ASYMPTOTIC THEORY OF REJECTIVE SAMPLING WITH
VARYING PROBABILITIES FROM A FINITE POPULATION'

By JAarosrav HAsex

Czechoslovak Academy of Science and University of California, Berkeley

0. Summary. In [3] the author established necessary and sufficient conditions
for asymptotic normality of estimates based on simple random sampling without
replacement from a finite population, and thus solved a comparatively old
problem initiated by W. G. Madow [8]. The solution was obtained by approxi-
mating simple random sampling by so called Poisson sampling, which may be
decomposed into independent subexperiments, each associated with a single unit
in the population. In the present paper the same method is used for deriving
asymptotic normality conditions for a special kind of sampling with varying
probabilities called here rejective sampling. Rejective sampling may be realized
by n independent draws of one unit with fixed probabilities, generally varying
from unit to unit, given the condition that samples in which all units are not
distinct are rejected. If the drawing probabilities are constant, rejective sampling
coincides, with simple random sampling without replacement, and so the present
paper is a generalization of [3].

Basic facts about rejective sampling are exposed in Section 2. To obtain more
refined results, Poisson sampling is introduced and analyzed (Section 3) and
then related to rejective sampling (Section 4). Next three sections deal with
probabilities of inclusion, variance formulas and asymptotic normality of esti-
mators for rejective sampling. In Section 8 asymptotic formulas are tested
numerically and applications to sample surveys are indicated. The paper is
concluded by short-cuts in practical performance of rejective sampling.

The readers interested in applications only may concentrate upon Sections
1,8 and 9. Those interested in the theory of mean values and variances only,
may omit Lemma 4.3 and Section 7.

1. Introduction. Consider a population U consisting of N identifiable units
of arbitrary nature, so that they may be represented by integers 1, 2, ---, N,
U = {1,2, ---, N}. There are many different formal definitions of a sample
from the population U, no one satisfactory from all points of view. Here we
shall adhere to the simplest possible one: a sample s a subset of U. Thus there
are 2" possible samples from U. A typical sample of this kind will be denoted
by s, s c U.

The above definition does not reflect some features of common sampling
designs, such as ordering of units (due to carrying out sampling by successive
draws of one unit), repetition of units (due to replacement or interpenetration),
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and hierarchy of units (due to stages). Consequently, within the theory of
s-samples some common terms such as “sampling with or without replacement”’
or “two-stage sampling”’ lose their meaning. However, this is justified, at least in
theoretical considerations, by a theorem proving that in cases where the sample
is defined so as to distinguish ordering, repetitions, stages, random strata, etc.,
the sample s together with values ascertained thereon represent a sufficient
statistic (see [2] or [11], for example). In multistage sampling, s should be
understood as a subset of the population of ultimate units.

Some sampling procedures define directly a probability distribution on the
space of all s-samples. This is true about systematic sampling, rejective sampling
and Poisson sampling, for example. In other cases the outcome of the sampling
experiment, say w, is described in more detail, and the sample s is merely an
abstract function of it, s = s(w). For example, if w denotes a sequence of n
units from U with possible repetitions (there are N" such sequences), then
s = s(w) will denote the subset of U consisting of all disténct units appearing at
least once in w. Outcomes of this kind are assumed in successive sampling and
in sampling with replacement, for example. In all cases, however, we can project
the probability distribution P;(-) defined on the outcomes « into the space of
probability distributions defined on the samples s. In doing that we put

(1.1) P(s) = Pilwe)

where ©, consists of all w’s which yield the given subset of distinct units s. P(s),
se U, given by (1.1) will be called a projection of Pi(w).

Thus any sampling experiment may be described by a probability distribution
P(s) of the samples s, and by a set of conditional distributions Pi(w | 2,),s < U.
The conditional distributions Pi(w | 2,), however, are irrelevant for estimation
purposes, and may be neglected in theoretical considerations. For this reason,
any probability distribution P(s) defined on the space of the samples s will be
called a probability sampling, and probability sampling so defined will be con-
sidered as a mathematical model of what is usually called “sampling plan”, or
“sampling design”, or “sampling procedure”, or ‘‘sampling experiment”, or
“sampling method”.

The probability of selecting a sample s which contains the unit 7, say =, , equals
(1.2) m = 2 P(s), (ieU)

82317
where 2 _.,; denotes summation extended over all samples containing the unit <.
Similarly,
(1.3) mi= 3 P(s), (iyje U)
is the probability of including both units 7 and j in the sample. The probabilities
x; and ,;; will be called probabilities of inclusion.

For current needs of practice it is not necessary to know the probabilities
P(s) for every s. All we need is to know the probabilities of inclusion =; and =; ,
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at least approximately, and be certain that the estimates are approximately
normal.

A particular kind of probability sampling is given by a formula for P(s),
s C U, or for P1(w) to be projected into P(s), containing some free parameter,
which may be controlled by the statistician. Most frequently these parameters
are some non-negative numbers oy, ---, ay related in some way to the “size”
of the units, and we may assume that

(14) :Zlai = 1.

For example, rejective sampling of size n corresponding to (o1, ---, ax), say
R(s|n, a1, -+, ax), is defined by

(L5) R(s|my o1, -+, an) = c(n, o, « -, “N)H“" , if s contains n units
' =0, otherwise,
where the constant ¢(n, a1 , - - -, a) is chosen so that Y R(s | n, a1, - -ay) = 1,

s running through all subsets of size n.

In accordance with (1.5) rejective sampling may be regarded as projected
sampling with replacement of size n with probabilities a; given the condition
that the number of distinct units in the sample equals n.

Successive sampling is originally defined on ordered sequences w = (71, -, rs)

of distinct units, and depends on n and numbers a;, - - -, ax as follows.
Pi(w|n, a1, -+, an) = O 1 G
(1.6) ’ ’ ’ (1 - arl) tee (1 — Qpy — arn_l) ’
w = (r, -, 5.

Sampling with replacement is originally &eﬁned on ordered sequences « =
(r1, - -+, 14) of not necessarily distinet units by the formula

!
Pl(wlln,aI, "’,OlN) = oy, " Oy, o)l = (7‘1’ ”'rn),

1.7
( ) lérl,“',rnéN'

For all three kinds of probability sampling just introduced, the correspondence
between the parameters (n, a1, - - -, ax) and probabilities of inclusion =;, 74,
1 < 14,7 £ N, is rather complicated, and even approximations are not too simple,
unless 7 is of lower order than N.

Next two kinds of probability sampling are distinguished by a simple relation
between the parameters (n, a1, ---, ax) and the probabilities of inclusion
m, -+, wy . First, Poisson sampling, is defined by
(1.8) P(s|n, an, +++, an) = Il(nai)jgluls(l — naj), s ¢ U,

(where a; < n™", 1 <4 < N). Second, randomized systematic sampling, is defined

by the following experiment: permute randomly the units in the population and
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denote the result by U = {R:, - -, Ry}; then take an observation ¢ from the
uniform distribution over [0, 1] and include in s each unit 7 such that for some
k=20,1,---,n—1landm =1, ---, N we have R,, = 7 and

(1.9) n(O{Rl + . + aRm_l) é E + k < 'n(OlRl + e + aRm).
For both Poisson and randomized systematic sampling
(110) m, = No, 1 = 1, "',N,

provided that the right side does not exceed 1 for any ¢ = 1, ---, N. On the
other hand, Poisson sampling is not very suitable in practice, because it makes
the sample size a random variable, and even an empty sample may occur. Also
randomized systematic sampling has some disadvantages: First, the procedure
of randomly permuting the population may be very tedious if N is very large.
Second, the dependence of the m;’s on the =;’s is very complicated, and the
recent asymptotic results by Hartley and Rao [5] are applicable only if n is of
smaller order than N.

For illustration, let us consider a population consisting of 4 units, U =
{1, 2, 3, 4}, and compute the probabilities P(s) for all five kinds of sampling
withn = 2and ey = .1, a2 = .2, @3 = .3 and oy = .4. The results are given in
Table 1. The successive sampling, randomized systematic sampling and sam-
pling without replacement have been projected according to (1.1).

