TOLERANCE LIMITS FOR THE CLASS OF DISTRIBUTIONS!
WITH INCREASING HAZARD RATES

By D. L. Hanson anxp L. H. KoopMANs?

Unaversity of Missouri and Sandia Laboratory

1. Introduction and summary. Let § be an arbitrary class of distribution
functions and let Yy, Y., -+, Yy be a sample of size N from some F ¢ .
For0 < P,y < 1, astatistic Uy = U(Y1, -+, Yy) is said to be a (P, v) upper
tolerance limit for F relative to g, if

(0) PF[I_F(UN)_S.P]g‘Y

for all F ¢ §. (The interval (— », Uy] would be called a 1 — P content toler-
ance limit at confidence level v in the terminology of [3].)

For certain parametric classes of distributions such as the normal family or
the exponential family, tolerance limits are available for all sample sizes greater
than or equal to N = 2 for all 0 < P,y < 1. (See, e.g. [5] for normal tolerance
limits. In [4] exponential and double exponential tolerance limits are obtained
based on the concept of exponential content.) The forms of the tolerance limits
in these cases are heavily dependent upon the particular parametric class under
consideration. Consequently, if tolerance limits are desired for larger classes of
distributions it is necessary to abandon these results in favor of statistics Uy
for which the distribution of 1 — F(Uyx) can be appropriately bounded for all
F’s in the larger class.

Until now, the statistics used for this purpose were certain of the sample order
statistics, Xg = Kth smallest of Y1, Y5, ---, Yy, K =1,2, .-+, N. These
are the traditional non-parametric tolerance limits. Fraser [2] and Robbins [7]
have shown that they have desirable uniqueness and optimality properties when
T is the class of distributions absolutely continuous with respect to Lebesgue
measure.

The non-parametric tolerance limits have one unfortunate disadvantage;
namely, for given P and v, there is a minimum sample size N(P, v, K) such
that the condition

PF[]-—'F(XN—K) §P]Z.‘Y

is met only if N = N(P, v, K). Thus, in cases where sampling is very expensive
and stringent requirements are made on the tolerance limit (small P and large v)
or where the statistician is presented with a sample of size N < N(P, v, 0) with-
out the possibility of obtaining additional observations, the only recourse has
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been to use parametric tolerance limits with the distinct possibility that the
limit obtained is meaningless.

In this paper we propose a compromise scheme whereby upper tolerance
limits of the form Xy_x_; + b(Xy-x — Xw—x—;) are constructed which are
valid for all N = 2 and all 0 < P,y < 1. These limits satisfy (0) for the class,
v , of absolutely continuous distribution functions for whichy = —log (1 — F)
is convex and, thus, earn the title log-convex (L.C.) tolerance limits. The class
v has been studied by Barlow, Marshall and Proschan in [1] and was shown to
contain most of the distributions commonly used as models in statistics includ-
ing the normal and exponential. The distributions in this class are called increas-
ing hazard rate distributions in reliability theory due to the fact that the in-
stantaneous hazard rate f/(1 — F), is non-decreasing on the support of the prob-
ability density f. We will elaborate on the properties of this class in Section 2.
Lower (P, v) tolerance limits of thé form Ly = Xgij1 — b0(Xg4j1 — Xk41),
which satisfy Pg[F(Ly) £ P] = v for the class §. of absolutely continuous dis-
tributions for which ¢ = —log F is convex, will be obtained in Section 3. It is
thus of interest to note (in Section 2) that the important class of distributions
possessing densities which are Pélya frequency functions of order 2 (PF,) is
contained in §. N Fv . Hence both upper and lower tolerance limits are available
for members of this class.

Tables of the b-factors needed for both upper and lower tolerance limits are
given in Section 4 for j = 1 and all combinations of P = .500, .250, .100, .050
and v = .90, .95, .99. The sample sizes range from N = 2 to the smallest value
of N for which the usual non-parametric tolerance limit can be used. At this
point the L.C. tolerance limits are equal to the non-parametric ones. No ques-
tions of optimality are considered here; however, some comparisons of the L.C.
tolerance limits with the usual normal and exponential tolerance limits are made
by means of Monte Carlo sampling in Section 5. Some extensions of the theory
will also be considered in Section 5.

