 > 0, let

R(ty, 0)]

() Mm:&w,n
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where 7 = 32/ (y1 + ¥2), and where the right hand side of (11) is defined through
(1) and (2). Expressions (16), (17) and (18) of [8] state

(12) ®R(cY) = ®(Y) forec > 0
(13) Y*a(Y) = Y*®(Y™)

(14) Y[R(Y™) — ®(Y)] = (Y — YH)[®(Y™) — &(Y)]

Let

¢i= (1 —6;,0;) and ¢ = Zl“”
=
Lemma 2 of [8] states that for all 8, ¢ Q"
n Y R(ty,, 6:) < R(dn).
i=1

We shall now prove
LemmA 1: If R(n) s differentiable for 0 = 9 < 1, then

(15) liMpe [R(ﬂ,.) — ! ; R(8,, 0)] =0

uniformly in all 8 € Q°.
Proovr. By the definitions, (14) and (12) it follows that

0 = R(ﬂn) - n—I;R(tg; ) 0’1') = n—1¢n®(¢n) - n—I; ﬂoia('/’i)

w7 ) = (B ) + 5 WBW) — e}
= 2T ) — G)]
(16)

n—1

n_I;('h — Yar) [R(Yar1) — R(¢s)]

n—1

= 0 L ed®(1 = 9:,8:) — AL = i, disa)]

IIA

n—1

n"I; m.a.v.[®R(1l — &, %) — Rl — Fep1, Fet1)]

IIA

where m.a.v. ¥ = max(|yi|, |ye|). Notice that
(17) [(1— &) — (1 — )| = |9 — %] S /(G + 1).

Let ¢ > 0 be given. Notice that since B(y) is differentiable, Lemma 1 of [8] is
applicable. From that lemma it follows that

m.a.v. [R(1 — &, %) — R(L — F4a, 1)) < €/2
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for [9; — @.44] < 6, thus, by (17), for ¢« > N(8). Thus

n—1

n_’z mav[(R(l — 4., 0,) - (R(l — P41 s 01'.”)]

=1

18 N(S
(18) =< n_li)max(a, b) +n 7 (n —1 — N(5))e/2

=1
< €2+ ¢2=c¢
provided n > 2N (é)max(a, b)/e. Finally (15) follows from (16) and (18).
REMARKS:
(1) Quite similarly to Lemma 1, one can prove that if R(n) is differentiable
for 0 = 7 = 1 and j is any fixed integer (positive or non-positive), then uni-
formly in 6 £ Q”

(19) limp oo |[B(8,) — 07" 2 R(t5,_;, 6:)| = O
=1
(where one defines ¢;_; = % (or any other number) for ¢ < 7).

(2) Notice that if at the ¢th stage one uses a rule Bayes against ¢,; and
arbitrary at the first stage, then the compound loss is always greater than, or
equal to B(#,). That is, for any 6, ¢ Q"

(20) n7 2 R(lyy , 0:) Z R(9).
=1
(20) follows since by (13) (where ®(¢) may be arbitrary)
"*1; R(t3,_,, 0:) = n“; Pi®R(Yi1)

n—1

2 (YR (Yat) + ;1 VIRW1) — R(¥:)])

= n_1¢n®(¢n—l) = n_l'pn&(¢n) = R(ﬂn)~

It should be remembered that the rule 7% uses at the ith stage, a rule Bayes
against the estimate p;_; of #,_; .

(3) Lemma 1 and (19) are not valid if R(») is not differentiable for all 0 < 4
= 1. In fact there exist sequences 0 ¢ @° such that the limit in the left hand side
of (19) exists but differs from 0. This can be seen in the following example.