TABLE 1
The Kind of Sampling
The Sample s . Projected Projected
P Rejective Poisson frgg::;e‘i with randomized
u v replacement systematic
0 .038
1 .010 .010
2 .026 .040
3 .058 .090
4 154 .160
12 .057 .006 .047 .040 .067
13 .086 .014 .076 .060 .067
14 114 .038 111 .080 .067
23 171 .038 .161 120 .067
24 .229 .102 .233 .160 .266
34 .343 .230 371 .240 .466
123 .010
124 .026
134 .058
234 154
1234 .038
1.000 1.000 .999 1.000 1.000
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The rest of this section will be devoted to the question of motivation and
integration with the previous literature.

Sampling with unequal probabilities presents no especial difficulties, if it
amounts, within individual strata, either to sampling with equal probabilities,
as in Neyman [9], or to sampling just one unit, as in Hansen and Hurwitz [4].
The general case, however, raises very difficult mathematical problems, which
has stimulated attempts to establish a unified and modernized theory of proba-
bility sampling (another name for sampling from finite populations). One aspect
of this theory should be an appropriate definition of a sample, and of the class
of admissible probability samplings and estimators of, say, the population total

(1.11) Y = iy

i=1
Horwitz and Thompson [6] showed that
(1.12) Y= (yi/ms)

is an unbiased estimator of YV, if 7, > 0,7 = 1, - -+ , N, for any sampling design,
and established the variance of ¥ in terms of the probabilities 7i;, 1 < 4,5 < N.
Yates and Grundy [12] noted that for sampling design where the sample is of
fixed size, the variance of ¥ may be rewritten in following form:

(1.13) var (V) = Z;QZ [(ys/m) — (yi/m)(wem; — ).

However, in order to be able to utilize the general formulas, we have to study
in more detail some particular kinds of probability sampling, and solve for them,
at least approximately, the following three problems:

P 1. To establish relation between controlled parameters (n, a1, -+ -, ay)
and the probabilities of inclusion =y, - -+, wy .
P 2. To establish relation between the probabilities =1, -+, mx and the

probabilities 7;;, 1 <7 < 7 < N.

P 3. To find conditions for asymptotic normality of estimators such as 7.

Without solving these problems, we cannot control the =.’s in (1.12), sim-
plify and estimate the variance (1.13), and justify the confidence intervals
based on the assumption of normality.

All three above problems are solved below for rejective sampling, and the
author hopes to do the same for successive sampling in some subsequent paper.
As for the previous literature, there is just one paper in this line, namely by
Hartley and Rao [5]. They presented a solution of the Problem P 2 for ran-
domized systematic sampling by a quite different method than one used in the
present paper (recall that P 1 is trivial for this kind of sampling in view of
(1.10)). Moreover, their approach is asymptotic in a quite different sense,
because, roughly speaking, they are interested in the case when = is fixed and
N — o, while the present paper assumes that n — © and (N — n) — «. Asa
matter of fact under the conditions assumed by Hartley and Rao,

(114) n(mqr,- —_ Tij)/(ﬂ'ﬂrj) — 1
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for randomized systematic sampling as well as for rejective and successive sam-
pling. Formula (1.14), however, is false for all three kinds of sampling, if n — <«
and (N — n) — «, or more precisely, if

N

(1.15) Somi(l — m) > o,
i=1
For rejective sampling under condition (1.15),
N

(1.16) I:Z m(l — 7"1)] (mim; — wij) /[we(1 — w)mi (L — m;)] =1

=

uniformly in <, 7, as is shown in Section 5. Hartley and Rao leave open the prob-
lem what happens under condition (1.15), and center their attention upon
deriving expansions for m; in terms of 7; accurate to higher orders in N than that
given by (1.14). Consequently, their formulas are applicable, if N is much larger
than n only, and it is not reasonable to compare them with those obtained here.
To make a fruitful comparison possible, one should solve the problem P 2
for rejective sampling under the Hartley-Rao conditions, and for randomized
systematic sampling under condition (1.15).

In conclusion, let us mention the paper [10] by Rao, Hartley and Cochran,
where they present a clever attempt to circumvent the above problems by in-
troducing random strata and selecting just one unit from each stratum with
unequal probabilities. However the simplicity of their approach is somewhat
invalidated by the fact that the estimator they propose is not admissible, i.e.
there exists another estimator with uniformly smaller variance. Actually, the
outcome of the sampling experiment suggested in [10] may be described as
w= (S, -+, 8L, s) where S, are random strata and s the selected subset of
distinet units. Now s, together with the values y., 7 ¢ s, represents sufficient
statistics, and the conditional mean values of the Rao-Hartley-Cochran es-
timator with respect to this sufficient statistics has the above-mentioned superior
property. Unfortunately this conditional mean value is very difficult to compute
and thus only indicates a possibility of improvement. If the Rao-Hartley-
Cochran design were used with the estimator (1.12), one should first solve the
problems P 1 and P 2. Thus also in this line further development is necessary.

Finally, as noted by the referee, the sampling referred to here as Potisson
sampling is but a generalization of binomial sampling, introduced by L. A.
Goodman [1], for the case of unequal probabilities.

2. Rejective sampling. We shall begin with a definition of rejective sampling

equivalent to (1.4):
DerintTION 2.1. Let py1, - - - , pw be some fixed numbers such that 0 < p; < 1,

7 =1, -+, N. A probability sampling R(s) will be called rejective sampling of
size n with probabilities py, - - - , pu if

R(s) = CH p;H (1 — ps), if s contains 7 units,
(2.1) €8 1eU—s

=0, otherwise.
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The representation (2.1) will be called canonical, if

(2.2) Zpi = n.

=1

Of course, (2.1) is equivalent to (1.5), if

N —1

(23) ai = pi/(1 — py) [Zl p;i/(1 — p,-):l , i=1,---,N.
=

There exist infinitely many other probabilities p;, -+, py and constants

C™ such that (2.1) may be rewritten as

R*(s) = ¢*]] p?‘. II a - pH, if s contains 7 units,
(24) 168 1eU—s
= 0, otherwise.

Obviously R*(s) = R(s) for all s, if, and only if,
(2.5) pi/(1 = p¥) = dpi/(1 — pa)], 1sis N,

for some constant c. '
LemMA 2.1. Let the numbers py, - -+ , py and py , + -+, px satisfy (2.5). Put

N
(2.6) h = ;pri,
N
(2.7) Y= > pt,
1=1
and
N
(2.8) d= ;pi(l — Pi).
Then

(29) pi(1 — p) = pi(1 — pH{1 + (&% — h)/d + o[(R* — h)/d]}

where o(x) means that o(z)z~" — 0 for z — 0.
Proor. From (2.5) it easily follows that

(2.10) pi — pi = (1 — e)p(1 — pi),
and
(2.11) pi— pi = (¢ = L)pi (1 — py).

Assume that A > h, so that pJ > p;and 1 — pf < 1 — p;. Carrying out a
summation in (2.10) and (2.11) with respect to 7 we get

(2.12) h— ¥ = (1-0)2@-(1—;@2‘) <(1=¢)d,

218)  h— A= (- DXL p) > (¢~ D,
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from which we immediately obtain
(2.14) {1 — ([W* = h)/dl} ™" < e <1+ [(h* — h)/d).

Now, (2.9) is an easy consequence of (2.14) and (2.5). The case when h* < h
may be treated quite similarly. The proof is finished.
Now, let p1, - -+, py be any numbers such that 0 < p; < 1,1 =7 < N.
LemMa 2.2. If D 1= ps = n and s, is a sample of size n, then

(2.15) 2 opi= 2 (1—p) > 3d

1eU—3y €8y
If 2 p: = hand s is a sample of size k, then
(2.16) h—k+ 2 (1—p) = X ».

ie8 1eU—sy
Proor. The proof is immediate. A property of rejective sampling is that con-
ditional probabilities P(s | sz 1), P(s|s 21, j) ete. and “‘complementary’ prob-
abilities P*(s) = P(U — s) again represent rejective sampling with properly
modified parameters.