2. Properties of the classes {y and §. . A non-negative, measurable function
f is said to be posttive of order two (Ps) if for every two sets of increasing numbers
2 < Zo, b < by, det ||f(z: — t;)|l12 = 0. f will be called a Pélya frequency func-
tion of order two (TP:) if, in addition, ffw f(z) de = 1. Probability densities
which are TP, abound. The normal, exponential, double exponential, gamma,
beta, logistic and uniform distributions have densities which are members of the
TP, family both in their original forms or truncated. However, the probability
densities of the Cauchy, Student-f, F and Burr distributions, which decrease to
zero in the tails at an algebraic rate, are not TP, .

The scope of the family of distributions with TP, densities makes it admirably
suited as an alternative to the usual non-parametric classes of distributions in
situations where it is undesirable to use the parametric theory. Both upper and
lower L.C. tolerance limits can be obtained for this family by virtue of the follow-
ing theorem which is proved in [1], page 378.



TOLERANCE LIMITS FOR HAZARD RATES 1563

TrEOREM 1. Let F be an absolutely continuous distribution with probability
density f. Then if fis TPy, F ¢ §uv N Fv .

Examples of distributions in Fy or §, exist for which the corresponding densi-
ties are not TP, (see, e.g. [1]). However, the distributions with TP, densities
constitute, by far, the most important subclass of Fy and v .

Lemma 2 of [8] implies that a TP; function f(z) tends to zero exponentially as
z — == . Consequently distributions with TP, densities possess moments of all
orders. Similarly, [1], if F ¢ §v, then 1 — F(x) tends to zero exponentially as
x— w and if F ¢ §., F(z) tends to zero exponentially as x — — . It is for
this reason that distributions with densities which decrease to zero algebraically
in one or both tails, such as the Cauchy distribution, are excluded from one or
both of the classes Fv and §Fy .

3. Derivation of the tolerance limits. We will first establish a result which is
more general than required to obtain the upper and lower L.C. tolerance limits.
This theorem will provide the basis for the extensions of the theory which we
will discuss in Section 5.

TrEOREM 2. Let H be a continuous and strictly monotone (either increasing or
decreasing) function on the (closed) interval [0, 1] into [— w0, ], and let Cqx be
the class of all continuous probability distribution functions F for which the com-
posed functions HF are convex. Let Xy, X», +++ , Xn be the order statistics for a
sample of size N from F € Cg, and Uy, Us, - -+, Uy the order statistics for a sam-
ple of size N from the uniform distribution on [0, 1]. Then for every p in H[(0, 1)]
and b = 1,

PelF (Xn-x—j + b(Xn-x — Xn-x—3)) =,= H(p)]

) > PBH(Uy-x) — (b — DH(Un-ss) 2 o,
and
PF[F(XK+]'+1 — b(XK+j+1 - XK+1)) =, H—l(p)]
= PDH(Ug) — (b — 1)H(Ugyjp1) = pl,

forall FeCrgand 0 £ K < K + j = N — 1. The inequality = applies in (1)
and (2) when H is increasing and < when H s decreasing.

Proor. Only the proof of (1) will be given, since the proof of (2) follows from
it with only trivial modifications.

Let ¢(z) = HF (z) and let  and y be elements of Sy = {z |0 < F(z) < 1}
with £ < y. The chord to the curve v = ¢(u) which passes through the points

(2, 0(x)), (¥, 0(y)) is
(u) = o@) + {lo(y) — o(@)l/(y — 2)}(u — z),

and, because ¢ is convex and continuous on [0, 1], ¢(2) = I(z) for all z = y. If
we write z = ¢ + b(y — z) with b = 1, it follows that

o(x + by — ) = o(x) + ble(y) — o(x)) = be(y) — (b — L)o(x).
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Thus, if p ¢ H[(0, 1)], the inequality
bHF(y) — (b — )HF(z) z p

implies HF (z + b(y — ¢)) = p, or, equivalently, F(z + b(y — z)) = H '(p)
when H is increasing and F(z + b(y — z)) < H '(p) when H is decreasing.
Now, set y = Xyx and z = Xy_x_; . With F probability 1, Xy_x € Sr,
Xnv_x_je Srand Xy_x_; < Xy_g. Thus,