Let

1 for0=z=1  f(z,1) =2 for0 =z =13

f(z, 0)

=0 otherwise, =0 otherwise.
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Then
t,(x) =0 for all f0<9<3
ti(z) = arbitrary in [0, 1] for0 =z =3
=0 for; <z=1
t(x) =1 for0 =z =3
=0 fory <z =1, fy<n=s1l
R(t,,0) =0 for6 =0
=1 for6 =1, f0=9<%
and the above is also R(4} , ).
R(t,,0) = 3 for6 =0
=0 forg =1 fi<n=1
Thus
R(n) =1 ~for0 =9 =%
=3(1—9) forg=n=1

Thus for 6 = 001001001 - - - we have
limnaoo [R(’l?‘n) - n—l Z R(tg,, ) 0@)} =
. 7=1

For 6 = 100100100- - - we have

Wl

lim,-w I:R(z?n) -2 R, , oi)} = _%_
i=1

Tt should be noticed that this result is due to the fact that we chose # and not
any other t; . However, for any particular choice of ¢, examples of the above
type can be constructed. Actually (15) and (19) under the differentiability
assumption and (20) generally are valid also when one omits the superscripts 0.
(The above is an example of a statistical game corresponding to the example of
the non-statistical game of matching pennies given in [8].)

To prove (10) we notice that the proof of Theorem 1 in [8] actually implies

(21) R(T%,8,) —n " 2 R(ts,, 0:)| < e
i=1

for alln > N (e), uniformly in 0, & @". Thus (10) follows from (21) and Lemma 1.

Theorem 2 of [8] states that no matter whether or not R(») is differentiable,
the decision rule 7', is such that for any ¢ > O there exists N(e) such that for
alln = N(e)

(22) R(T,,0,) < R(®,) + ¢ uniformly in 6, ¢ Q".
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The decision rule 7, = (f1, - - -, #,) is however harder to describe, and also the
proof of (22) is more complicated than that of (9). In fact, fi(x;) = t5,(x:),
i.e., #; is also a Bayes rule with respect to some subscript m, . m; is however a
function depending not on x,_; alone, but also on a random variable Z = (2, 22)
uniformly distributed on the unit square, and thus even for given x,;, m; is a
random variable. In fact, consider a sequence Z; , Zs, - - - of independent random
variables uniformly distributed on the unit square, i.e., Z; = (21, 23). Let, for
i=01,---
pi(x:) + 't
14 o4 4+ &)

where we now assume that the estimate h(z) used in the definition (7) of p; is
bounded, i.e., [h(z)] £ H. Then

(23) Mit1 = M(Zipr, Xi) =

(24) fi(xi) = t?,.,(xz)
Notice that in correspondence with (3), here
R(t;,0,) = bEo,Ez,(£:(X:, Z:)) ifg, =0

= abo, Bz, (1 — fi(xi, Z)) ifg, =1

where E;,; denotes the expectation under the distribution of Z;. (It should be
remarked that in order to verify (22) one need not assume that Z,, Z,, - - - are
independent random variables, since R(T, , 8,) is the average of the expectations
of the losses at the individual decisions, and expectations of a sum equals the
sum of the expectations, whether or not the random variables are independent.
Since we shall in the next section discuss the losses incurred by T, we shall
assume that #; is defined through (23) and (24) where the Z,’s are independent,
and also independent of the X’s.)

3. Convergence of L(T% , 8,) — R(&,) and L(T,, 6,) — R(J,) to zero, for
every 0 ¢ °. The proofs of Theorems 1 and 2 which follow lean heavily on a
martingale theorem, which is a direct consequence of the stability theorem, and
is stated as

LemMA 2: Let {Y,} be a martingale relative to {F,}. (See [4] p. 294.) Define
Yo = 0 and let o = Var(Y, — Y,_1), n = 1. Let {b,} be a monotone sequence
such that limy, .. by, = . If

(25) Zlai/bi < o,
then
(26) .Y, —0 ae.

ProoF. Let V,, = Y, — Y,1,n = 1. Then under (25) the stability theorem
implies (see [6] p. 387 E)

(27) b:{Zl [Vi— E(Vi| Vi, -+, Vi) >0 ae.
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But since {Y,.} is a martingale relative to {F,} it follows that the o-field generated
by Vi, -+, Vi is a sub-o-field of F;_;, and thus (by the smoothing property)

E(Vlel, tt Vi_l) = E(E(V;,fﬂ_l) I Vl, teey, Vi_l) =0 a.e.

and (27) becomes equivalent to (26).