3. Poisson sampling. Also here we need to rewrite definition (1.8):

DerINITION 3.1. A probability sampling will be called Poisson sampling with
probabililies py, « -+ , pw, if
(3.1) P(s) = gpi 1}1 (1 = pa), (s c U).
Let K(s) denote the number of units contained in s.

From formula (3.1) it follows that Poisson sampling may be carried out by
N independent subexperiments, the 7th of them deciding with probabilities
p, or 1 — p; whether the sth unit will be included in s or not, respectively.

Obviously K = K(s) is a random variable in Poisson sampling, and it ranges
fromiO to N. Now, introduce zero-one random variables £ = £;(s) characteriz-
ing the presence or the absence of the 7th unit in s:

=1, if s34,

3.2 1£7i=<N)
(32) =0, otherwise. (

Then

N
and the distribution of K is one considered in Poisson’s generalization of Ber-
noulli’s scheme, since the random variables £; are independent, as many be easily
seen from (3.1). Hence our label “Poisson sampling”.
From (3.3) it follows that

N
(3.4) EK = h= 2 pi,
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and
N
(3.5) var K = d = X po(1 — ps).
7=1

The following Lemma follows from asymptotic normality of K for d — o«
(Cramér, pp. 216-217), and the unimodality of the distribution of K which can
be demonstrated.

Lemma 3.1. For any constant C it holds that

(27 A)'P(K = k)

3.10 -1 0
( ) h—0d423§+cdi exp [—32(k — h)2d] -
ifd = 2 pi(l — p) — ».
Now, let 41, - - -, y» be some real values associated with the units 1, --- , N.
In Poisson sampling with probabilities p; , - -+ , p» the variance of the estimator

(8.11) T = 2 yi/p:

will be due to (a) the variability of theratios #;/p; and (b) the variability of the
sample size K = K(s). The latter source of variability is not present in rejective
sampling and, hence, undesirable in our consideration. To eliminate it, let us
shift the values y./p: by a constant ¢ chosen so that we may obtain minimum
variance. Using the random variables £; defined by (3.3), we easily see that

var {2 [(yi/p:) — cl} = var {;:; [(ys/p:) — C]Ei}

1E8

N

[(yi/ps) — el var & = > [(ys/mi) — cI'pi(1 — i)

=1

]
M=

s
Il
it

[(ys/ps) — RI'pi(1 — pi) = ;1 (ys — Rp:)*(pi* — 1)

M

Il
hA

2

K3

where
N N
(3.12) R = ;yi(l - Pi)/; p(1 — pi)
and the minimum is obtained for ¢ = R. This invites us to replace (3.11) by

(3.13) T =2 [(yi/p:) = Rl + R 2 pi.

1€8

The quantity 7' will have an auxiliary but important role in our considera-
tions. Note that 7T is not an estimator, since it depends on y;, 7 ¢ U — s, unless
the size of sis D1~ p; . However, for samples of size )11 p it coincides with 7",

Throughout the present paper we formulate the asymptotic relations for the
whole class of Poisson or rejective samplings corresponding to all possible
N=12 ---andpi, ---,p~v,0 < p; < 1,7 =1, ---, N. This approach has
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been applied in Lemmas 2.1 and 8.2. To be able to state the condition of asymp-
totic normality for 7' in the same way, we need a modification of the Lindeberg
condition implicit in the following

Lemma 3.2. With the above notation, we have

N
(3.14) ET = X u.
=1
and
N
(8.15) var T = 3 (y: — Rps)*(pi" — 1).
=1
Moreover,
z — ET
(3.16) sup P(T<z)—® <(—Vm> —0
where ® denotes the normed normal distribution function, if
(3.17) e=e(Yi, ,Yn, P, ,px) =0,
where
(3.18) e = inf {e:L¥ < ¢},
and
(3.19) LY = (var T)7 20 (yi = Rp:)'(pi' — 1),
where
(3.20) A, = {i:(y: — Rp:)’ > &pi var T}.

Proor. Putting T = Y1 [(y:/p:) — Rl& + R D_i=1 p: we readily see that
the Lindeberg condition for 7 amounts to L. — 0 for every ¢ > 0, where

= (var )72 [(yi/ps) — BF(1 — p)'ps

ieC¢

3.21
( ) +“Z [(yi/pi) — R] (1-— ps)pz ’
where
C. = {i:|(ys/ps) — R|(1 — p:) > e(var T)4
and

B. = {3:|(ys/ps) — Rlps > e(var T)*}.

Now, it may be easily verified that L. < L¥ £ 2L;.. Consequently L. — 0
for every ¢ > 0 is equivalent to L¥ >0 for every e > 0. Finally, as [e < 3¢ =
[L¥ £ L. = 2e], condition (3.17) entails L¥ — 0 for every ¢ — 0 for any se-
quence of Poisson samplings. The proof is finished.
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ReEMArk. Following the pattern of the proof of Theorem 3.1 in [3], we could
show that (3.17) is also necessary for (3.16).

4. Lemmas connecting rejective sampling and Poisson sampling. A compari-
son of (2.1) and (3.1) shows that rejective sampling of size n may be regarded
as Poisson sampling given the condition that the sample size equals n. If the
probabilities p; , - - - , px are chosen so that n = >_1—; p; the sample size of the
rejective sampling will equal the average sample size of the Poisson sampling.

We have also seen that the rejective sampling may be regarded as projected
sampling with replacement of size » given the condition that the number of
distinet units equals 7.

Poisson sampling and sampling with replacement may both be decomposed
into independent subexperiments, and, for this reason, they both possess simple
variance formulas and simple conditions for asymptotic normality. However,
whereas all the relevant properties of Poisson sampling may be carried over to
rejective sampling, at least asymptotically, sampling with replacement gives
formulas diverging from those for rejective sampling even in the limit, unless
the probability of rejection tends to zero. This somewhat surprising result is
probably due to the fact that rejective sampling may represent an ‘‘average
result” of Poisson sampling, whereas in ‘sampling with replacement rejective
sampling always represents an extreme case (all units must be distinet). Thus
the parallelism of rejective sampling and sampling with replacement, though
at first sight very inviting, is misleading.

First we show that convergence in probability in Poisson sampling implies
the same in rejective sampling for an important class of “hereditary” events.

Lemma 4.1. Consider Potsson sampling P(-) and rejective sampling R(-) of
size m, both with probabilities, p1, « -+ , px such that > ¥ ipi = n. Let A be an
event such that either

(4.1) [se A, s* Cs]=[s"eA] for all s, s*¢ U,
or
(4.2) [sed,s*Ds]=[s"eA] for all s, s*¢ U.

Then there is a dy such that for d > dy
(4.3) P(4) z #5R(A).

Proor. Assume that (4.1) holds, for example. Then, in view of (2.16),

1 —p;
PAK =k) =2 P(s) = P(s ! .
s%:A iy sgl:m Hl)ies%%q n—k—1+p; + > (1 —p;)
18k 41
Furthermore, from (2.15) it follows that
1 — p;

(44) 3 P; >1—4(n —k)/d, (k< n).

jpan —k—1+4+p+ > (1 —p)

TE8p 41
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On combining (4.3) and (4.4), we get
PA,K=k)= (1 — 4k —n)/d)P(A,K =k + 1)

= (1 — 4(k — n)*/d)P(A, K = n), (k< n).
After easy computations, (4.5) yields

(4.5)

(46) P(A) = k;P(A, K=%Fk = n_ﬁ;j’m P(A, K = k)

1%

$(3d' — 1)P(4,K = n).
Now, noting that
(4.7) R(A) = P(A|K =n) = [P(A, K = n)]/[P(K = n)],

and recalling (3.10), we see that (4.6) implies (4.3) immediately.

The case, where (4.2) holds, may be carried over to the previous one by con-
sidering the complementary rejective sampling P*(s) = P(U — s) of size
N — n with probabilities 1 — p;, - -+, 1 — py . The proof is finished.