PelF(Xy—x_j + 0(Xn-x — Xn-x_j) = H'(p)]
Z Pp[bHF (Xyx) — (b — 1)HF (Xy—x—;) Z pl-

But, since F is continuous, the joint distribution of the random variables F(X;),
-+, F(Xy) is the same as that of Uy, ---, Uy, and (1) is proved.
CoroLLARY 1. Let 0 < P < 1 and

I(b) = N(b: N, K, j; P) = PlUgss < PPUSY.
Then for all F e Fpy,b =2 1and0 S K <K +j=N —1,
Pp[l — F(Xy-—x—;j + 0(Xy-x — Xny_x—;)) = P] = TI(D).

Proor. Set H(z) = —log (1 — z) in the theorem. Then, with p = —log P,
it follows from (1) that

PF[]- — F(XN—K—]' + b(XN—K — XN_K_].)) < P]
(3) > Pl—blog (1 — Uyx) + (b — 1) log (1 — Un_x_;) = 9|
= P[]. - UIV—-K é Pl/b(l _ UN—K—-—j)(b—l)/b].

But the joint distribution of U; = 1 — Uy_i41,l = 1,2, -+, N, is the same
as the of Uy, ++-, Uy . Thus, the last probability in (3) is II(b) and the proof
of the corollary is completed with the observation that € = v for this assign-
ment of H.

In the same way, with H(z) = —log x, we obtain by means of (2) the follow-
ing result for distributions in the class §. :

CoOROLLARY 2. Let0 < P < 1. Thenforall F ¢ 1 ,b =2 1and0 = K < K +

(4) PyF(Xgtjnn — b(Xg4jn — Xgn)) S Pl 2 1(D).
Now, for fixed N, K and j, if b = b(N, K, j, P, v) can be chosen in the fol-
lowing way;

(a) when II(1) < v select b to satisfy II(b) = v,

(b) when II(1) = yset b = 1,
then it would follow from (3) and (4) that Xy_x_; + b(Xy—x — Xy—x—;) and
Xryimn — b(Xgijyn — Xgqa) are the desired (P, v) upper and lower tolerance
limits over {y and § . respectively. WhenII(1) = P[Uj1 < P] = P[Uy_x = P] Z¥,
the selection b = 1 reduces the L.C. tolerance limits to the standard non-para-
metric tolerance limits which are distribution free over the class of all continu-
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ous distributions. Thus, to validate the construction of the L.C. tolerance limits
it only remains to be shown that when TI(1) < v it is possible to find a number b
such that II(d) = v. This will now be done in the process of obtaining an ex-
plicit expression for II(d).

From [9], the joint density of Uxi: and Ux, ;41 is given as

— N! K, _ 1 _ N—K—j—1
fUK+lvUK+i+1(w7 v) - (N _ K ""j — 1)!(j _ 1)!K! w (v w) (1 v)

for0=w=v=1,
= 0, otherwise.
The region of integration determined by the inequality
Uk < PPURRY

is bounded by the lines w = 0 for 0 < v < 1,v =1 for 0 < w =< 1, the line
w = vfor0 < v £ P and the curve

1 b—1)/b
w = PP,

for P < v < 1. Thus,

| P v 1 P(1/b)y(d—1)/b
G " =<N_K_j]f7_!1)!(j_1)!m{fo [+]] }

(v — w) 1 = )T qw d.

Now, for v > P, P"*»® ™" is a continuous and strictly increasing function of
b which tends to v as b — . Since the integrand of (5) is bounded by 1 for
0= K<K+j=N —1it follows that II(b) is continuous and strictly in-
creasing with limg., I(b) = 1. Thus, if I(1) < vy < 1, there always exists
b > 1 for which II(b) = 7.

