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1. Introduction and summary. For the two-sample problem, Wilcoxon [21],
Fisher and Yates [6], Terry [19], Hoeffding [10], Hodges and Lehmann [8], Savage
[17], Chernoff and Savage [3], Lehmann [13], Capon [2] and others have con-
sidered rank-sum statistics equivalent to Sy(H) = m™" Y, E(Z(R(X:)) | H)
— ' 2 E(Z(R(YY)) | H), where E(Z(j) | H) is the expectation of the jth
order statistic of a sample of size N = m + n from a population with c¢pf (cumu-
lative probability function) H and R(X;) [R(Y;)] is the rank of X,[Y;] in the
combined sample of X’s and Y’s.

In order to perform tests based on these statistics one needs special tables of
expected values as well as tables of the hypothesis distribution. Further, in
general, exact desired significance levels can only be achieved through randomiza-
tion.

The object of this note is to introduce rank-sum statistics in which one ran-
domizes initially and circumvents the necessity of two special tables. These new
randomized statistics, which are formed by deleting the expectation signs “E”
in Sy(H ), generally satisfy the same asymptotic goodness criteria as their non-
randomized counterparts. Moreover, they have the added advantage that for
appropriate choices of the parameters they have null hypothesis distributions
which are continuous, known and tabulated (e.g., normal, x’, etc.) In particular,
one of the new two-sample statistics has an exact normal distribution and is
asymptotically uniformly more efficient than the ¢-test for translation alterna-
tives.

This idea is extended to obtain randomized rank-sum statistics for the inde-
pendence, randomness, k-sample and two-factor problems analogous to the
statistics of Friedman [7], Puri [15], Stuart [18] and others. As in the references
listed above, prime interest will be in those cases for which H is normal, uniform
or exponential. However, the methodology is equally applicable to other con-
tinuous cpf’s H.

2. Two-sample tests. Basic to the obtaining of the aforementioned desirable
null hypothesis distributions is the following lemma.

Lemma 2.1. Let F be a continuous cpf and let H be any cpf. If Wy, Wa, --- , Wy,
and Zy, Zs, -+, Zy are independent random samples with cpf’s F and H, re-
spectively, if R(W;) denotes the rank of W; among Wy, W, ---, Wy, and if
Z (%) is the tth order statistic of Z1, Za , - -+ , Zy ;then Z(R(Wh)), Z(R(W3)), -+,
Z(R(Wy)) have the same joint distribution as the random sample Zy , Zo, +++ , Zy .
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Proor. Let Ay be a Borel set in N dimensional Euclidean space. First compute
PUZ(B(W1)), -+, Z(R(Wx))] & An}
= 2 P{lZ(n), -+, Z(rw)l e Ax [ROVL) = 11, -+, R(W) = ral
P{R(W1) =11, -, R(Wy) = 14}
= (X P{Z(n), -+, Z(rx)] € Ax})/N!

where the summation is over all possible permutations {r,, - - -, 7y} of the ranks
{17 T N } .
Next compute

P{[Zy, -+, Zn] € A}
= S P{Z(n), -+, Z(m)) € Ay | R(Z2) =, o+, R(Z) = 1)
“P{R(Z1) =11, -+, R(Zy) = 7}
= (X P{Z(n), -+, Z(rw)] € Ax})/N.
The proof is complete since it follows that
PUZ(R(WY)), - -+, Z(R(Wx))] e Ax} = P{[Z1, -+, Zy] € Ax}

for all Borel sets Ay .

Let Xy, Xo, -+, Xpnand Yy, Ys, ---, Y, be two independent random
samples from populations with continuous cpf’s F and G, respectively. The
hypothesis considered is Hy: F = ( against one-sided location alternatives. Let
N =m+nandlet Z(1), Z(2), ---, Z(N) be the order statistics of a random
sample Z, , Z,, - - -, Zy from a population with cpf H (where Z,, Z,, --- , Zy is
independent of X;, ---, X,, ; Y1, .-+, ¥,). Further, let R(X;)[R(Y;)] denote
the rank of X,[Y,] in the combined sample of X’s and Y’s.

