NONLINEAR LEAST SQUARES ESTIMATION!

By H. O. HARTLEY? AND AARON BOOKER?

Towa State University

1. Introduction and summary. We are given a set of N responses Y; which
have arisen from a nonlinear regression model

(1.1) Y= f(z:,0) + e ; t=1,2 ---, N.

Here x, denotes the tth fized input vector of k elements giving rise to Y, , whilst 6
is an m-element unknown parameter vector with elements 6; and the e; are a set
of N independent error residuals from N (0, ¢°) with ¢* unknown. The expecta-
tions of the Y,, are therefore the functions f(x;, §) which will be assumed to
satisfy certain regularity conditions. The problem is to estimate 6 notably by
least squares.

In this paper we shall develop an iterative method of solution of the least
squares equations which has the following properties:

(a) the computational procedure is convergent for finite N;

(b) the resulting estimators are asymptotically 100 % efficient as N — .

In Sections 2-4 we give a survey of our results leaving the mathematical proofs
to Sections 57 whilst in Section 8 we illustrate our method with an example.

Although our theoretical development is oriented towards our specific goals
certain results are proved in a somewhat more general form. Some of our theory
will be seen to correspond to well known theorems on stochastic limits which
have to be reproved because of certain modifications which we require.

2. The formulation of the large sample theory of the least square point esti-
mator. The estimation of § by nonlinear least squares (here identical with maxi-
mum likelihood estimation) gives rise to the minimization of

(2.1) Q(O) = 2. (Vi — f(z:, 0))"
with associated least squares equations
(2.2) (0Q/38.)(8) = Q.(6) = 0, i=12 - ,m

Whilst there are iterative methods of solving the nonlinear least squares equations
(2.2) (see e.g. Hartley, 1961) it will, in general, not be known whether the
solution 6 of (2.2) so obtained is a local minimum of (2.1) or the absolute mini-
mum, and it is only for this absolute minimum of @(6) that asymptotic optimality
properties have been established. The exhaustive scanning of the parameter space
is usually computationally impractical, particularly when the number of param-
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eters is >3 and the conditions on @ ensuring uniqueness of the solutions of Equa-
tions (2.2) are usually not satisfied. A method of estimation is therefore developed
which avoids the search for the absolute minimum of (2.1) and yet yields two
estimators, 6 and 6, which are asymptotically 100 % efficient under fairly general
assumptions. The method consists of splitting the N observations into m groups
of (say) n observations each so that N = mn and the responses Y, arise from
k-dimensional inputs s, (h = 1,2, - -+ ,m;7 = 1,2, - - -, n). The convex closures
Cr(n) of the z, must be disjoint. (See more specific formulation in Section 6.)
The method then consists of two steps:

SteP (i) Construct a consistent estimator 8* of 6 by solving the system of m
nonlinear equations

(2.3) Yi = J(h, 6%)

where ¥, = n" D, Vi, 5 F(h, 0) = 07 D, fan ,0).

Step (ii) Using 8% as a starting value carry out one iteration step of the stand-
ard Gauss Newton iteration applied to (2.1) to obtain the 100% efficient esti-
mator 8. As an alternative starting with 6* the modified Gauss Newton iteration
(Hartley, 1961) may be carried to convergence yielding a local (or absolute)
minimum of Q(#) at § = 6 which is likewise asymptotically 100 % efficient. In
fact under certain additional assumptions 6 (coincident with 4) will be asymp-
totically the unique consistent solution of the likelihood Equations (2.2), see
Huzurbazar, (1948), and hence yield, asymptotically the absolute minimum of
Q(6).

The main result lies in establishing the consistency of 6* under very general
conditions on f. Computationally the solution of (2.3) is achieved by driving
Q(8) = 24 (Y4 — f(h, 6))* to its minimum value of zero with the help of the
modified Gauss Newton iteration. Certain computational shortcuts are introduced.
It will be noted that when f(x, ) is linear in 8 the estimators 8 and § agree with
the standard BLUE least squares estimator irrespective of what starting value
is used. Briefly we make the following assumptions. (For a more specific state-
ment of our assumptions see Section 6.)