Consider the loss of T% , L(T% , 6,) defined for 7T's through (6), and for any
0 £ Q° let Py denote the (infinite) product probability corresponding to 6. We
have

TrEOREM 1. If R(%) s differentiable for 0 < n < 1, then for any 0 Q~
Pﬂ[hm'n»w(L(Ti ,0,) — R(8,)) = 0] = 1.

Proor. We shall use Lemma 2 and shall let §, be the product o-field generated
by X., (i.e., the smallest o-field with respect to which all X,;,¢ = 1, -+, n are
measurable). Set

Y =nL(T%,0,) — > R, 0| Xisy) = X [L(t5(Xs), ;) — R(t7, 0| Xiz1)]
=1 =1

where R(t7, 8;| X:_1) denotes the conditional risk of ¢, given the vector X,_; of
previous random variables, (and is defined in (19) of [8]). It follows that { Y}
is a martingale relative to {F,}, since ‘

Eo(Yn | Fam1) = Ep <}":1 [L(t;k(xi), 8;) — R(&, 6, | Xi)1 | 3’1»—1)

7=

= Ey (E [L(tF(X;), 0:) — R(&, 0, | Xiz)] | S’n—1)

=1

(28)
+ R(t: y 0n l xn—l) - R(t: ) en l Xn—l)

= 5 LX), 00 — BUE, 0 X)) = ¥ias (ac. Py).

Now with the above definition of Y7 it follows that
PO |Yr—Viy =M =1

2

where M = max(a, b), and thus o5 < M°. Condition (25) is thus satisfied with
b, = n and (26) yields

(29)  limpsw [L(Ti ,0,) —n z:jl R(tf, 0| XH)] =0 (ae. Py).

Thus, if we establish

(30) Jim -sco [n“‘ ;1 R(tF,0:| Xim) — R(o,,)] =0 (ae. Py),

then the theorem follows upon considering the intersection of the events de-

scribed in (29) and (30), which also must have probability one.
To establish (30) we observe that given any § > 0 there exists N (8) such that

(31) Po(|pn1(Xn-1) — 0| <6 foralln > N(8)) > 1 — 4,
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this following from the strong law of large numbers and (17). Now, under the
condition that R(n) is differentiable for 0 < n < 1, Lemma 1 of [8] is applicable,
i.e., we can choose § > 0 such that

maxs—o,i|R(fy, 0) — R({%, 0)| < ¢/4 whenever |n — 7% < 6.
Thus it follows from (31) that
Po(|R(tn , 00| Xuc1) — R(15,,6n)] < ¢/4 forallm > N(3)) > 1 — 5
i.e., there exists an N (5, €) such that

o

n ! Z: R(tf,0; | Xit) — " ; R(8., oi)'

(32)
< ¢2 forall n > N(3 e)) >1-—34.

Now also Lemma 1 of the present paper is applicable, and thus from (15) and
(32) it follows that there exists an N;(o, €) such that

n

Since (33) is true for every ¢ > 0 and § > 0, (30) follows and the proof is com-
plete.

REMARKS.

(1) Comparing Theorem 1 with Theorem 1 of [8], or correspondingly, with
(10), it will be noticed that in our present theorem we lack the uniformity
assertion which we had there, i.e., we have not been able to prove that given
any ¢ > 0 there exists N(e) such that

Po(|L(T% ,0,) — R(8,)| < e forallm > N(e)) > 1 — ¢

uniformly in all 8 £ 2°. Notice that we have made no use of (10) in our proof
of Theorem 1. In fact, a statement similar to (10), but lacking the uniformity
in all 8 £ Q”, is a direct consequence of our present theorem.

(2) In [5] Hannan and Robbins consider the compound decision problem for
the non-sequential case, i.e., the situation where all n random variables X; , X5,
.-+, X, may be observed before the decisions on 6;, 7 = 1, ---, n have to be
made. The decision about §; may thus depend on X, . For a decision rule sug-
gested in [5], Hannan and Robbins show (Theorem 3 in [5]) that

(34) Po(L(8,) — R(3,) < ¢ foralln > N)>1— e

uniformly in 0 ¢ Q°, where L(0,) denotes the (random) loss incurred by their
rule in the n first decisions. From (34) they conclude (Theorem 4 in [5]) a
statement corresponding to (9), for their rule. Actually it can be deduced from

nt 2 R(£,0:| Xit) — R(9)

=1

(33)
< e forall n > Ni(s, e)) >1—4.
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Theorem 5 in [5] that one may substitute |L(0,) — R(&,)| for L(0,) — R(&,)
in (34), and the new statement will be correct. Thus, in the non-sequential case
a statement corresponding to our Theorem 1, can be shown to hold uniformly in
0eQ”.