The randomized rank-sum statistic 7x(H) is now defined by 7Ty(H) =
m™ I Z(R(X,)) — n7 2 Z(R(YS)).

One sees from the formula for 7'x(H ) that one essentially replaces the original
data X;, Xo, -+, Xuw; Y1, Ys, -+, Y,, by arandom sample Z, , Z,, - -- , Zy
known to have cpf H, and forms the difference of the sample means of the trans-
formed X- and Y-values, where the transformation depends only on the ranks of
the X’s and Y’s in the combined sample. This randomized statistic Tx(H) has
the advantage over its nonrandomized rank-sum counterpart Sy(H) =
m™ DL E(Z(R(X.))|H) — n" > E(Z(R(Y:)) | H) as defined in Section 1,
of having a continuous distribution for which all significance levels are exactly
available, and of having a well-tabulated hypothesis distribution when one
chooses A properly. This is reflected in the following theorem and example. The
theorem is an immediate consequence of the lemma above.

THEOREM 2.2. When F = G, then Tx(H ) has the distribution of the difference of
means of independent samples of sizes m and n, respectively, from populations with
cpf’s H.
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In particular,

ExampLE 2.1.

(i) If H = &, the standard normal cpf, then (mn/N)Ty(®) =
(mn/NYHm™ > Z(R(X.)) — n" > Z(R(Y))} has a standard normal cpf;

(i1) if H = U, the standard uniform cpf, and if n = m, then the cpf of
L4 17,(U) = 24 Hn ' D Z(R(X))) — n " 2, Z(R(Y:))} is the same as the
cpf of the mean of a sample of N standard uniform variables, i.e., its density is
N(N — D> (=1 (xz — r/N)", where the summation is over
r = Nzj-

(iii) if H = K, the standard exponential c¢pf on [ 0, « ), and if n = m, then the
epf of NTx(K) = 2{>_ Z(R(X.)) — > Z(R(Y,))} is the same as the cpf of
the difference of two independent chi-square variables, each with N degrees of
freedom. This cpf is discussed in Section 5; see Table 5.1.

On applying Tx(H), one will need to construct the random sample
Zy, -+, Zx . This can be done by referring to tables such as [16]. Note that from
Z(R(X1)), -+, Z(R(Xw)); Z(R(Y1)), -+, Z(R(Y,)) one can obtain the
ranks R(X,), -+, R(Xn); R(Y1), ---, R(Y,). Thus no “information’ is lost
on passing from the ranks to Z(R(X,)), - -, Z(R(X,)); Z(R(YY)), -,
Z(R(Y,)), and on applying the rank-sum statistic Sy(H) to Z(R(X1)), -+,
Z(R(Xw)); Z(R(Y1)), - -+, Z(R(Y,)) one obtains the same result as on apply-
ing Sy(H)to Xq1, -+, X ; Y1, -, Y,.

On comparing the computations involved in Sy(H) and Ty(H), note that
Sx(H) can only be applied when the expected values E(Z(1)|H), ---,
E(Z(N) | H) are easily computable or tables of them are available. Further, the
significance levels of Sy(H) must be obtained by computing the ordering in-
duced by Sy(H) on the different permutations of the ranks, or by referring to
special tables. In the latter case, the true significance levels (which are of the
form k(z)—l) are usually smaller than the ones listed in the table.

In the next section on the k-sample problem, randomized statistics will beeven
more useful since for that problem the significance levels of the usual rank tests
are hard to compute and tables are not available.

In view of the construction of the randomized statistic 7y(H ), one might ex-
pect that it is in some sense asymptotically equivalent to its rank-sum counter-
part Sy(H ). This will be reflected in theorems to follow, but first one needs two
lemmas.

LeMmmA 2.3. If one defines ax: = 1 if the ith observation in the ordered combined
sample of X’s and Y’s is an X, ay; = O otherwise, and if we define \; = m/N,
Ao = n/N; then one may write Tx(H) = (MNN)"' D ¥ Z(G)(ayi — M) and
Sy(H) = MNN)T D200 E(Z(7) | H)(ayi — Ni) where the Z’s and ay.’s are inde-
pendent.