The first derivatives, f; = (9f/36:)(x, 6), are continuous functions of z and 6
where # is confined to a certain closed, bounded, convex region, S, of the m-space
and the z, are confined to certain convex closures C(n) of the k-space. We also
assume that the N X m matrix of first derivatives f; has full rank, viz

(2.4) F = (fz,0))

has rank m for all § in S and any set of vectors z;,¢t = 1,2, ---, N of which at
least m are distinct. Certain minor additional assumptions concerning the func-
tion f(x, 8) will be described in Section 3 below.

We shall be concerned with the asymptotic behavior of the above estimators of
6 as the sample size N — «. More specifically we shall assume for convenience
that N is a multiple of m, i.e. that N = nm and n — « . Moreover, we shall assume
that it will be possible to split the set of x; vectors into m groups of n vectors
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e (h=1,2, -+ ,m;7 = 1,2, ---, n) in such a way that the convex closures
Ci(n) containing the x;, are disjoint, uniformly bounded in » and that the mini-
mum distance of any two points lying in different C4(n) is bounded away from
zero as n — . These restrictions can usually be satisfied in a great variety of
ways.

A method of finding a solution 6* of (2.3) will be given in Section 3 and the
consistency of 8* will be proved in Section 6.

8. The consistent estimator §*. For the computation of the consistent esti-
mator 6* we require the following lemma, the proof of which is given in Section 6.
LeEMMA. If we denote the first derivatives of the group averages (see (2.3)) by

then the m X m matriz of the f: has rank m, i.e.
(3.1) Rank  (fi(h,0)) = m

fori=1,2, -+ ,myh=1,2, -+, m,and for all § in S and all xs, sets with proper-
ties spectfied in Section 2.

The estimator 6% has been defined as a solution of the m nonlinear Equations
(2.3) and will be obtained as the absolute minimum of the least squares form

Qo) = 20 (Y = J(h, 6))°

Tt is clear that any stationary point of Q(8) is a solution of (2.3). For a stationary
point 6 must satisfy the equations

(32) 0= Qi6) = (8Q/86:)(8) = —2 2ima (Yo — J(h, 6))Fi(h, 6)

fori=1,2,---,m.

Now since the matrix (f;(k, 8)) has rank m (see (3.1)) any root of the system
(3.2) must satisfy ¥, — f(h, 8) = 0 that is, Equations (2.3). Various iterative
methods are now available for computing a stationary point of the least squares
form Q(8). For example the modified Gauss Newton iteration (Hartley, 1961) will
converge to a stationary point and hence in the present case to the absolute
minimum Q(8) = 0 if, in addition to (3.1), the following assumptions are made
about Q(6).

(3.3) Assume that S is convex, closed, and bounded such that it is possible_to
find a starting value o in S such that Q(¢0) < lim inf Q(6) for 6 in S where S is
the complement of S.

(3.4) No two stationary points of Q(8) yield identical values of Q(6), which
means that (2.3) has a unique solution.

The above two assumptions ((3.3) and (3.4)), in conjunction with (3.1), are
sufficient to ensure the convergence of the modified Gauss Newton iteration to a
solution of (3.2) and hence of (2.3). If Assumption (3.4) is not satisfied, the
sequence of 8 vectors generated by the modified Gauss Newton method may have
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more than one point of accumulation in S but we can still select one of the points
of accumulation to which a subsequence will converge and which will be the
absolute minimum of @(#). For a description of these see Hartley (1961).

4. The asymptotically efficient estimators § and §. The estimator 8 is obtained
from 6™ by adding a correction vector D = § — 0* derived from the m linear
equations

(4.1) Zhrfz(xhr,e )f](th,o )1D th(yh,—f(x}“-,o ))fi(xnr , 0 )

The rank of Equatlons (4.1) is m by the Assumptlon (2.4). The estimator 0 is
the limit of the modified Gauss Newton iteration (see Hartley, 1961) with 6* as
starting point. Both 8 and § can be shown to be asymptotically 100 % efficient,
for 8 this is done in Section 7. No such properties can be assured for astationary
point of Q(6) (i.e. solution of (3)) or indeed for a local minimum of Q(6). The
asymptotic and approximate variances and covariances of both 8 and 6 are
given by »

Cov 04; = Covdd; = o (2o filwe, 0)fi(x:,0))

and may be estimated by substituting 8 or 8 for 6 and Q(6)/(N — m) or Q(6)/
(N — m) for o°.