From Lemma 4.1 we obtain almost immediately

Lemma 4.2. Consider rejective sampling R(-) of size n with probabilities

D1,y P, Dote1 Pi = M, and some numbers by , +++ , by such that
(4.8) 0=<b =1, (1=7i=N).
Denote d = D i= pi(1 — ps).
Then
(4.9) (d_l Z by —d Z\jl bi p¢> —0
in R-probability if d — <, uniformly in by, --- , by .

Proor. The convergence in probability follows for the corresponding Poisson
sampling P(-) by Tchebyshev inequality, since
N
EP(d7' 2 b)) =d ') b
) =1

1E8

and, for b} < 1,

N
var® (A7) b)) = d ) bipi(l — p;) £ d*
=1

€8

where E” and var® refer to P(-). Now the events

N
(4.10) A b > d D bips + €
7€8 =1
and
N
(4.11) A7) b <d'D) bipi — ¢
€8 =1

are of the hereditary type considered in Lemma 4.1, for b; = 0. Consequently
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the probability of (4.10) and (4.11) converges to 0 also for rejective sampling
if d > o, in view of (4.3).
ExamrrEs. Lemma 4.2 entails, for example, that
a2 (1—p)—1

1E8

and

N
[d”l 2o p(l —p) —d? Zl pi(l — pi):l -0
in probability for rejective sampling in canonical form, if d — «.

Now, we shall establish an important result, which may be regarded as the
corner-stone of the present paper. Our aim is to construct an experiment yield-

ing jointly a rejective sample s, and Poisson sample sg in such a way that
(4.12) either sx C s, or sg D s,

with probability 1. The experiment will consist of two successive steps:
ExperIMENT. First, we select a rejective sample s, tn accordance with its dis-
tribution, and, independently, asceriain the size K = k of the Poisson sample.
Second, if k = n, we put sg = $»; tf k > n, we select a rejective sample sp—n from
U — s, considered as a population, with probabilities (k — n)Dpi,ie U — s, ,
where
(4.13) D, = D(s,) = Z (1 —p) = Zvj_ Di,
and put sg = s, U s ; if k < m, we select a rejective sample Sn—i from s, , con-
sidered as a population, with probabilities (n — k)D;'(1 — ps), and put
Sk = 8n — Sn—k .
In the above experiment a pair (s;, s,) such that either s, C s, or s, D &
will have probability

Q(si, sn) = R(sn)P(K = E)R*(8, — $u | U — 85, k — n), if k> n,

(4.14) = R(s,)P(K = n), if £ = n,
= R(8,)P(K = E)R"(sn — sk | 8a,n — k), ifk <mn,
where
R* (st — s |U =80, b —mn) =C"(U —sa,k—n) I (k—mn)
(4.15) _ 1ESE—Sy B
Daps JI 11— (k= n)D%'pd,
1eU—sy
and
R(sy — s¢|su,n — k) = C(s0,n — k) H (n — k)
(4.16) 1LESR™SL

D1 = p) [T11 = (n — B)DZ(1 — p)l.

1E8]
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Denoting the Poisson samplings corresponding to R* and R* by P* and P*,
respectively, and by K* and K the sizes of respective Poisson samples, we can
write

(4.17) C*U — 85,k —n) = [P*(K* =k —n)]"
and
Ct(sp,n — k) = [P(K" =n — k)"
Furthermore, EK* = D iy, (k — n)Da'ps = k — 'n
var K* = X' (k — n)D7'pdl — (n — k)D3'pi]

1eU—sy

o that, in view of (2.15),

(4.18) (k — n)[1 — 2(k — n)/d] < var K* < (k — n).
Combining (4.17) and (4.18) and applying Lemma 3.1, we get
(4.19) [d— , [k — n|/d— 0] = [C*2r(k — n))~ - 1].

The same result holds for C*. .

Now, return to the joint distribution (4.14) and ask whether the marginal
distribution of s; , say Py(ss), corresponds to Poisson sampling P(-) with prob-
abilities p1, -+, px, as we wished. Unfortunately, this is not so, unless p; =
P2 = +++ = px, a8 in [3]. On the other hand, we shall be able to prove that the
difference Py — P tends to zero in variation as d — «. Consequently any random
variable T’ has the same limiting distribution, if any, for P, as for P. We shall
denote the variation of Py — P by ||Po — P| and define it as follows:

(4.20) [Po— Pl =2 > [1— (Pss)/P(s))IP(s)

Po(s)<P(s)

where the sum extends over all samples s satisfying the condition under the

sign ).

LemMA 4.3. Let P(-) denote Poisson sampling with probabilities p., -+ , px,
> pi = n, and define Po(-) by
Po(st) = 2. Q(s, 8a) ifk > n
SnC Sk
(4.21) = P(s) ifk =n
= 2 Q(si, ) ifk <mn
$p ISk

where Q is given by (4.14) and the sums extend over all s, satisfying the indicated
conditions.
Then d = Y 1= pi(1 — ps) — o, implies

(4.22) [Py — P|| — 0.
Proor. Let a &~ b and a ~ b denote that a/b — 1 and (¢ — b) — 0 in P-prob-
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ability, respectively, if d — . Furthermore, let a ;, b denote that for every
e > 0,a > (1 — ¢) bholds with P-probability tending to 1if d — .

If @ and b depend also on s, , the convergences are assumed uniform with respect
to s, . For, example, Lemma 3.1 implies that

(4.23) [P(K = k)/P(K = n)] =~ exp [ '(k — n)
and
(4.24) d2(k —n)* ~0.

In both above relations the left side depends on s; only, namely on the size k of
s, . However, (4.24) and (2.15) imply that also

(4.25) Dk — n)* ~0,

uniformly in s, (recall (4.13)).
In view of (4.20), our task is to prove that
(4.26) Po(s:)/P(si) Z 1.

From now on we shall assume that k¥ > n, so that probability and the signs
=, ~, % should be understood as conditional given k& > n. Note that

R(sx) = P(sn)[P(K = n)]™
P(s)P(K =n)" II (1 — po)/p:

TESE—Sy

(4.27)

and put @ in the following form:
Q(s, sn) = P(si)[P(K = k)/P(K = n)]M (s, $a)
(4.28) C*U = su, bk —n) I (& — 2)D;'(1 — pi)

1E8—8y

J10 = (B — »)D*(1 — po)],

€8y

where
(4.29) Dy = Zki (1 — py),
and
M(s, 8.) = (Di/Dy)*™ TT [L — (k — n)D3'pi]
(4.30) 1eU—sy

JI0 = (B — n)Di'(1 — p)] ™.

Now using the usual development 1 — z = exp [—2 — %&* + O(z*)], we can
write

M('Sk ) Sn) ~ exXp [(k - n)[(Dk - Dn)/Dn]
(4.31) — (k — n)DZlieg;% pi+ (b — n)Di' 2 (1 — p;)

€8y

— 3k =)DV 0 pi4 3k —n)'Di" 2 (1 - piy']
1eU—8y

1E8y,
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where we have left out terms dominated (uniformly with respect to s,) by a
multiple of d*(k — n)®. Now, by (2.16),
(k—n)(Dx — Da)/Dn — (k—n)D3' >0 pi+ (k—n)Di" 20 (1 — pi)
(4 32) 1eU—sy 1€8py
=D (k—n) — (k—n)Dy" 2 (1—pi)

iesgmsn
and, further,
(4.33) D7 — Di'| = (De — Da)/(DaDy) < 4d"(k — n).
Consequently, (4.31) may be continued as follows

M(se, s2) & exp [—(k — m)Di* 3 (1 — py)

iesp—sy

(4.34) + (k — n)’Di* > (1 — p:)* + Di'(k — n)®

T8y

— 3 — D ( 3 pi 4+ 2 (1= pa))l

Now, by Tchebyshev inequality, D; =~ d, D;'(k — n)® is bounded in probability
and ‘
N

CLYpt+ T (0= )~ T = ) + (1= ] = L,
1eU—sg iesy pr
Thus, finally,
M(sk 5 Sn) ~ exp [%d—l(k — n)2]

(4.35) cexp [—(k — n)D;l_ > (1 —p) + (k— n)ZDzzz (1 — ).