Proovr. Follows from straightforward calculations.

LEmMA 2.4. If the random variable with cpf H has second moments, then
N> Y, Var (Z(3) | H) — =».

Proor. Hoeffding [11] has essentially shown that N~' > E*(Z(:) |H) —
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[2*dH(z) as N — «. It remains to note that N~ >_ Var (Z(¢) | H)
N'Y. E(Z'i) |H) — N 2 E*(Z(:) | H) and that N~ > E(Z*(3) | H)
N7E(X. Z*G) |H) = N'E(X Z} | H) = [’ dH ().

TueoreMm 2.5. If H is any cpi, then

(i) E(Tw(H) |F, G) = E(Sy(H) | F, G). If H has second moments and if
M s bounded away from 0 and 1, then

(ii) Var (N'[(Tx(H) — Sy(H)]|F, F) —0as N — =, and

(iii) Var (N*(Tx(H) — Sy(H)) | F, G) — 0 as N — « whenever one of the
following is true

(a) X ici Cov (Z(3), Z(j))E(ani — M)(aw; — M) = o(N) as N — o,

(b) 2 iciCov (Z(3), Z(j))E(ani — M)(ax; — M) = 0.

Proor. (i) follows at once from Lemma 2.3. For the remaining parts of the
theorem, observe that Lemma 2.3 and a few computations yield

Var (N} [Tx(H) — Sy(H)] | F, @) ,

= D\ TN D45 Cov (Z(3), Z(5))E(ans — M) (ani — M)
2N PN D ici Cov (Z(4), Z(j))E(an: — M)(ax; — M)
+ N TPNTY Var (Z(4) | H)E(aw: — )™

Using Lemma 2.4, (iii) now follows at once. To obtain (ii), observe that when
F = G, then E(ax: — M) (anj — M) = Cov (awi, an;) = —MM(N — 1) for
1 #% j. (ii) now follows from (iii) (b).

Exampre 2.1. In particular, if H = U, the standard uniform cpf (so that
Sx(U) is the Wilcoxon statistic), then

Var (N Tx(U) — Sxy(U)] | F, F) = [12xM (N — 1)
This follows since when H = U, then
Cov (Z(3), Z(j)) = «(N + 1 — j)(N + 1)(N + 2)7  fori = j;

and when F = @, then Var (ay;) = Ade.

From Theorem 2.5, one can obtain results both about Sy(H) and T'»(H).
For instance, (ii) implies that Sy(H) and Tx(H) have the same asymptotic
distribution under the hypothesis F = G whenever H has second moments. Since
Ty(H) is asymptotically normally distributed by Theorem 2.2, it follows that

COROLLARY 2.6. If H has second moments, if F = G, and if \y = m/N is bounded
away from 0 and 1, then the distribution of (mn/N Vouw Sy (H ) tends to the standard
normal distribution as N — .

Similar results have been obtained by Dwass [5] using essentially the same
approach ; moreover the result was obtained by Chernoff and Savage [3] using a
different approach and the “smoothness” condition

(2.1) |(d¥/du’) (u)| £ Klu(l — )77,

fori = 0, 1,2 and some § > 0 whereJ = H ' and K is a constant.

I
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The result of Chernoff and Savage holds when F # G, thus

CoROLLARY 2.7. If either (a) or (b) of Theorem 2.5 hold, if (2.1) is satisfied
and if \; s bounded away from 0 and 1, then the cpf of [Tx(H) — uxlon " tends to a
standard normal cpf as N — o, where uy and ox" are the mean and variance of
Sy (H) respectively (see Theorem 1 of Chernoff and Savage).