5. Some theorems on stochastic limits. The following theorem is a slight modi-
fication of Theorem 1 given in Mann and Wald (1943). We understand that the
present modification is fully proved in lecture notes by H. Chernoff.

THEOREM 1. A sequence of scalar (vector) functions fu(x.) of a random vector
Z, 18 such that

fa(@n) = 0,(r(n))(0,)

"f and only if for every e > 0 there is a sequence of regions R,(e) such that;

(1) fu(an) = o(r(n))(O0) when a, ¢ R, and

(ii) P(zn € Ru(e)) = 1 — eforn > N(e). (The O, inside () and subsequent
symbols inside () represent alternative forms of the theorems.)

Note that the dimension of R,(e) is the number of components in the vector
z, which may depend on n. The following corollary is an obvious generalization
of Corollary 1 in Mann and Wald.

CoroLLARY 1.1. Let 2, = 0,(f;(n)) or 2, = 0,(fi(n)) forj = 1,2, --+ | r
and R,(¢) be a sequence of subsets of the k(n)-dimensional space where y, =
(Y, Ya®, -+, Ya*™) ds such that P(ys € Ru(e)) 2 1 — e for sufficiently large
n. Let go(z™, -+, 2", yn) be a sequence of functions such that for every e > 0,
ga(n, ba) = 0(f(n))(0) if 6. = O(fi(n)) or a'” = o(fi(n)) and bs & Ra(e).
Then gn(a , yn) = O0p(f(n))(0,(f(n))).

Proor. Let f,(x,) of Theorem 1 be f,(z.) = z, . Then by (ii) there exist regions
for z, which can be combined with the given regions for y, to satisfy (ii) for
(2 , Y»). Condition (i) of Theorem 1 is given by the hypothesis of Corollary 1.1
and the result follows directly from Theorem 1. Next we prove
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COROLLARY 1.2. Let ¥, , Zn , 2, be sequences of stochastic vectors with dimension
k(n),r, rrespectively. Let R,(¢) be a sequence of regions such that P(y, € Ru(€)) =
1 — € for sufficiently large n and z, = 0,(1), 2, — z. = O0,(f(n)) where
limpse f(n) = 0. Let Go(yn , Tn) be a sequence of functions and define H,(Yn o &n , 2n)
by

Hy(Yny &n s 2n) = Gu(tn, @n) — Ga(Yn s 20) — Ten(Yn s Tn, 2a)

where T, s the sth order multiple Taylor expansion of Gu(Yn , T.) with respect to
xn evaluated at , = 2n. If Go(Yn, o) has continuous and uniformly bounded
(s 4 1)th order partial deriatives with respect to x provided y. s in Ra(e), then
Hp(Yn , Tn s 20) = 0,(f'(n)).

Proor. Make the following identification of the quantities in Corollary 1.1
and 1.2

Corollary 1.1 Corollary 1.2
Tn Lny Tn = &n
Yn Yn
filn) for z. 1
filn) for x, — 2. f(n)
f(n) f(n)
9n(@n 5 Yn) Hy(Yn y Tn y 20)

Thus it is only necessary to show that for every ¢ > 0 and for any sequence
@n , bu , Co such that a, € Ra(e), ca — by = O(f(n)), it follows that H,(an , bn , ¢a)
= o(f*(n)). That is, we must verify the property of our function H, which is
stipulated by the O property of the g, function in Corollary 1.1 to which it
corresponds.

Since H, is the remainder term in Taylor’s formula for functions of several
variables and the mixed (s + 1)th order partial derivatives are bounded by,
say B, the sequence H, can be written

|Ho(n , by €)| £ (i e — 0271/ (s + 1L
Using the inequality (D ioy u:)¥ < (2 iz ud)™*" it follows that
|Hoa(an , ba s en)| < O(lea — bal™) = 0(f'(n))
where |c, — bn| denotes the modulus of the vector ¢, — bn .