We shall now prove a theorem similar to Theorem 1, for the rule 7', but
where the almost sure convergence is replaced by convergence in probability.
Since the loss on the sth decision, when using 7', , depends on Z; as well as on
X, , we shall denote it by L(#(X;, Z;), ;) and write

L(Tw, 0,) = n' 3 L(E(Xs, Z2), 8:).
7=1

We shall denote by P,z the product probability measure induced by 6 and the
sequence of independent Z’s. We then have

TuEOREM 2. For any 0 ¢ @° and every € > 0 lim,.e Po,A|L(Ty , 0,y — R(8,)]
< ¢ =1

Proor. Let L(fz(Xz),O,) = EZG(L(I?Z(XZ ,Zi), Oi) , Xz) Notice that L(fZ(X,), 01)
is again a random variable. However, conditionally on any fixed sequence
X = Xy, X, - - it follows that L(#,(X;, Z.), 0;) are independent random vari-
ables, (here we use the fact that the Z,’s are independent), and are uniformly
bounded by 0 and M = max(a, b). Thus for any fixed sequence X it follows by
the strong law of large numbers

Po.z [ﬁmw <n“ > LX) Z), 8) — w7t > L(1:(X), ez-)) =0| X] =1
=1 =1
and thus also

Py, I:limn—m <7’b_1 ZZ:; L(t(X:, Z:), 6:)
(35) n
- 5:‘1 L(#:(Xy), 0i)> = o] =1

<e:|=1,

the theorem will follow when considering the intersection of the events deseribed
in (35) and (36).

To establish (36) we shall again make use of Lemma 2. Again let §, be the
o-field generated by X, . Let

Hence if we show that for every ¢ > 0

(36) lim, e Py [n_l g L(i(X2), 0.) — R(8,)

Y, = ;1 [L(£:(X:), 0;) — R(f:, 0| Xi1)]

where R(#;, 0;|Xi_1) is the conditional risk of #; when the preceding random
variables X;_; are given (and is defined in (33) of [8]). Since

EG(L(fn(Xn)y 0,,) I 57»—1) = R(fn ) 0a .I Xn—l)
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it follows exactly as in the proof of (28), with * replaced by », that ¥, is a
martingale, and finally as in the proof of Theorem 1, that

P [limn.m <n“ > L(£:(X), 0) —n " > R(f:, 0, XH)> = 0] = 1.
7=1 7=1

Thus in order to establish (36) it only remains to prove that for every ¢ > 0

<e:l=1.

Now in the proof of Theorem 2 of [8] we show that for any ¢ > 0 one can find
a measurable set S, (defined in (36) of [8]) such that Py, (S.) > 1 — € and for
all x, ¢ S, and n sufficiently large

nt ; R(#:,0:| Xie1) — R(%)

(87) limy-w Po [

(38) n ) R(f:, 0| xiy) — R(9,) < e
=1

(See (37) of [8].) One may in fact, for every x, £ S, , replace the left hand side
of (38) by its absolute value, and the statement will still be valid. This follows
from the proof of (37) in [8]. Thus

(39) n D R(f:, 0:| %) — R(Wn)| < e  for X,e8..
i=1

Since P(S,) > 1 — ¢, (37) follows, and the proof of the theorem is complete.

REMARKS.

(1) From the above argument and the fact that also for x, £ S, the left hand
side of (39) is bounded by M it follows that Theorem 2 of [8] could actually be
replaced by:

For every ¢ > 0 there exists N (e¢) such that for all n > N(e)

|R(Tw, 8,) — R(3.)| < e

uniformly in 6, £ Q" i.e.,

(40) limyse [R(Tw, 6,) — R(3)| = 0
uniformly in all 8 £ Q. This corresponds to the change of Theorem 1 of [8] into
(10).