One can now compute the asymptotic relative efficiency (ARE) of Tx(H)
with respect to Sy(H ). The concept of ARE is due to Pitman and is derived as
follows. Let 7 and T’ be two test statistics for Hy : 6 = 6o vs H, : 8 > 6, . Then
the relative efficiency of 7" with respect to 7T is the ratio n/n’ where n and n’
are the number of observations required to give 7 and T’ the same power g8
for a given level of significance a. The ARE of T’ with respect to T is written
A(T', T) and is obtained by considering the limit of n/n’ for a sequence on al-
ternatives depending on the sample size and converging to H, in such a way that
the power of both tests tends to a limit <1.

The following results hold for asymptotic relative efficiencies.

TurorEM 2.8. If H has second moments, then

(i) A(T(H),S(H)) = 1 for each class of continuous alternatives {Gy} such that
Gy = FandfGNdF—»%asN-ﬁ o,

(ii) In particular, A(T(H), S(H)) = 1 for H normal, uniform or exponential,
and for translation alternatives G(z) = F(xz + 0x), 0y > 0as N — .

Proor. Write Py = P(Y < X) = [ Gy dF. When Py = %, then

E((I[n‘ - )\1)((117]' - )\1) < 0,

thus there exists a positive number 8y such that whenever [Py — 3| < 8, then
E(ay: — M)(ax; — \) =< 0. From Theorem 2.5 (iii) (b), it follows that whenever
|Py — | < ox, Tw(H) and Sy(H) have the same asymptotic distributions,
thus they have the same ARE.

It follows from Theorem 2.8 that the ARE properties of Tx(H ) are the same
as the well-known ARE properties of the rank-sum statistic Sy(H ). In particular
one has

CoROLLARY 2.9. Let ®, U and K denote the standard normal cpf, the standard
uniform cpf and the standard exponential cpf on [0, « ) respectively. Then

(i) Tx(®), Tw(U) and Tx(K) are asymptotically efficient and asymptotically
locally most powerful rank tests for normal translation alternatives, logistic transla-
tion alternatives and exponential allernatives respectively, where exponential
alternatives are of the form

F(z) =1 — ¢ ™%, Gaz)=1—¢e"% 2=06>6.

(i) If F has a density and finite second moments and if ¢ is Student’s statistic,
then A(T(®),t) = 1 for translation alternatives with equality if and only if F is a
normal cpf.

Proor. (i) follows at once from Theorem 2.8 since the corresponding results
for Sy(®), Sx(U) and Sx(K) are known (see for instance Lehmann [13] and
Capon [2]). (ii) follows similarly from Chernoff and Savage [3].
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Although the finite sample size distribution of Ty(H) is simple when F = G,
this distribution has not been obtained when F > G. Considerations of proba-
bilities of rank orderings for normal translation alternatives indicates, however,
that whenever the significance level « is of the form k(%)™ then Sy(H) is slightly
more powerful than Ty(H ) for normal translation alternatives.

The following finite sample size result was obtained by Lehmann in [13],
p. 238.

TrEOREM 2.10. If H is continuous, then Tx(H ) is unbiased for one-sided alterna-
tives of the type G < F.

3. k-sample tests. The idea introduced in the preceding section will be ex-
tended to the k-sample problem described below.

Xu, oy Xy s Xy ooy Xongy vy X, ©++, Xin, are k independent
random samples with continuous cpf’s Fy , Fy, - - - , F; respectively. The hypothe-
sis considered is Hy : F1 = F, --- = F; against location alternatives.

Let N = > n; and let Z(1), Z(2), -+, Z(N) be the order statistics of a
random sample of size N from a population with cpf H. Now reject H, for large
values of V(H) = D iini(Z. — Z.)" where Z; = n "> 1 Z(R(X4)),
Z.. = N2 1L Z(7) and R(X,;) is the rank of X,; in the combined sample of
Xs.

As indicated by the formula, the procedure is to

(1) rank the combined sample of X’s,

(2) replace each X;; by Z(R(X.;)), i.e., the Z value with the same rank in
the Z-sample as X;; has in the X-sample.

(3) compute the numerator of the usual F-statistic for the Z’s obtained in
(2) above.

One recalls that the denominator of the usual F-statistic is the pooled variance,
which is an estimate of the unknown common variance in the k-sample case.
This estimate is unnecessary in the randomized statistic V(H) above since a
random sample of known variance is imposed by the procedure.