TESE—Sy 1E8E
As for C¥, it follows from (4.19) that
(4.36) C*U — su, k — n) = [2¢(k — n)].

On combining (4.23), (4.28), (4.35) and (4.36), we get
Q(st, 8a) = P(su)[2r(k — n))
(4.37)  cexp [(k —n)'Di" 2 (1 — pa)]* II (k= n)Di'(1 — p))

€8 iesp—sy

10 — (B — n)D*(1 — po)l exp [—(k — »)Di" ITI (1 — po)l.
1e8p 1E8E—38p
Let R*(- | s, k — n) denote rejective sampling of size k — n with probabilities
(k — n)Dy'(1 — p;) from the population s, i.e.
Rt(si — salse, b —n) = C(ss, k—mn)e [ (k—n)

1E85— Sy

D1 — p) [T — (k — n)D'(1 — pa)l, (sn S s6).

1€8p

(4.38)
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By the same considerations as we used in the proof of (4.19), we could show
that
(4.39) CH(s, b — n) =~ [2r(k — n)]t.
On comparing (4.21), (4.37), (4.38) and (4.39), we easily see that
Po(s) =~ P(s:) exp [(k — n)ZDk_ZZ_% (1= p)’]

E* {exp [—(k — n)Di* 2. (1 — pi)]|s,k — n}

1e8p—8y

(4.40)

where E7(- | s, k — n) denotes the mean where via R™(- | s, k — n).
To conclude the proof for k£ > n, it remains to show that

B {exp [-(k = mDi" 2 (1 = p)l |, b —n}
(441) 2 exp [—(k — n) D" > (1 — p)’.

tesy
This is the most intricate part of the whole proof. First, introduce d correspond-
ing to R*

dy = dy(se) = > (b — n)Dy*(1 — p)[1 — (k — n)Dy*(1 — py)]

(4.42) — b —n) — (k- n)’Di*Y (1 — pi)’,

€8

Obviously
(4.43) d'~ (k — n),

and d" — « in P-probability. In view of Lemma 4.2 with U and p; replaced by
st and (K — n)D;'(1 — p.), respectively, for any ¢ > O there exists an a(e)
such that for di. > a(e)
(444) | X (1 — p) — di' X (b — )DL — po)| < ¢

1esp—8p TE8)
with R™-probability greater than 1 — e. Further, there exists a b(e) such that
for d > b(e)

(4.45) di(se) > a(e)
and
(4.46) di(k — n)Di* <

hold with P-probability greater than 1 — e. Now, the relations (4.44) through
(4.46) imply that
(1= ) exp [~ — (k= n)'Di" 2 (1 — p)’]

1E8

< B {exp [~ (k — n)Di* 2= (1 — p)]|s,k— n}

1E8E—8y

(4.47)

with P-probability greater than 1 — eif d > b(e). However, (4.47) is equivalent
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to (4.41). Thus the proof is finished for &£ > n. The proof for k¥ < n would be
the same in principle, and is left to the reader.

REMARK 4.1. By a similar method we could obtain a sample s, with approxi-
mately rejective distribution by starting from a Poisson sample s, , and then
extracting (if ¥ > n) or adding (if ¥ < n) |k — n| units by rejective sampling of
size |k — m| from s, or U — s with probabilities (b — n)Di (1 — p;) or
(k — n)Di'p;, respectively. This possibility will be considered in Section 9.

5. Probabilities of inclusion 7; and =;; . We begin with

TuEOREM 5.1. Consider rejective sampling of size n with probabilities p;,
1 <4 £ N, such that D _i—1 p; = n, and denote by ; the probability of including the
ith unit in the sample, © = 1, --- , N (see (1.2)).

Then
(5.1) wi(l — pi) = pi(1 — m) [L — [(F — 7)/do] + o(da))], (1=7=N),
(52) mi(l — pa) = pi(1 — )1 — [(B — p)/d] + o(d )], (1 =i=N),

where

(5.3) do = ;Nl mi(1 — ),
(5.4) d= ;1 pi(1 — pa),
(5.5) 7= do_lié (1 — m),
and

(56) B = d Y a1 - )

and d+o(d™) — 0 and dyso(ds') — 0 if d — » and dy — ©, respectively, uni-
formlyini=1,---,N.

Furthermore
(57) lrsna;xN|(1rz/pz) - ].i — O,
(5.8) 12?;XN”(1 — m)/(1 — p)] — 1| =0,
(5.9) 1lrsniasxwl[(vri(1 —m:))/(p(1 — p:))] — 1| =0,
and
(5.10) [(do/d) — 1] =0,

if either d — «© or dy — «.
Proor. Consider P(s) given by (3.1) and recall the fact that for samples of
size n, K(s) = n,
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> [/ 22(1 = pj)] = [eUZ_:sph/Z(l —p)l =1, (K(s) =n),

heU—s jes h Jjes

(see (2.15)). Thus we have
P(s) = P(S)h;s[ph/jg(l — pi)l

=p/(1 — pahZ P(sU {n} — {ih[1 — m)/]Ze;(l —p)], (K@) =mn),

eU—s

(5.11)

and, consequently,

(5.12) Z P(s) = pi/(1 — pi) U§3iP(S)§[(1 — o)/ (on — pi + %(1 — )]

where s on the right side is the subset dénoted by s U {h} — {4} in (5.11). From
the definition (1.2) of ; it follows that
(5.13) (1—7)2 P(s) = mUZ P(s) [K(s) = n]
since in rejective sampling the probability of s, R(s) is proportionate to P(s)
(see (2.1)). On combining (5.12) and (5.13) we get

(1l —p) = ps(1 —m) [ 22 P(s)™

U—s3t

(5.14) - > P(s) ;Z F—— 1+—£h(1 Z ”")2’

U—s3? hes

jes
1=4=N).

Now denote by R;(-) the rejective sampling of size n with probabilities p;,
j # 1, from U — {7}. Then (5.14) may be rewritten as

(1 — p;) = pi(1 — m)E; 3; o — Pi 1—[-_21)11(1 - pj)s

(5.15)

jes

(1=i=N),
where E; denotes the mean value via R.(-).

Next step is to analyse the rejective sampling B;(-). To put it into canonical
form let us introduce probabilities p}, j # ¢, such that (2.5) holds and
> iz = n. According to (2.9) we have, denoting d; = D pj(1 — p;)
(5.16) pi(1 — ;) = pi(1 — PP + (pi/ds) + o(di)],  (F # 9),

since D ip; — DiwiPi = n — (n — p;) = p;. Obviously, d; may be replaced
by d in (5.16), since d/d; = 1 + o(1) if d — . Thus we can modify (5.16) as
follows:

(5.17) pi (1 — p;) = p;(1 — p)L + (ps/d) + o(d7)], (j # 7).
Since p} = p;,j # 4, (5.17) implies
(5.18) 1< pf/pi <1+ (pi/d) + o(d™)
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and
(5.19) 12 (1 —p)/(1—pi) 21+ (pi/d) + o(d™).
Consequently,
(5.20) max llpi (1 — pi)/pi(1 — pi)] — 1] =0, if d — oo.
This means that d — o« implies
(5.21) doi = D2 pi(1—pi)—> =
=i
ugiformly in 7 (for brevity, the dependence on 7 is not indicated in the symbol
Di ).
Now, on account of (2.15)
1 —pn —1 1
5.22 =1-—d B; d-
(522) hzes:ph_pi'I'Z(l_pj) +old?)
jes
where
(523) ,Z (1 —p))(p; — i)
5.23 = d 2
[g‘.; 1 —p)I
with
(5.24) |Bi| <4, (1=4i=N).
Now, we infer from (5.18) through (5.21), (5.23) and Lemma 4.2, that
(5.25) (Bi =P+ p) >0

in R;-probability as d — o, uniformly with respect to <. From (5.24) and (5.25)
it follows that E;(B;) = p — p; + o(1), if d — o, which inserted into (5.15)
gives (5.2).