6. The consistency of the estimator 6*. We now return to the model of Section
1, that is we consider the nonlinear regression law

th = f(xh'r y 0) + Ehr

under the following assumptions:

(i) The convex closures Cr(n) of the z;, in the k-dimensional space are con-
tained for all n in convex compact bounded spaces C; which (for different h)
are disjoint.
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(ii) The functions f:(zx, 8), fi;(x, 6), and fii(x, ) are continuous, bounded
functions of z and 6 for all x ¢ C,(n) and 6 ¢ S, where S is a bounded convex space
which contains the true 6 as an interior point.

(iii) The N by m matrix with elements f:(z, , §) has rank m for all 8 £ S pro-
vided at least m of the vectors z,, + = 1,2, --- , N, are distinct.

Note that the lemma of Section 3 implies

(iii") The m by m matrix F, = (J:(h, 8)) has rank m for ¢ S and s, satis-
fying (i).

Proor or LEmMa : Suppose that the f:(h, ) had a rank <m for some point #
in S and for some set of z,, . Then we would have a set of u; with D_ry u’ > 0
and

(6.1) D imuifi(h, 8) =0

forallh = 1,2, - - -, m. Consider the function G(x) = 2_i= u:f.(z,0). Now from
(6.1) we have for every h = 1,2, --- , m that

(6.2) 0" 2, Gan) = 0 Diui 2opfilan, 0) = 2oiudi(h, 6) = 0.

But (6.2) implies that the m group means of the n values of G(xx,) are zero for
every h. It follows that min, G(x:,) < 0 £ max, G(z.). Since G(x) is continuous
it must take on the value zero at some point &, in the closure C(n). That is, we
must have

(6.3) G(z,) = Z’in=1 uifi(Zn,0) =0

forh=1,2,---,m.

Now since the closures C1(n) are disjoint, Equations (6.3) would contradict
Assumption (iii). This proves the Lemma. We now prove

THEOREM 2. For any 0 ¢ S, the determinant |fi(xx , 8)|, which we denote below by

|F1|, has the same sign for any two sets of vectors yxy, and oy (b = 1,2, -+, m) with
1T € Ch and op € Ch .
Proor. Suppose ., swreCh for h = 1, 2, -+ | m and |Fi(wn, 6)| > 0,

|F1(szn , 6)] < 0. Then consider the function of ¢
G(g) = [F1((@n(1 — q) + 22aq), 0)|.

We have G(0) > 0 and G(1) < 0 and hence, because of the convexity of each
C, there is a ¢* such that G(¢*) = 0. Thus

[Fi(ien(l — ¢%) +l2xhq*, 6)] =0

which contradicts (iii") forn = 1 since 1z,(1 — ¢) + awug is in C;, . Next we prove
TrEOREM 3. There vs mo subsequence Fy of the sequence F, such that
limk»w lel = O
Proor. Suppose

Fk = nk_l :L=kl ,f’i(xh‘f ) 0)|

is such that limy.. |Fx| = 0. The determinant |F:| may be expressed as the sum
of (n;)™ determinants, say F,, where p = 1, ---, (m)™ corresponding to the
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()™ ways of choosing ¢ from each column. Thus |Fi| is the mean of (n;)™
determinants each in the form of an F; . By Theorem 2, all these F; values which
we may denote by 1F; to ,,F1 , have the same sign and hence

mod |F| Z min (mod [1Fy], - -+, mod |,,F1|) = mod [14y Fal.