(2) The author believes that a statement similar to Theorem 2, with weak
convergence replaced by convergence almost everywhere is also true. It should
be noticed that almost sure convergence would follow if one shows that a state-
ment corresponding to (37) holds almost surely.

(38) It should be noticed that the approach adopted throughout this paper
was non-Bayesian, i.e., we did not consider the parameter values 6; as realizations
of any stochastic process, and thus considered all 8 £ Q°. The usual Bayesian
approach would be to assume that 6; are independent, identically distributed
random variables with P(6; = 1) = n* = 1 — P(6; = 0). In this case we need
only consider the subset Q°(1™) of @, consisting of all 8 for which lim,,, &, = 7*
since the (random) 6 will belong to ©°(1*) with probability one by the strong
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law of large numbers. (Since ™ may not be known one should consider ©°(7)
for all 0 < 5 < 1.) Obviously Theorems 1 and 2 are valid for this situation, and
could then be changed to read: Whenever B(n) is differentiable for 0 < 9 < 1

(41) limp. L(T% , 0,) = R(n*) a.e.
and correspondingly
(42) limpse L(T, , 6,) = R(1*) in probability,

(where the a.e. and “in probability” statement of (41) and (42), respectively,
are under the product distribution generated by n* where Ps is the conditional
distribution of X; given 6; = 6). In fact (41) will hold provided only R(n) is
differentiable at the point = 5™, Similar restatements of (10) and (40) for this
situation are possible. It should, however, be noticed that Theorems 1 and 2 are
stronger than (41) and (42).

(4) From theorems obtained by Blackwell in [2] and [3] he derives, for finite
nonstatistical games, results related to those obtained here. In [2] and [3] it is
not required that the sequence 0 be fixed in advance, and thus Nature may

make his choice of 8; depend upon the losses in decisions 1, - -+, ¢ — 1. On the
other hand it is assumed that the value ¥#;; and the past cumulative loss are
known before the ¢th decision, 7 = 1, 2, - - -, must be made.

4. Numerical examples indicating the rate of convergence of the risks and
losses. From Theorem 1 of [8] and Theorem 1 of the present paper it follows
quite easily that also the rule 7% " with 7 *(x;) = t5,(z:) has, whenever R(n) is
differentiable for 0 < n < 1, a loss function L(77% %, 8,) satisfying

Pollimo(L(T%¥, 0,) — R(8,)) = 0] = 1

for every 6 ¢ °. Notice that 75" differs from 7's in that at the ¢th step it uses
an estimate of ¢; rather than of ¥, only.

The practical value of any of the rules discussed will be known only after
one has some idea about the rate of the convergence of the risk functions and
of the losses. Thus, extensive computations by means of Monte Carlo methods
seem desirable. Because of limited resources, we have at present been able to
furnish only quite limited information regarding this problem, but as seen from
the tables below, the method seems to be quite useful already for moderate n.

In our example f(z, 0) and f(x, 1) are taken to be the normal density with
variance one and mean 0 and 2 respectively. We consider the case ¢ = b = 1.
From (2) it follows that for this example

2z) =1 ifz> 1+ Logl(l — »)/n]

= 0 otherwise

I

By symmetry it is easily seen that the minimax rule is given for n = 1 and is
tmin(z) =1 ifz>1

= 0 otherwise
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The values log[(1 — 5)/7] have been tabulated for 0(0.001)1 by Berkson in [1],
pp. 568-569, and since our computations were performed on a desk calculator,
we made extensive use of these tables. The normal deviates for which the calcu-
lations were made are taken from the three first columns of [7], pp. 1-4, and are
referred to as sequences 1, 2, and 3 respectively. Whenever 6, = 1 the value 2
was added to the corresponding deviate of the tables, to make it a N(2, 1)
deviate. The unbiassed estimator h(z) of 6 was taken to be h(x) = z/2 and p;
was computed through (7).

Calculations were made for two kinds of sequences 0, .

(I) The ‘ones’ among the 6.s are equidistantly distributed. Intuitively this
may seem to be the case where the rules discussed are best motivated.

Calculations were carried out for proportions p = 0(0.1)0.5. (Because of
complete symmetry we did not consider the values p = 0.6(0.1)1.) The values
of n considered are n = 50(50)200. Calculations were made for the three sequences
referred to above.