Now from (5.2) it follows that

pi — i = [(p — p:)/d + o(d)Ips(1 — =)
and, consequently,
(5.26) [(mi/ps) — 1] = (1 — m)|(B — pa)/d + o(d™)], (1 =42 N).

However, (5.26) is equivalent to (5.7). Furthermore, (5.8) may be proved in
a similar way, and (5.9) is an easy consequence of (5.7) and (5.8). Finally
(5.10) follows from (5.9), and (5.1) follows from (5.2) and (5.7), (5.9) and
(5.10). The proof is finished.

The following theorem is basic for applications.

TaEOREM 5.2. Let wi; be the probability of including both the ith and the jth
unit in the sample for rejective sampling of size n with probabilities p;, 1 =7 < N,
such that D _i—1p: = n.
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Then
(5.27) wa; — 1 = dow(1 — w)m(l — 7)[1 + o(1)],

where dy = Y im mi(1 — m5) and o(1) — O uniformly for dy — .

Proor. First observe that w.;/m, may be regarded as the probability of in-
clusion of the jth unit in rejective sampling of size n — 1 with probabilities
p;, J # %, from the population U — {z}. Corresponding canonical probabilities
py satisfy, in accordance with (2.9),

(528) pi(1 — p;) = pi(1 — P + [(pi — 1)/d] + o(d™M)], (G # 1),

since Do D3 — 2oiwiPi = n—1— (n — p:) = pi — 1,and D> pi(1 — p))
may be replaced by d = > =ipi(1 — p;). On the other hand we may apply
(5.2) to the present sampling (i.e. put m;/m; for =; and py for p;), which yields

(629) (m/m)(1 — p§) = pfll — (wii/m)[L — (B — pi)/de] + o(dF)],
where

dr = 2 pi (1 — p).
JF

Utilizing (5.28) in the same way as we did (5.2) in proving (5.7) through
(5.10), we may show that 5%, p; and d,. in the bracket in (5.29) may be replaced
by P, p; and d, which, in turn, may be replaced by #, r; and do , in view of (5.7)
through (5.10). Thus, (5.28) and (5.29) may be rewritten as follows:

(5.30) pi(1 = ;) = pi(1 = p)IL + [(mi — 1)/dol + o(da )], (7 #9),
(1 = ) = Tl — (el — [(F — w)/dd + o(di™),
(531) (mii/m) (1 — pi) = pi[1 — (miz/m)][1 — [( )/do) + 0(da™)]
(J #1).

Eliminating p; and p; from (5.1), (5.30) and (5.31), we get
(mig/w) (1 — m3) = m{l — (mg/m)][1 — [(1 — m:)/do] + o(da")],
(5.32)
(J # 7).

However, carrying out the multiplications, (5.32) becomes
(5.33) war; — wi = do w1l — (wi/m)][1 — m 4+ o(1)], (7 # 1©).
Since (5.32) also implies that

{1 — (mig/m)l/[1 — ml} — 1] =0, if dy — o,

uniformly in 7 # 4, (5.33) is equivalent to (5.27) provided that =, < %. If
7 = L, it suffices to consider the complementary rejective sampling with P’'(s) =
P(U — s), which has the same d, and probabilities of inclusion mo=1—m
and 1r:-,- =1+ w5 — 7 — w5, 80 that (1 — 7;) = 1r:~(1 - 7r:) and 71':'1r;- - 1r§,- =
mer; — w45 . The proof is finished.
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6. The variance of the simple linear estimator. We shall first assume that
we know the exact values of the 7’s.

TaEOREM 6.1. Consider a rejective sample s of size n selected with probabilities
of inclusion m , -+ -, wx , and a population of values y;, - - -, yn . Put

(6.1) Yo = iEﬂyi/m.
Then
(6.2) E(Y,) = ;le
and
63)  var(P) = [+ oY — Er)((1/m) — 1
where
(6.4) R = izlyi(l - m)/ﬁ1 mi(1 — )

and o(1) = 0 4f Dty mi(l — m5) — o,

Proor. The assertion (6.2) is obvious and (6.3) follows immediately from
(5.27) and (1.13).

Now assume, as in practice, that we want the w,’s to be proportionate to
some nonnegative numbers z; such that

N
(6.5) 0<nx;<X=z;x,~, (1<¢{ZN).
Since Y i1~ i = n, we should have
(66) wy = nwi/X, (1 <= N)

However, we are only able to control the probabilities p, , of which the =’s are
rather complicated functions. None the less we have established the relations
(5.9) and (5.27) from which it follows that

(6.7) mm; — w5 = d pi(1 — p)p;(1 — py)[l + o(1)]
So, replacing (6.6) by
(6.8) | pi = nzi/X (1£i=N)

we still have the following modification of Theorem 6.1.
TuEOREM 6.2. Consider rejective sampling of size n from a population of values
Y1, *+, Yx with probabilities p;, - - -, px given by (6.8), and the estimator

1E8
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Then
N
(6.10) EY -Y)Y =01+ 0(1)];(% — Ra)[(X/nz;) — 1]

where 0(1) > 04f d — o,

(6.11) d= inxi/xu — (nzs/X)]
and
(6.12) R = ;yi[l — (mci/X)]/;1 zfl — (nzy/X)].

Proor. Obviously,

(6.13) E(Y — Y) = var(?) + (EY — V)

Now, in accordance with (6.7) and (6.8),

(6.14) var ¥ = %Zﬁ;ﬁ; [(yi/2:) — (yi/z)UX/0) (s — m5)
=322 (/) — @i/e)leafl — (ney/z)lll = (nay/o)]

A1+ o(1)]

= [1+ 0(1)]; (ys — Ra:)[(X/na:) — 1].

Furthermore, in view of (6.12) and (5.26)

(BF = ¥)" = | 3 0 mi X /n2) — 1)]

[+ T = nxi/X:r
B R b o

_ :EZ:I (y: — Rz:)(1 — m) (ﬁ T+ °<d‘1)>]2

S 3 - B = D ol — w0 BB ]

= ; (yi — Rx:)[(X/na;) — 1]lo(1)]
which shows that
(EY — Y)*/var Y —o0.

Corlsequently, the asymptotic expression for var ¥ (6.14) is correct for
E(Y — Y)? as well. The proof is finished.
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REMARK 6.1. In Section 8 we shall suggest instead of (6.8) another relation
between the p.’s and the z.’s yielding a better approximation of (6.6). Generally,
it suffices that

(6.10)  pdl — (nzi/X)] = (nzs/X)(1 — p)[1 + 0o(1)], 1 =£¢=N
where 0(1) — 0, uniformly in 7, if d — o,
7. Necessary and sufficient conditions for asymptotic normality. Under the

conditions of Theorem 6.2 consider the estimator ¥ given by (6.9) and simul-
taneously the quantity

(7.1) T = (X/n) 2 _[(yi/x:) — R] + XR
where R is given by (6.12) and s denotes a Poisson sample with the same proba-
bilities (6.8). From (3.15) and (6.10) it easily follows that

(7.2) var®(T) = E*(Y — Y)Y1 4 o(1)] ifd— oo,

where var” and E® refer to Poisson and rejective sampling, respectively.

There is, however, a still deeper relation between T and Y, which may be
heuristically explained as follows: Let s, and s; denote a typical rejective and
Poisson sample, respectively. If, for example, s, C s;, then
(7.3) T — Y =(X/n) 2 [(y/e:) — Rl

1E8K—3p
Consequently, if the difference s, — s, contains a relatively small number of
units, the difference 7' — Y will be small, too, and may be asymptotically negli-

gible.
TuroreM 7.1. Consider rejective sampling of size n with probabilities p; = nx,/X
from a population of values y1, -+ -, yx . Define Y by (6.9) and put
N
(7.4) B = Zl(?/i — Ra;)"[(X/nz:) — 1]
where R 1s given by (6.12). Moreover put
(7.5) e=¢e(yr, "+, Yn, Ts, + - xy) = inf{e:L¥ < ¢
where
(7.6) L = B7) (yi — Re)[(X/ne:) — 1]
1ed ¢
with
(7.7) Ae = {it|y; — Rxs| > e(nz;/X)B}
Then

(7.8) e—0



THEORY OF REJECTIVE SAMPLING 1515

implies
(7.9) sup |[P(Y < z) — ®[(z — Y)/B]| — 0,

where P(-) denotes the probability referring to the rejective sampling and ® denotes
the normed normal distribution function.