The integrals in (5) can be reduced to one dimensional integrals in certain
special cases the most important of which occurs for j = 1. This corresponds to
the use of consecutive order statistics in the L.C. tolerance limits. Ie this case

N! F E+1 N—K—2
mw:(N—K—QMK+D&£v+u—w) &

1
+ putRe / pEHDEDR (Y yN-K= dv}
P

= I, (K+2,N—-K—-1)
(K+2»—<K+1§
b
(K+nw—1§
b

.[1—Ip<(K+2)bb—(K+1),N—K—1)].

(6) NN+1w(
+ P(K+l)/b

I‘(K+2)I‘<N—K+
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The fact that II(b) can be written in terms of the gamma function and incom-
plete beta distribution undoubtedly makes it possible to obtain simple and
accurate approximations for this function. In fact, plots of available values of
b(N, K, 1, P,v) versus N on semi log paper indicate that for even moderate
values of N, b = a exp (—cN), where a and ¢ are positive numbers depending on
K, P and . This would indicate a relatively simple asymptotic expression for
11(b) which would be most useful in obtaining approximate b values for untabu-
lated parameter combinations. We have not succeeded in evaluating this ap-
proximation analytically. However graphical interpolation on semi log paper
based on two or more scattered points computed from standard tables by means
of the second expression in (6) will provide untabulated b values of sufficient

accuracy for practical purposes.

The computations used to construct the tables in the next section were based
on the integral expression in (6) and used quadrature formulae for the incom-
plete beta distribution due to D. E. Amos, Division 5421, Sandia Corporation,
in a machine program for Sandia’s CDC-1604. The computations were accurate
to at least six significant figures over the given range of the arguments. How-
ever, for brevity, the entries have been rounded to four figures in Table 1.

4. Tables of b values for the case ; = 1. For the specified values of P and v,
Table 1 provides the constants, b, such that

(7) Xy-xa + b(Xy-x — Xv-x1)
is a (P, v) upper tolerance limit and
(8) Xri2 — 0( X2 — Xii1)

is a (P, v) lower tolerance limit for K = 0 and, in certain cases, K = 1 and 2.
A single asterisk following an entry indicates that the b value is to be used in
(7) and (8) with K = 1 and two asterisks indicate that K = 2. All other en-
tries are to be used with K = 0.

5. Comparisons with the parametric theory and extensions. A crude com-
parison of the L.C. upper tolerance limit Xy + b(Xy — Xw»1) with the
usual parametric tolerance limits for the normal and exponential distributions
was carried out as follows: 100 random samples of size N = 10 were selected
from the normal distribution with zero mean and unit variance. The L.C. (P =
.10, ¥ = .90) upper tolerance limit was calculated for each sample as was the
usual normal tolerance limit & -+ ks (see [5]). Then, the sample means and stand-
ard deviations of the 100 L.C. and normal tolerance limits were computed.

The same procedure was followed for the exponential distribution with den-
sity f(z) = exp (—z), z = 0. In this case, we used the upper tolerance limit
AX 4+ (1 — A)X, which is based on the maximum likelihood estimates of u
and ¢ in the scale and translation parameter family of exponential distributions
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with densities

e = (1/0)fl(x — w)/ol.

As before, X; = min X, . The appropriate value of A(A = 1.685) was supplied
by D. B. Owen [6]. Upper tolerance limits of the same form but using a different
coverage criterion were obtained by Guttman [4].

The results of these experiments are given in Table 2.

The influence of the rate of decrease of the upper tails of the distributions on
the L.C. tolerance limits can be seen in part, from Table 2. The exponential
distributions are the least favorable distributions in §y from the standpoint of
“tail length’’ and correspondingly, produce the poorest L.C. to parameter toler-
ance limit comparison. The L.C. tolerance limit is, on the average, almost four
times as large as the exponential tolerance limit. Apparently, this effect cannot
be corrected by using order statistics with smaller indices. A sampling procedure
identical to the one above but for K = 1 yielded a mean of 8.660 and a standard
deviation of 7.542, and when K = 2 the mean increased to 12.067 and the stand-
ard deviation to 11.043.