(II) All the ‘zeros’ among the 6.’s precede all the ones. This is the case most
extremely opposed to I.

TABLE 1

Sequences of type 1
Average of losses incurred through use of rules T%, T and tmin

n = 50 n = 100 n = 150 n = 200
? R(p) T% T Imin T TH* tmin T TH* tmin Ty T#  tmin
0 0 .013 .013 .180 .010 .010 .163 .007  .007 .153 .005 .005 .158
0.1 .0691 . 087 .093 .173 .073  .073  .160 .067  .067 .153 .067 .067 .162
0.2 .1121 .153 .153 .187 L1270 L1270 .160 L1290 .129 158 17 .118 160
0.3 .1387 .207 213 .193 .200  .207 .187 .185 .186 .178 L1750 178 180
0.4 . 1538 .220 .207 .200 .180  .173  .163 .180  .176  .162 L1750 172,165
0.5 .1587 .207 .200 .193 L187  .183  .173 L191 .189  .178 .195 193 187
TABLE II

Sequences of type II
Average of losses incurred through use of rules T4, T% and tmin

n = 100 n = 200

V4 R (P) T:& T:L* tmin T:; T;,‘ Imin
0 0 .010 .010 .163 .005 .005 158
0.1 .0691 .083 .073 .163 .078 .078 .160
0.2 1121 137 137 173 133 .130 .163
0.3 1387 .160 157 77 .147 145 .160
0.4 .1538 157 147 170 .158 157 172
0.5 1587 133 .130 157 172 .167 172
0.6 .1538 .133 .130 .153 .182 .180 173
0.7 1387 123 123 .163 150 .147 175
0.8 1121 .093 .093 .160 .107 .105 167
0.9 .0691 .043 .043 150 .058 .060 170
1 0 .023 .023 .163 .012 .013 172
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Calculations were carried out for p = 0(0.1)1, and for » = 100 and n» = 200.
Also here calculations were made for the three sequences.

For the sequence described in I and II both the rules 75 and T * were con-
sidered and for each it was listed whenever one came to a wrong conclusion
about ;. As a check on the sequence, and for purpose of comparison, the same
was done also for the minimax rule tmin .

For the sequences of type I, the actual losses incurred for the three sequences
are given in Table III. The second column in the table lists the corresponding
values of R(¥4,.) = R(p). (Notice that in our example R(p) = R(1 — p)
for each 0 < p = 1.) Notice that R(%) = .1587 is the (constant) risk of
the minimax rule, i.e., R({min, 0) = R({min, 1) = R(%). The average of the
corresponding columns for the three sequences of Table III is given in Table I
below. It gives some indication about the values of R(T% , 6,) and R(T%%, 6,)