Proor. We know from Lemma 3.3 that the theorem holds for corresponding
Poisson sampling and the statistic (7.1). Now, according to Lemma 4.3 the
asymptotic distribution of 7' will be the same also for the distribution Po(-)
considered there. We also may consider the distribution Q(s; , s.) from Lemma
4.2, since P, is its marginal distribution for s, . However, under @ we always
have either sy O s, or sy C s,, and s — s, (or s, — s) represents a rejective
sample of size k — n (or n — k) from U — s, (or s,). Thus it suffices to show
that the difference (7.3) is asymptotically negligible in the following sense:

(7.11) BT — ?)~0,

which means that left side converges to the right side in @-probability. Further-
more, for £ > n (7.11) is equivalent to

(7.12) B?var"(T — P |U —s8,,k—n) ~0
and
(7.13) B'EXT — Y |U—8,,k—mn)~0

where var® and E* refer to the rejective sampling R* of size k — n from U — s,
given by (4.15). Leaving the case k£ < n to the reader, we shall conclude the
proof by establishing (7.12) and (7.13).
According to (1.13) and (7.3)
var®(T — Y| U — 84, k — n)

(7.14) = 3(X/n) ZZ [(yi/zi) — (y:/xa)] (7“7"7 - 77“)

2,jeU—38y,

and, furthermore,

(715) BT =Y |U—=s8a,k—n) = X/n 2 [(yi/x:) —

1eU—sy

Denote by = that the ratio of both sides tends to 1 in @-probability if d —
and note that (4.18) entails

d* = > w1 —af) = var'’K* =~ (k — n).

1eU—sy
Since |[K — n| — « in Q-probability, and in view of (5.1) and (5.7), we have
mr & (k — n)Du'pi & (k — n)d ' (nzy/X),
(uniformly in¢ = 1, -+, N),
where d = Y 1= (nz:;/X)(1 — na;/ X). Furthermore, in view of (5.27)
(7.17) mimy —an (b —n) " mimy & (B — n)d 2 (n/X) wa;.

(7.16)
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Now, (7.14) in connection with (7.16) and (7.17) yields
var’"(T — Y|U — s,, k — n)

R X/ n) (k — n)i%;;_zs:[(%/xi) — (yi/)'winy
(7.18) < (X/n)* 3 Uyi/as) — Bfn!

~ (k — n)flisgs (y; — Rz))*(X/nxs).

Consequently,
Blvar® (T — Y| U — s,, k — n)
(7.19) 1p—2 2
~ (k— n)d'B* Y (y; — Rxs) (X /nx;)
1eU—sy
where
(7.20) (k—n)d'~0

and the remaining factor is bounded in @-probability, since

E {B” Y (y: — Re:)"(X/na)}

721 1eU—sy .
( ) = B—_i;(yi — sz)“)(X/nxl)(l — 1l'¢) ~ 1.

Obviously (7.19) through (7.21) entails (7.12).
It remains to prove (7.13), which is somewhat more intricate. In view of

(7.15) and (7.16), we have
EXT —Y|U—s,,k —n)
(7.22) = X/n > [(ys/zs) — Rl(k — n)d ' (nas/X)[1 + 0i(1)]

1eU—sy

= (k —n)d" 22 (y: — Red)[1 + 0i(1)),

1eU—sy,

where 0;(1) — 0 uniformly in 7 if d — . Thus, denoting by E, the mean value
referring to s, , we have

E[E*(T — Y| U — s, k — n)]
= (k — n)d’li;(yi — Rz)[1 + 0:(1)I(1 — =)

7.23 N
@28 = (k — ")d_lé(yi — Rz)[1 — (nai/X)][1 + 0i(1)]

= (k — n)d’liz;(yi — Rz)[1 — (nay/X)]l0:(1)].

Consequently, by the Cauchy inequality,
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(7.24) {BJEY(T — Y|U — su, kb — n)I}’ = (k — n)’d"'BYo(1)]
Since (k — n)%d " is bounded in Q-probability, we have
(7.25) B(E[E(T — Y|U —s8,,k—n)]}>’~0

ifd— o,
Further, denoting the variance referring to s, by var,, we obtain from (7.22)

var[E*(T — Y| U — s,, k — n)]

R 3k —n)'d 2 2 (i — Rxa) (1 + 0i(1))

i=1 j=1

(7.26) — (y; — Rx;)(1 + 0;(1)]*[(nwma;)/XX][1 — (nzy/X)|[1 — (nas/X)]
S (b = n)'d” X (g — Rao)(nae/ X1 — (nay/X)]
< (k — n)d B

Consequently, also

(7.27) B2 var[E(T — Y|U — 8a, k — n)] ~ 0.

However, the relations (7.27) and (7.25) are sufficient for (7.13) in the same
way as (7.13) and (7.12) were sufficient for (7.11). The proof is finished.

REemARK. Condition (7.8) is also necessary.

8. Numerical investigations and application. Given some numbers =z;,
1 £ 7 £ N, we generally do not know any method of performing rejective sam-
pling such that =; = nz;/X would hold exactly. However, there are satisfactory
approximations. We have seen that rejective sampling with probabilities
p: = nz;/X will yield probabilities of inclusion such that

(8.1) m/ (n@s/X) — 1, 1=¢=N,

uniformly in 4, if d — «, d = D iey (nx/X)[1 — (nx:;/X)]. Convergence of
i/ (nx;/X) to 1 may be accelerated by replacing p; = nz;/X by some more
intricate relationship obtained from (5.1).

Before doing that, let us recall that definition (2.1) of rejective sampling is
associated with the possibility of performing it as Poisson sampling with prob-
abilities p1, - -+ . px given the condition that the sample size is n. The alterna-
tive definition (1.5) is associated with the possibility of performing rejective
sampling as sampling with replacement in which the probability of selecting the
#th unit in a single draw equals a;, 1 < ¢ < N. The parameters p; and a; both
may be controlled by the statistician and are related by (2.3). Thus, for example,
ps = nx/X is equivalent to

(8.2) ai = (Mxi)/[1 — (nw:/X)], l1=7=N,
where A1 is to be chosen so that D i a; = 1.
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Now, from (5.1) it follows that
ai = Mpi/ (1 — ) = [Qami)/(1 — )1 — [(F — m:)/do]} ™
(8.3) = [Aeri) /(1 — 7)) [{1 + [(7 — ) /dol}
= [(\em:) /(1 — 7)) {1 — [ms/(do + T)]}.

So, if we put m: = nx;/X and recall (5.3) and (5.5), we get for the a;’s the follow-
ing approximation

(8.4) a; = Ai/[L — (nay/ X)L — (x/X )], (1£7¢=N)
where .

~ 2 @il — (nai/X)]
(8.5) X' = Zl zill — (nay/X)] + 52

. ;xill — (nai/X)]

and \ is determined from Y i—ja; = 1. The a/s obtained from (8.4) bring
i/ (nx;/X) close to 1 even for small » and N (see example below). The relation
(8.4) may be simplified in various ways. For example, we may take

(8.6) a; = /{1 — [(n — Day/X]}, (lL=2=N)
or
(8.7) a; = Myl — (2/X)]/[1 — (nws/X)], (1=7i=N).