In the normal case, the ratio of mean L.C. to mean normal tolerance limits
is only 1.57. The variability of the L.C. tolerance limits, however, remains high
relative to that of the normal limits.

The general nature of Theorem 2 suggests the following extensions of the
theory. Since the function H in that theorem is monotone, it should be a straight-
forward matter for a given assignment of H to obtain the joint distribution of
H(U,), ---, H(Uy) from that of Uy, ---, Uy and to compute probabilities
such as those on the right-hand side of inequalities (1) and (2). This will make
it possible to obtain (P, v) upper and lower tolerance limits via (1) and (2)
relative to the class Cx . A wide variety of subsets of the class of continuous dis-
tributions can be generated by varying one’s choice of H.

The above mentioned difficulty with “long tailed” distributions motivates the
following choice of functions, H., 0 < « = 1, which progressively restrict
Fv to distributions with more rapidly decreasing tails:

Hu(z) = [-log (1 — )]

The classes Fu(a) for which H,F are convex exclude the exponential distribu-
tions for @ < 1 and, as « — 0, exclude progressively “shorter tailed”’ distribu-
tions. When it is reasonable to restrict the class of possible underlying dis-
tributions to some Fy(a) for & < 1 it will be possible to obtain less conservative
tolerance limits from (1) and (2) than were obtained here.

Acknowledgment. For their contributions to this paper, we thank D. B. Owen
who supplied the constant for the exponential tolerance limit as well as con-
siderable encouragement and enthusiasm for this work, D. E. Amos and J.
Flinchum who designed and wrote the computer program for the computation
of the b values in Table 1 and D. Welsh who programmed and ran the Monte
Carlo studies summarized in Table 2.
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TABLE 1

b Values for Log-Convex Tolerance Limits for Selected Values of P, v, N and K
(For each entry, K is equal to the number of asterisks following the entry.)

Y Y
N 90 95 99 N 90 95 99
P =50 P =10
2 2.02 6.105  31.56 14 2.845 6.007  32.07
3 1.305 2.824  14.94 15 2.49 5.382  928.43
4 1.000 1.205 7.167 16 2.190 4754 25.23
5 2.92*  1.000 3.441
6 1.126%  2.580*  1.636 7 1.920 4202 22.41
7 1.000+  1.322*  1.000 18 1.683 3.714  19.92
19 1.474 3.98¢  17.72
P =25 20 1.289 2.903 15.77
S ses T8 i 21 1.125 2.566  14.05
8 588  12.% 63.17 22 1.000 2.267  12.51
4 4.116 8.638  44.78
93 4.766*  2.002  11.15
5 2.808 6.154 3217 .
> 2o R 24 4.317 1.767 9.943
25  3.907*  1.558 8.866
C a3 5160 16.08 2% 3.533*  1.372 7.908
§  Loo 2.275  12.42 27 3.102*  1.206 7.053
9 1.000 1.627 9.100
i 98 2.8%0*  1.059 6.201
10 3.28 1.156 6.677 ;
A o M et 29 2.595 1.000 5.612
30 2.336*  5.230*  5.005
12 1.877%  4.227* 3.593 81 2.000%  4.743° 4.464
* *
13 1.392 3.932 2.629 9 1ssr 4o0sr 5.8l
14 1.014*  2.454*  1.018
i X 33 1.685*  3.801*  3.549
15 1.000 1.846 1.392 . :
16 2.642**  1.372*  1.003 3 1.505 3.520 3.163
: 35 1.341*  3.182*  2.818
v s 1003 1.000 36 1.191*  2.872%  2.509
P— 10 37 1.054*  2.500*  2.233
38 1.000*  2.333*  1.986
2 17.09 35.18 1798 39 3.528"*  2.008*  1.766
3 13.98 98.82  147.5 40 3.227%*  1.8%4*  1.568
4 1170 2.17  123.9 4 2.047%  1.689*  1.301
5 9.031 2057  105.6
6 8512  17.67 90.90 42 2.688%*  1.511*  1.233
43 2.448**  1.349*  1.091
7 7.344 1529 78.80 4 2.295%  1.201*  1.000
8  6.38  13.30 68.68
9 5.541 11.61 60.10 P =05
10 4.8  10.17 52.77
11 4.0 8.024  46.46 2 23.65 48.63  248.4
3 2048 ©2.15  215.4
12 3.701 7.89  40.99 4 18.12 37.32  190.9
13 3.244 6.914  36.23 5 16.24 33.40  171.4