Thus limy., |1, F1| = 0 which contradicts Theorem 2 and the compactness of the
Ch . It follows that |F,| is bounded away from zero. Next we prove
THEOREM 4. Let 6™ be any consistent estimate of 8 and define

¢n(0) = —nlg" Zhrfi(xhr y e)fj(xhr , ‘9)-
Then we have
T (L"(8) — ¢a(8)) = 0,(1),

n (L7 (8%) — L"(8)) = 0,(1),
and :

n(L7(6%) = 0,(1),

where L” (0) is the m by m matriz of second partial derwatives of the likelihood
Sfunction

L(6) = log I (2m) 7™ exp [~ 307" (Yar — flanr, 6))°].
Proor. Define
z = 20 (Y — f(@ne, 0))fii(2nr , 6) — fifi)/ "
so that n 'L"(6) = n™" D_, 2, . Since
B, = =20 fii/d"
Varz, = ) ,f3,/d

it follows from Assumption (ii) that Var (z,) is bounded and since the z, are
independent (Loeve, M., 1955, p. 234)

z— E(z) = n_lL”(G) — $a(0) = 0,(1).
Also from Assumption (ii) it follows that ¢,(8) is bounded so that
(6.4) n'L"(0) = 0,(1).

Denote the element 4j of n'L" (9) by " (y, x, 9). Identify the functions G, of
Corollary 1.2 with the sequence u,""”(y, , 6) and also

Corollary 1.2 Theorem 4
{6.5) Yn (Y, @y Yiz, L1z, + -+ s Ymn 5 Tmn)
Tn [’}

E3
Zn [/}
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The conditions of Corollary 1.2 are satisfied for s = 0 since by Assumption (ii) the
elements of n™'L” (8) are continuous, bounded functions and (z, — 2,) = 0,(1).
Thus

uﬂ(ij)(y’ x, 0*) - un(m(y; z,0) = 0,(1)
or equivalently

(6.6) n (L7 (6%) — L"(6)) = 0,(1)

and the combination of (6.4) and (6.6) by the rules of algebra concerning O, and
0, (see Chernoff, 1956, p. 1) obtains

n'L"(6%) = 0,(1).

Next we prove

THEOREM 5. With the elements of the matrix ¢.(0) defined in Theorem 4, the
elements of the inverse matriz ¢, " (8) are bounded. )

Proor. Suppose the determinant |¢,(8)| — 0 as » — « where » is a subsequence
of n, then the lowest characteristic value of ¢,(6) would tend to zero, i.e. we would
have inf - 4'¢,(0)u — 0. But u'¢,()u is an average of » values of the form

W20 fi@ne, O)fi(@ne, O)he = 20 [20s uifi(nr , 0)T

Hence we have
(67) inf,u,=1,,hwh [Zl ulf,(xh , 0)] = O fOI‘ h = 1, 2, tee,Mm.
But since the C are compact and disjoint and since |u| = 1 is compact (6.7)
would imply the existence of m distinet vectors z; and a unitary vector » such
that D _; uif.(zn,8) = Oforh = 1,2, --- , m, which would contradict (iii).

Next we prove

TurorEM 6. Under Conditions (i), (ii) and (iii) of Section 6 and Condition (3.3)
the equations
have at least one solution 6. The present theorem establishes that for any such
statistic §*

0% — 6 = 0,(nH).

Proor. Write § = 6* — 6 and note that

(6.8) e =Y, — J(h, 0) = 0,(n}).

We first prove that for any a with0 < o < 4,6 = 0,(n %).
From arguments developed in the lemma proved earlier in this section it
follows that

infjy) 1 Zh [Zz m]?z(h, 0)]2 =N>0.

Consider now any parameter value 1§ with |i§ — 6] = e and 10 ¢ S and expand



646 H. 0. HARTLEY AND AARON BOOKER

F(h,18) — f(h, 6) in a second order Taylor series. This yields
(6.9) infi,pgzc 2 [F(h, 0) — J(h, 6)F

= influz1 2 { v euifu(h, 0) 4+ O(E) 2 €I\ 4 0(e)].
Let now ¢ = n~* and substitute f(k, 16) — f(h, 8) = f(h, 8) — Y, + & in (6.9).
This yields
(610) inf,la_g,ze |Yh — f_(h, 10) —_ éhi é )\’)’L;a[l + O(l)]
But since &, = Op(n_%) any statistic 6% which is a solution of ¥, — F(h, 6%) = 0
must satisfy with probability approaching one
(6.11) 0¥ — 6 < e=n""
as otherwise Equation (6.10) would contradict &, = 0,(n™*). Equation (6.11)
establishes 6% — 6 = 0,(n™%).