In Table 2 there are numerical values of ratios of the true a,’s and the approxi-
mate «;’s computed from above formulas for N = 10, n = 4 and z; = =,

TABLE 2

A comparison of the a;’s with the probabilities of inclusion m; and with approximation
ok, &, o, oY based on formulas (8.4), (8.7), (8.6), (8.2) with z; = s,
respectively, for rejective sampling (N = 10, n = 4, a; = 1/55)

Formulaforaf ........................ (8.4 8.7 (8.6) (8.2)
P ¥ A o
4 ;=== — — — —
55 ; a; a; o; o;
1 .0182 1.47 .999 .94 1.03 .85
2 .0364 1.37 .999 .95 1.03 .88
3 .0545 1.28 1.000 .96 1.04 .91
4 .0727 1.19 1.000 .98 1.03 ‘ .94
5 .0909 1.12 1.001 .99 1.03 .96
6 .1091 1.05 1.001 1.00 1.03 .99
7 .1273 .98 1.001 1.00 1.01 1.01
8 .1455 .92 1.001 1.01 .99 1.03
9 .1636 .87 .999 1.02 .98 1.04
10 .1818 .82 .998 1.02 .96 1.06
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1 £ 7 £ 10. Denoting the probabilities of inclusion referring to ., o, oi',
oty oi” by wi, wi, wi, i, wi , respectively, we may assume that 7¢/x; would
be even less variable than of/a;, g = I, II, II1, IV. This assumption is justified
by (8.4).

Hence we can conclude that formula (8.4) and its simplification solve the
problem P1 formulated in Section 1 for any situation which may in practice
oceur.

Now, as for the problem P2, let us calculate the values of 7,7; — m.; for the
same example as in Table 2 and compare them with the approximate values

given by (5.27):

(8.8) T — Wi = [i m(l — m)]—l (1 — m)mi(1 — ;).

=1

The results are presented in Tables 3 and 4. In Table 4 we can observe that the
ratios tend to be smaller than 1, which is due to the fact that, denoting

d= 2 m(l —m),
22 (e — my) = 3d

1<J
whereas
22wl — wm)m(l — w)d = 3d — 37 wi(l — m)? < id.
<3

The relative difference is, however, of order 1/N and is not worth correcting for
the N’s encountered in practice.

Consequently, we may hold that the problem P2 also is satisfactorily solved
by formula (8.8).

Now in practice we may proceed as follows. Wanting the =;’s to be propor-
tionate to some numbers z,, we carry out rejective sampling with the «.’s
given (8.6), since this formula is both simple and satisfactory in usual cases.
Then we use the estimate

(8.9) Y = (X/n) 2 ys/x:
TABLE 3
mw; — wij for rejective sampling (N = 10, n = 4, a; = 1/55)
; J
2 3 4 5 6 7 8 9 10

.0066 .0087 .0101 .0111 .0116 .0119 .0120 .0119 .0117
.0151 .0175 .0191 .0200 .0204 .0205 .0203 .0200

.0228 .0247 .0258 .0263 .0263 .0260 .0255

.0284 .0296 .0300 .0299 .0295 .0288

.0318 .0321 .0319 .0314 .0306

.0330 .0328 .0321 .0313

.0328 .0321 .0313

.0317 .0308

.0301

© 00O O W)
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TABLE 4
mi(l — w)mwi(l — =5)

for rejective sampling (N = 10, n = 4, a; = 1/55)

10
(mimj — mij) 2 mi(l — i)

2 3 4 5 6 7 8 9 10
1 1.07 1.03 .99 .97 .95 .93 .92 .91 .91
2 .99 .96 .93 .92 01 .90 .89 .89
3 .93 91 .90 .89 .88 .88 .88
4 .89 .88 .88 .87 .87 .88
5 .87 .87 .87 .87 .88
6 .87 .87 .88 .88
7 .88 .88 .89
8 .89 .90
9 91
whose mean square deviation equals, approximately,
N
(8.10) E(Y — Y)Y = 3 (yi = Rz)’[(X/nx) — 1]
=1
with
N
Z:l yill — (nxz/X)]
(8.11) R == =Y/X.
;xi[l — (na:/X)]

Furthermore, (8.10) may be estimated by
(8.12) e(Y — Y)* = X*/[n(n — 1)]% [(yi/zi) — 11 — (nai/X)]

where

(8.13)

€8

r =

1€8

with a slight overestimation we may put

r=n"y, Yi/Ts .

(8.14)

ies

Sl — (/X))

Formula (8.12) is a simplified version of the Yates-Grundy estimator

(Y —Y)

32 2 [(yi/m) — (yi/m)(mwim; —

2,jes

X/ 20 20 ((yo/w:) — (yi/en)T 1L — (nzi/X)]

1,J€8

mij) /i
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“[L = (na;/X)]ldo — (1 — n2i/X) (1 — na;/X)]™

where we have used w; = nz;,/X and the formula (8.8) for m;; . Now, further
approximations

[do — (1 — nzi/X)(1 — na;/X)]" = do'[n/(n — 1)]

and (see examples following Lemma 4.2) do" D e [1 — (nx:;/X)] = 1 lead to
formula (8.12).

If we decide to utilize the numbers x; by ratio estimation, we still may use
unequal probabilities in order to make use of the variability of expected values
of (y: — Rz:)’. Then the w’s should be proportionate to some numbers z;
(usually z; = z¥,1 < g < 2), which may be accomplished by using again (8.6)
with the z’s replaced by the z.’s. The estimator becomes

5 2 il
(8.15) Yy=XX&

> wi/z

1e8

and its mean square deviation may be approximated by

Xn 2 yi — (Y/X)z:\

1€8

E(Y-Y)Y?=E

(8.16) g (z Y Vi (Y/X)x,)z
ies 23
= i: ly: — (Y/X)a: — o2l [(Z/nz:) — 1],
where
> s — (Y/X)z)[l — /7
(817) Y Z_; (y: — (Y/X))l (ne:/Z;)] ~ 0

2. all — (ne:/7)]

1=

and Z = > _112:;. Obviously, we have used (8.10) with y; and x; replaced by
yi — (Y/X)z; and z;, respectively. Usually the approximation with ¢ = 0
will do as well.

For estimated mean square error we can take, admitting a slight upward
bias,
oV — V) = (X/X)NZ/n(n — DX [(yi/z:) — (V/X)(2i/20)]
(8.18) tee

[l — (n2:/Z)]

where
(8.19) V=20 yifes, X = Zn') xife.

1es €8
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9. Short-cuts in performing rejective sampling. Most frequently rejective
sampling would be performed by n successive independent (i.e. with replace-
ment) draws of one unit with single-draw probabilities a; given by, say, (8.6),
rejecting the whole partly built up sample, if any two units in it coincide
(in contra distinction of successive sampling, where only the last unit is rejected,
if it coincides with some previously drawn).

In carrying out the single draws, the following short-cuts may prove useful:

MeTraOD 1. We choose a number @ such that

Q =lge§§vm/{1 — [(n — Dzy/X]}

and select a random number ¢ in the range from 1 to N and, independently, a
random number ¢ in the range from 1 to Q. If

(9.1) g = z/{1 — [(n — Dz/X1},

we draw the unit ¢ but reiterate the whole process otherwise.

When applying Method 1, we do not need to compute the numbers
z:/(1 — (n — 1)z;/X) except for the units selected in the course of the per-
formance, and even for a great portion of them we are able to check (9.1) by
eye.

If the sample is rejected with a high probability, then another method based
on Remark 4.1 is worth considering:

MetaOD 2. We select N independent random numbers g, -+, gv in the
range from 1 to n "X and include in a provisory sample every unit 7 such that
¢s < ;. Denote the provisory sample by s, and suppose it contains & units.
Now, if & = n, we accept s; for the definitive sample; if & < n we select from the
population U — s a rejective sample s%_i of size n — k with single-draw prob-
abilities

o =€\l — (n—k — Daad T, (1eU — &)

where d = S\ (n/X)[1 — (nxi/X)], and put s = s U shs 5 if & > n, we
select from s a rejective sample sp_, of size k — n with single-draw probabilities

of = N1 — (nz/ X1 = (b — n — DAL — (nz:/ X))}

and put s = s — St .

If N is large, the first step in Method 2 may be facilitated as follows: We select
a number @ such that Q = max;<;<y 2; and then draw a simple random sample
s Of size m, where m is a realization of a binomial random variable with number
of trials N and probability of success n@/X (the binomial distribution may be
replaced appropriately by normal or Poisson). Then we proceed with s in
the same way as with U except that the numbers g1, - - - , g are selected in the
range from 1 to Q.
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