TABLE III

Sequences of type 1
Losses incurred through use of rules Th, Th* and tmm

Sequence 1 Sequence 2 Sequence 3

Y4 R (P) T:L T:n* tmin T T::.‘ tmin T:z T;‘z' tmin

n = 50
0 0 .04 .04 .18 0 0 .20 0 0 .16
0.1 .0691 .10 .10 .18 .06 .08 .22 .10 .08 .12
0.2 1121 .18 .18 .18 .18 .18 .22 .10 .10 .16
0.3 .1387 .20 .22 .22 .20 .20 .18 .22 .22 .18
0.4 .1538 .22 .18 .22 .18 .18 .14 .26 .26 .24
0.5 .1587 .22 .22 .20 .20 .20 .18 .20 .18 .20
n = 100
0 0 .03 .03 .16 0 0 .15 0 0 .18
0.1 .0691 .06 .06 .15 .06 .07 17 .10 .09 .16
0.2 .1121 .12 .12 .15 .14 .14 .15 .12 .12 .18
0.3 1387 .19 .20 .18 .22 .22 .19 .19 .20 .19
0.4 .1538 .18 .16 17 .16 .16 13 .20 .20 .19
0.5 . 1587 .21 .21 .17 .15 .15 .14 .20 .19 .21
n = 150
0 0 .020 .020 .133 0 0 .147 0 0 .180
0.1 .0691 .060 .060 .147 .047 L0563  .153 .093 .087  .160
0.2 .1121 L1270 127 (133 .140 .140  .160 .120 120 180
0.3 .1387 .160  .167  .153 .207 .207 187 .187 .193  .193
0.4 .1538 .160 .147 147 .160 .160  .133 .220 .220  .207
0.5 .1587 .220  .220  .187 .160 .160 .153 .193 L1187 .193
n = 200
0 0 015  .015 .125 0 0 .150 0 0 .200
0.1 .0691 .060 .060 .130 .055 .060 .165 .085 .080  .190
0.2 1121 L1000 .105  .120 125 125 155 .125 J125 .205
0.3 1387 .150  .155 .145 .200 .200 .185 175 .180  .210
0.4 .1538 170 160 .155 .160 .160  .135 .195 .195  .205
0.5 L1587 185 185  .165 .190 .190  .185 .210 .205  .210
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for n = 50(50)200 and 8, of type I. Obviously one should average over more than
three sequences in order to get a reliable estimate of R(T% , 6,) and R(T%%, 0,).
It should be noticed that both in Table I and in Table III there seems to be a
positive correlation between the excess of the losses incurred by use of 7T and
T%* over R(p), and the corresponding excess of the losses incurred by use of
tmin OVer R(2). It should also be remarked that the instances in which 7% and
T%* lead to different decisions are altogether extremely rare, but they are more
frequent in the beginning of the sequences than later on.

Table I seems to indicate that for the case considered the gain in using any of
the rules T and 73" for p near zero or one is large, whereas the excess of the
risk over R(}) for p near 3 is moderate. This is true already for moderate n.

For the sequences of type II the actual losses incurred for the three sequences
are given in Table IV, and averages of the corresponding columns for the three
sequences of Table IV are given in Table II.

For Table II similar remarks are valid as those made about Table I. Table 11
seems to indicate that the rules 7'y and T’ " are worth consideration, also in the

TABLE IV

Sequences of type II
Losses incurred through use of rules T%, T4 and tmin

Sequence 1 Sequence 2 Sequence 3
p R (p) T:L T:n* tm in T:n T:L* tm in T:n T:L* tmin
n = 100
0 0 .03 .03 .16 0 0 .15 0 0 .18
0.1 .0691 .09 .08 17 .06 .05 .14 .10 .09 .18
0.2 L1121 .13 .13 .18 .14 .14 .15 .14 .14 .19
0.3 .1387 17 17 .19 .16 .16 .16 .15 .14 .18
0.4 .1538 .13 .13 17 17 .16 17 17 .15 17
0.5 .1587 .12 .12 .16 .12 .12 .16 .16 .15 .15
0.6 .1538 .12 .12 .16 12 1 .15 .16 .16 .15
0.7 .1387 .12 .12 .17 .09 .09 .15 .16 .16 .17
0.8 1121 .06 .06 17 .12 .12 .15 .10 .10 .16
0.9 .0691 .02 .03 .16 .02 .01 .14 .09 .09 .15
1 0 .02 .02 17 .03 .02 .15 .02 .03 17
n = 200

0 0 .015 .015 .125 0 0 .150 0 0 .200
0.1 .0691 .080 .080 .125 .090 .090 .165 .065 .065  .190
0.2 1121 135 .135  .135 .160 155 175 .105 .100  .180
0.3 .1387 120,120 .135 .180 .180  .160 .140 .135  .185
0.4 .1538 170 170 .155 .160 155 .165 .145 145 195
0.5 .1587 . 170  .170  .165 175 170 .170 .170 .160  .180
0.6 .1538 .165  .165 .175 .195 L1190 170 .185 .185  .185
0.7 1387 L1200 .120 170 .170 .165  .180 .160 155 175
0.8 .1121 .080 .080 .165 110 .105  .170 .130 130 .165
0.9 .0691 .030 .030 .170 .080 .085 .170 .065 .065 .170
1 0 .010 .010 .170 .015 .010 .170 .010 .020 .175
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case where there is no reason to believe that the zeros and ones are well “mixed”
in the sequence, (i.e., not only in situations corresponding to the usual Bayesian
approach).
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