The distribution of V(H) is given by the following theorem, which makes use
of the basic Lemma (2.1) and a well-known result ([12], p. 504).

LeEmmA 3.1. Under H,

(1) if H = ®, the standard normal cpf, then V(H) has exactly a chi-square dis-
tribution with (k — 1) degrees of freedom,

(ii) if the variance ox” = Var (Z | H) exists, then ox > V(H) is asymptotically
a chi-square variate with (k — 1) degrees.of freedom,

(i) 4n all cases, V(H) has the distribution of Y iy n(Yi — Y..)?, where
{Y4;} are k independent random samples of sizes n; from a population with cpf’s H.

Proor. Set Fy = Fy = -+ = F;, = F, then Xu1, X1z, +** , Xy, is a random
sample from a population with cpf F, thus (iii) follows from Lemma 2.1. (i)
and (ii) now follow at once from (iii).

From the above theorem it is clear that by a judicious choice of the cpf H,
one can get a desirable null hypothesis distribution. The next step is to give some
indication of the goodness properties of the test statistic V(H). An immediate
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extension of the nonrandomized two-sample rank-sum statistic Sy(H ) is L(H) =
2 ni(Ei. — un)’ where H;. = n ' 275 E(Z(R(X ) | H) and g = [ x dH ().

Statistics equivalent to L(H) have been studied by Puri [15] and others.
Puri has shown that for alternatives of the form Fy(z) = F(z + 6;/N?), the
ARE of L(H) with respect to the classical § test is under appropriate conditions
independent of the number of samples & and thus equals A (S(H), t).

The following theorem will enable us to show that V(H) has the same prop-
erties as Puri shows L(H) to have. The following notation is needed.

Let \; = n;/N and define ay} = 1 if the jth observation in the ordered com-
bined sample of N X’s is from the ith sample, a$} = 0 otherwise. Further, let
Twi = n 25 Z(j)(ax] — No) and Sys = n ' 23 B(Z() | H)(a§) — No);
then it is easy to see that one may write V(H) = Y i, T%: and L(H) =
Z';':l Sx: . It follows from Lemma 2.1 that whenever ox® < o then T~:i con-
verges in probability to a normal variable T'; under H, . Moreover, Puri has given
conditions under which Sy; converges in probability to a normal variable S;.
One can now easily prove

Turorem 3.2. If [ |z| dH(x) < <, then

(1) Y BN (Tws) = D51 E*(Sy:) under the null hypothesis and under any
alternative, ie., V(H) and L(H) have the same noncentrality parameter. If
[ 2 dH(2) < * and if \; is bounded away from 0 and 1 foreachi =1, ---,k,
then

(ii) [V(H) — L(H)] tends to zero in probability as N — o« under H,. If
further, either Sy; or Tw; converges in probability to a random variable for each
t=1,--+,k, then

(iii) [V(H) — L(H)] tends to zero in probability whenever one of the following is
true for each ¢ = 1, -+ | k.

(a) 2ouei Cov (Z(s), Z(7))E(ak — Ni)(ay) — \i) = o(N) as N — oo.

(b) 2eci Cov (Z(s), Z(3))E(ax — Ni)(ak) — Ni) < 0.

Proor. (i) is immediate since the Z’s and ay;’s are independent. Suppose
T'y: converges in probability to 7'; (say) for each ¢ = 1, ---, k. Then by the
arguments of Theorem 2.6, Sy converges in probability to T'; . Thus both V (H)
and L(H) converge in probability to Y i, 72 This completes the proof of
(ii) and (iii).

From Lemma 3.1(ii) and Theorem 3.2(ii) one obtains

CoroLLARY 3.3. If fxg dH(x) = o' < o« and if \; is bounded away from O
and 1 then oy "L(H) 1s asymptotically a chi-square variate with (k — 1) degrees
of freedom under H, .

Further properties of V(H) can now be obtained from Theorem 3.2 and Puri
[15].

COROLLARY 3.4.