From a second order Taylor expansion of (6.8) we obtain

(6-12) e = Yh - f_<h’ 0) = f(h’ 0*) - f(h; 0)

= D2 Jilh, 0)8; + % 225 Ti(h, 0)5:5;
where 8 is on the line segment joining § and 8 but depends on k. Inverting (6.12)
we obtain

(6.13) § = F, (e + 6'A(h)s) = F, 7 (0,(n™))

where A (k) = (—1%f;;(h, 8)) and, as before, F,, = (fi(h, 9)).
Now since the smallest characteristic root of F, exceeds a lower bound \* for
all n we have that F,”' = O(1) and hence from (6.13) that

6 = 0,(n).

7. Asymptotic 1009 efficiency of the estimator §. Consider the statistic § =
0* 4+ D where the quantity D is defined by the equation

(7.1) —L"(6")D = L'(6%).

Let 6 be the ‘asymptotically efficient statistic’ which satisfies L'(8) = 0. For the
asymptotic distribution of the maximum likelihood estimator we refer to the
literature. We are here merely concerned with proving that the asymptotic
variance of 8 agrees with that of 6 to order O(n™"). It is sufficient for asymptotic
efficiency of 8 to show that n**(6* + D — §) = 0,(1) since it then follows that
(Doob, 1935) '

lim L(n}(§ — 6)) = lim L(n'(6 — 6) + n}(§* + D — 8)).

We now identify the vectors y, z, 2 of Corollary 1.2 with (yn, 2u, ---,
Ynn > T ), 6, 0% and let @, = n "L’ (8). The sequence of functions @, has bounded
and continuous second order partial derivatives under Assumption (ii). Also,
(6% — 8) = O,Z,(n*%) so that f(n) = n~* and lim f(n) = 0. For s = 1, Corollary
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1.2 obtains

(7.2) Ha(y,6,6%2) = 'L’ () — n'L'(6%) — n'L"(6*)(6 — 6%) = op(n7).
Since L' () = 0, (7.2) can be written using (7.1)

(7.3) n'(8* + D — §) = n(L"(6%))0p(1).

From Theorem 4, n"L" (6*) — ¢n(6) = 0,(1). Since the elements of n(L" (6*))™
are rational functions of the elements of n L" (6*) and ¢, *(8) was shown to be
bounded in Theorem 5, it follows by Slutsky’s theorem (Cramér, H., 1945) (a
modification of the result is necessary to cover the case where the constants vary
with » but satisfy the regularity Assumptions (i) and (i1) and no alteration of the
proof is necessary) that

n(L"(6%))7" — ¢'(8) = 0p(1)

and consequently n(L”(6*))™ = 0,(1). Now (7.3) can be written
n}(6* + D — §) = 0,(1) which establishes the asymptotic efficiency of 8.

The modified Gauss Newton method employs the corrective vector D* defined
by

(7.4) [ 2n fil@ne, 05)fi(2nr, 65)ID* = 20 (Yar — f(@nr, 6%))fi(nr , 6%).
By adding (7.1) and (7.4), we obtain
(7.5) nd(D* — D) = (¢ %¢n "(6¥))(n™* 2 (¥ — f)f5)(n'D).

The three terms in parentheses of (7.5) will now be examined one at a time. Let
@, of Corollary 1.2 be ¢(8*) where the correspondence between variables is given
by (6.5). Since (6* — 6) = OP(n‘*), f(n) = n”* and G, has continuous bounded
first order partial derivatives with respect to 6, it follows that for s = 0,

$n(8%) — 6a(6) = 0p(1)
Again using Slutsky’s theorem,
$n (8%) — ¢ '(8) = 0,(1)
but ¢, '(8) = 0,(1) from Theorem 5 so that
(7.6) ¢a(6%) = 0,(1).
Now we apply Corollary 1.2 to the expression
Ga(y, @, 0%) = 17 2hr (Y — F(@nr , 0))fiianr , 67)
again using the correspondence (6.5) and it follows that
Gu(y, 7, 0%) — Gu(y, 7, 0) = 0,(1).