TABLE 1—Continued

Y Y
N .90 95 .99 N .90 .95 .99
05 P =05
6 14.70 30.33 155.4 45 1.000 2.305 12.75
46 4.995* 2.169 12.05
7 13.39 27.66 141.8
8 12.26 25.35 130.0 47 4.760* 2.041 11.39
9 11.27 23.33 119.8 48 4.534* 1.920 10.77
10 10.39 21.54 110.7 49 4.319* 1.806 10.18
11 9.607 19.94 102.5 50 4.113* 1.698 9.629
51 3.916* 1.597 9.105
12 8.903 18.50 95.21
13 8.265 17.19 88.58 52 3.728* 1.500 8.610
14 7.684 16.01 82.56 53 3.548* 1.410 8.142
15 7.154 14.93 77.05 54 3.376* 1.324 7.700
16 6.668 13.93 72.01 55 3.211* 1.243 7.282
56 3.054* 1.167 6.887
17 6.222 13.02 67.37
18 5.810 12.18 63.09 57 2.903* 1.095 6.513
19 5.429 11.40 59.13 58 2.759* 1.026 6.160
20 5.077 10.68 55.47 59 2.622* 1.000 5.826
21 4.750 10.01 52.07 60 2.490* 5.567* 5.509
61 2.364* 5.308* 5.210
22 4.447 9.391 48.91
23 4.164 8.814 45.97 62 2.244% 5.060* 4.927
24 3.901 8.275 43.23 63 2.129* 4.823* 4.660
25 3.655 7.773 40.67 64 2.019* 4.597* 4.406
26 3.426 7.303 38.28 65 1.913* 4.380* 4.167
66 1.813* 4.173* 3.940
27 3.212 6.865 36.04
28 3.012 6.454 33.95 67 1.717* 3.974* 3.725
29 2.824 6.070 31.99 68 1.625% 3.785* 3.522
30 2.648 5.710 30.16 69 1.537* 3.604* 3.329
31 2.484 5.372 28.44 70 1.453* 3.430* 3.147
71 1.372* 3.264* 2.975
32 2.329 5.055 26.82
33 2.184 4.758 25.30 72 1.296* 3.106* 2.811
34 2.048 4.478 23.87 73 1.222* 2.954* 2.657
35 1.920 4.216 22.53 74 1.152* 2.809* 2.510
36 1.800 3.969 21.27 75 1.085* 2.670* 2.372
76 1.021* 2.538* 2.240
37 1.687 3.736 20.08
38 1.581 3.518 18.96 7 1.000* 2.411* 2.116
39 1.481 3.312 17.91 78 3.731%* 2.290* 1.998
40 1.387 3.118 16.92 79 3.573** 2.174* 1.887
41 1.298 2.936 15.99 80 3.421%* 2.063* 1.781
81 3.274%* 1.957* 1.681
42 1.215 2.764 15.10
43 1.136 2.602 14.27 82 3.132%* 1.856* 1.586
44 1.062 2.449 13.49 83 2.996** 1.759* 1.496

1569
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TABLE 1—Continued

Y Y
N .90 95 99 N .90 .95 99
= .05 P = .05

84 2.864** 1.667* 1.411 87 2.498** 1.414* 1.182

85 2.738** 1.579* 1.330 88 2.384** 1.336* 1.113

86 2.615** 1.494* 1.254 89 2.275** 1.263* 1.048
90 2.170** 1.192* 1.000

TABLE 2

Means and Standard Deviations of Parametric and Log-Convex (.10, .90) Upper
Tolerance Limits for 100 Random Samples of Size

N =10
Normal Exponential
Tolerance Limit
Mean St. Dev. Mean St. Dev.
Parametric 2.049 . 0.540 1.618 0.486
Log-Convex 3.209 1.656 5.876 3.512
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