(i) If X; is bounded away from 0 and 1, if [ 2° dH(z) < « and if either Ty
or Sy: converge tn probability for each ¢ = 1, -+ | k, then A(V(H), L(H)) =1
for each class of alternatives {Fy} such that for some F, |Fiy — F| - 0as N — «
foreach v =1, --- | k.
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(ii) In particular, A(V(H), L(H)) = 1 for H normal, uniform or exponential
and for translation alternatives F;(x) = F(x + 0iv), iy > 0as N — o,

(iii) If F of (ii) satisfies the regularity conditions of Theorem 8.2 of Puri [15],
then A(V(®), §) = 1 for translation alternatives with equality iff F is a normal
cpf where § s the usual F ratio test statistic.

4. 2-factor tests. In view of the distribution and ARE results of the preceding
sections it is reasonable to attempt to extend the idea of randomized rank-sum
statistics to the case of two-factor experiments with one observation per cell.

1st factor
2nd factor
1 2 e ¢
1 X 11 X 12 e X 1c
2 Xa Xoo e Xo.
r X rl X 2 M X rc

It is assumed that all the X’s are independent and that each X;; has a con-
tinuous cpf Fs; .

First one notes that if it is assumed that there is no row effect, then testing the
hypothesis “H, : No column effect,”” becomes a k-sample problem. The analogous
result holds when it is assumed that there is no row effect. For that reason, atten-
tion will be restricted to the hypothesis “H, : No column effect” under the
assumption that there is row effect. More precisely, the hypothesis to be con-
sideredis Hy : Fyy = Fp = --- = Fforeach? = 1,2, -, r, against the al-
ternative that there is a shift in the location of the columns.

Perhaps the most natural extension of the procedure of the preceding sections
consists of

(1) ranking the collection {X,;} of X’s;

(2) replacing each X;; by Z(R(X,;)), i.e., the Z value in the independent
random sample Z,, Zz, -+, Z, from H with the same rank among the Z’s
as X,; has among the X’s; and

(3) computing the numerator of the appropriate F-statistic.

This procedure leads to the calculation of the statistic

QH) =r2in(Z;—2.),

where Z.; = ' D i1 Z(R(Xy)) and Z.. = (re)™ > Z; . In view of the preced-
ing results, one might suspect that this statistic has corresponding good properties.
However, neither the hypothesis distribution nor any finite-sample-size power or
ARE’s of this statistic are known (when there is row effect).

To see that the null distribution of Q' (H) depends on the row effect, consider
the extreme cases when (a) there is no row effect, and (b) the row effect is such
that all the X’s in the 7th row are smaller than the X’s in the (¢ + 1)st row for
1=1,2 -+, (r—1).
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This leads one to employ an idea used by Friedman [7], Mood [14], Durbin
[4] and others to eliminate row effect. The new procedure consists of

(1) getting r independent ordered random samples each of size ¢, i.e., Z:(1),
) Zl(c)r Zz(l), ) Zz(C), Tty Zr(l)y STty Z,-(C).

(2) Ranking the X’s in each row to obtain the ranks Ri(X), - -+, Bi(X1.);
RZ(X21)7 T, RZ(X20)5 ety Rr(Xrl)y Tt Rr(XrC)-

(3) Replacing each X;; by Z;(R:(X;)), i.e., that Z value of the 7th sample of
Z’s that has the same row-rank as X,;.

(4) Rejecting the hypothesis for large values of the statistic Q(H) =
r> 5 (Z;—Z.) ' where Z.; = v D i Zi(Ru( X)) and Z.. = (re) ™D i Z:(5).
For this statistic one obtains from the basic Lemma 2.1

TaEOREM 4.1. Under H, ,

(1) If H = ¥, the standard normal cpf, then Q(P) has an exact chi-square distri-
bution with (¢ — 1) degrees of freedom,

(ii) 4f the variance cx° = Var (Z | H) exists, then Q(H) is asymptotically a
chi-square variate with (¢ — 1) degrees of freedom,

(iii) 4n all cases Q(H) has the distribution of r2_5-1 (Y.; — Y..)* where { ¥}
are r independent random samples from populations with cpf’s H.

Proor. (iii) follows at once by applying Lemma 2.1 to each row. (i) and (ii)
follow from (iii).

Note that the above results are valid not only if the rows differ in location but
also if they differ in scale, i.e., if Var (X ) 5 Var (X ) for ¢ # j.

On comparing Q(H) with its rank counterpart D(H) obtained from Q(H)
by replacing Z;(R:(X;;)) by E(Z:(Ri(Xs;)) | H), one finds that D(H) and
Q(H) are not asymptotically equivalent in general. The rank statistics used in
[7], [14] and [5] are essentially obtained from D(H ) by letting H = U, the uniform
cpf. In this case one can compute (on letting the number of columns ¢ be fixed
and the number r of rows tend to infinity) A(Q(U), D(U)) = ¢/(¢c + 1) for
alternatives such that this efficiency exists. A similar result holds in general, thus
the ARE is in favor of D(H ) when the number of rows is “much larger” than the
number of columns.

5. Bivariate independence tests. Continuing the pattern of the preceding
sections, one considers randomized tests for the following bivariate problem.
(X1, Y1), (X2,7Ys), -+, (Xa, Y,) is a random sample from a bivariate popula-
tion with continuous c¢pf F. X and Y have the continuous marginal cpf’s F; and
F,, respectively. The hypothesis tested is Hy : F(z, y) = Fi(z)Fs(y) for all

z, .
The usual rank-sum statistic for this hypothesis is the rank correlation co-
efficient 7, which is equivalent to d = 2 _ i~ R(X,;)R(Y;) where R(X;) denotes

the rank of X; among X;, X,, --- , X, and R(Y;) denotes the rank of ¥; among
Y:,,Y., -+, Y,. Kendall and Stuart ([12], p. 486), suggest the statisticc =
> R(X)E(Z(R(Y,)) | ®) where E(Z(j) | ®) is the expected value of the jth
order statistic in a random sample of size n from a standard normal distribution.

The statistic considered here is W(H) = n')_ Z(R(X:))Z' (R(Y;)) where
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Z(1),Z(2), -+ ,Z(n)and Z'(1),Z'(2), - - - , Z'(n) are two independent ordered
random samples of sizes n from a population with cpf H.

This randomized statistic has the following desirable properties under in-
dependence.

TraEOREM 5.1. Under H,

(i) of H = ®, the standard normal cpf, then the distribution of 2nW (P) s the
same as the distribution of the difference of two independent chi-square variables
each with n degrees of freedom.

(i) If the moment us(H) = f &’ dH (z) exists and if we wrile pg = f zdH(z),
then n*(u’(H) — ux’) ' [W(H) — us’l has asymplotically the distribution of a
standard normal variable.

(iii) In all cases, W(H) has exactly the distribution of n™'D 1w Z:Z: where

TABLE 5.1
Exact Asympt. Exact Asympt. Exact Asympt.
Y n
2 2 4 4 6 6
1.282 .9184 .90 .9123 .90 .9092 .90
1.645 .9512 .95 .9507 .95 .9507 .95
Zy, 2oy oo Znand 21, 2y, -+, Z, are two independent random samples from

populations with cpf H.

Proor. (iii) follows directly by applying Lemma, 2.1 separately to the sample
of X’s and Y’s and by using the fact that Z(R(X,)) and Z' (R(Y.)) are inde-
pendent whenever X, and Y, are. (ii) follows from (iii) and the Central Limit
Theorem. (i) follows by writing 2nW(®) = > 1y {[Z(R(X.)) + Z'(R(Y:))]/24*
—{[Z(R(X))) — Z'(R(Y:))]/2}}* and using (iii).

The rapidity of convergence of the distribution of n*W (@) to a standard normal
distribution is indicated by the coincidence of the three first moments of n%W(fb)
with that of a standard normal variable, and by the difference of the fourth
moments being 6/n. Moreover, consider Table 5.1 giving theexact and asymptotic
values of P(n'W(®) < v) fory = 1.282, v = 1.645, n = 2, 4 and 6. The table
was obtained by computing the cpf of W(®) from its characteristic function.

Kendall and Stuart ([12], p. 486), consider a rank test of independence to be
optimum if it is obtained from the usual correlation coeflicient » by replacing
observations by functions of the ranks that are asymptotically perfectly correlated
with the observations they replace, whenever the observations are normally
distributed. The following result is therefore of interest.

Lemma 5.2. If X, is normally distributed, then X; and Z(R(X;)) are asympioti-
cally perfectly correlated. A similar result holds for Y; and Z(R(Y;)).

Proor. Without loss of generality, let X, have a standard normal distribution.
Let X(1), X(2), ---, X(n) be the order statistics of X;, X5, ---, X, , then
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p(Xi, Z(R(X;))) = E(X:Z(R(X:)))

= Y E(X()Z() | R(X:) = jHP(R(X.) = j)
— 'Y ENX(G)) > [2FdB(x) as m— =

where the last step follows from Hoeffding [11].

It follows that if we replace (X,, Y;) in r by (Z(R(X.)), Z(R(Y:))) we
obtain an optimum rank test in the sense of Kendall and Stuart. Since r is asymp-
totically equivalent to Y X,Y; and since a random sample of known variances
and means is imposed by the procedure, the statistic n' D Z(R(X:) YZ'(R(Y.))
may be used.

Finally note that

THEOREM 5.3.

(1) If X and Y, are normally distributed and independent, then

p(n 2 XY, W(P)) — 1

asn — ».

(i) A(r, W(P)) = 1 for bivariate normal alternatives.

Proor. (i) follows at once from Theorem 5.2, (ii) follows from (i) and a
result by van Eeden [20] that essentially states that if 7’ and 7" are two statistics
such that one of them is asymptotically locally most powerful, then under
appropriate conditions, A (T, T") = limu.e p(T, T" | Ho). Here r is most powerful.

Note that in this case, optimality in the sense of Kendall and Stuart means
A(r, W(®)) = 1 for normal alternatives.

6. Randomness tests. Kendall and Stuart ([12], pp. 483-487), have noted
that in some sense ‘‘good” independence tests are ‘“good” randomness tests,
because the randomness hypothesis Hy : F; = F; = --- = F, is equivalent to
the hypothesis of independence of values and chronological order. More precisely,
the univariate sample X, , X, , - -+, X, (where X; has cpf F;) can be represented
by the bivariate sample (1, X1), (2, X3), --+, (n, X,), which, under H,, is
from a bivariate population with X; independent of <.

Following the results of the preceding section, one considers the statistic
> iZ(R(X:)), where Z(1), Z(2), - -+, Z(n) are the usual order statistics. It
turns out that this straightforward extension has small efficiency when compared
to the most powerful statistic, b = > iX; — in(n + 1)X, for normal trend
alternatives (Kendall and Stuart ([12), p. 485)).

To obtain better efficiency, one considers the statistic

d(H) = n"' 2 iZ(R(X.))) — [(n + 1)/2Z,

which has the following desirable properties.

TrEOREM 6.1. Under H, ,

(i) ifpe = [2dH(z) and o’ = [ (x — pu)* dH(2) exist, then E(d'(H)) = 0
and Var (d'(H)) = o5’ (n* — 1)(12n)7,



214 C. B. BELL AND K. A. DOKSUM

(ii) of H = &, the standard normal cpf, then d’ (®) is distributed as a normal
variate with mean 0 and variance (n® — 1)(12n)7".

Proor. (i) follows by straightforward calculations, (ii) follows from Lemma
2.1 after writing d'(®) = ™'Y [ — (n + 1)]Z(R(X;)).

From Lemma 5.2, one obtains at once

TueorEM 6.2. If X, is normally distributed, then under Hy , p(n™b, d' (®)) — 1
as N — oo,

Also, d'(®) is an optimum rank test of randomness in the sense of Kendall
and Stuart ([12], p. 486).
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