Since G.(y, z, ) is the average of independent normal random variables
> n (Yie — (@, 0))fii(2he , 6) each having mean zero and bounded variance,
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it follows that

w7 2 e (Yor — f(@r , 0))fis(znr 5 0) = 0,(1)
and consequently
(7.7) Ga(y, 7, 0%) = 0,(1).

Since n'(6* + D) = 0,(1) and #}(6*) = 0,(1), it follows that n*D = 0,(1)
The right hand side of (7.5) now can be written as follows by using (7.6), (7.7)

’I’L%(D* — D) = Op(l)op(l)op(1> = 0,(1).
Thus
lim L(n*(6* + D — §)) = lim L(n*(6* + D* — §))

so that the correction vector D* could be used instead of D and still retain the
asymptotic properties of 8.

Since it has been shown that (§ — 6) = 0,(n™*), a correction of 8 by D defined
by —L"(8)D = L'(§) will produce an asymptotic 100% efficient estimate of
6. Thus each step in the Gauss Newton iterative procedure is consistent and
asymptotically 100 % efficient, provided we fix an upper bound for the maximum
number of steps as n — . For all applications of the Gauss Newton iteration
it is completely satisfactory to assume that the number of steps is held below
finite, although possibly large, upper bound.

TABLE 1
Data

t h T Tt et exp (—zxv) Y,

1 1 1 .04 —0.84 .96 079 .12 079
2 1 2 .09 1.65 .91 393 2.56 393
3 1 3 .14 —0.38 .86 936 .48 936
4 1 4 .19 —0.38 .82 696 .44 696
5 1 5 .24 —0.74 .78 663 .04 663
6 1 6 .29 0.20 .74 826 .94 826
7 1 7 .34 —-1.13 71177 — .41 823
8 1 8 .39 0.31 .67 706 .98 706
9 1 9 .44 —0.33 .64 404 .31 404
10 1 10 .49 0.18 .61 263 .79 263
11 2 1 .54 —0.99 .58 275 —.40 725
12 2 2 .59 —0.64 .55 433 — .08 567
13 2 3 .64 —0.26 .52 729 .26 729
14 2 4 .69 0.00 .50 158 .50 158
15 2 5 .74 1.75 .47 711 2.32 711
16 2 6 .79 —1.89 .45 384 —1.43 616
17 2 7 .84 —0.88 .43 171 — .44 829
18 2 8 .89 —0.64 .41 066 —.22 934
19 2 9 .94 —0.74 .39 063 —.34 937
20 2 10 .99 1.08 .37 158 1.45 158
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TABLE 2
Computation of 6*
Tteration 61 02 81 82 Q.:6)
Number
1 1.05 34 —1.98 88 .05 377 —.98 88 .85 110
2 1.18 86 —2.68 68 .13 524 —.69 79 .02 164
3 1.23 76 —2.87 04 .04 902 —.18 35 4.13E-5
4 1.24 04 —2.87 88 .00 281 — .00 847 1.8E-10
5 1.24 04 —2.87 88 5.7E-6 —~1.4E-5 1.7E-20
6 1.24 04 —2.87 88 5.2E-11 —1.2E-10 0
TABLE 3
Computation of 8 and 6
ITteration 01 02 N T b Q:6)
Number
1 1.09 69 —2.59 22 —.14 353 .28 660 15.512
2 1.09 51 —2.56 29 —.00 185 .02 933 15.512
3 1.09 45 —2.56 06 — .00 055 .00 235 15.512
4c 1.09 45 —2.56 04 — .00 005 .00 021 15.512

8. A numerical example. In order to illustrate the algorithms described in
Sections 2 to 3 we use the exponential law with zero asymptotes.

Yh'r = 01 eXp (eﬂhf) + €hr

for 6, = 1 and 6, = —1. Using a table of random normal deviates N (0, 1) for

the er and the equidistant series of x-values z, = (.04) 4+ (= — 1)(.05) +

5(h—1)forh=1,2andr =1, - -+, 10, we obtained the data shown in Table 1.
The linear equations in § of the modified Gauss Newton method for 6 are

2on(Th — F(h, 0)Fa(h, 8) = 61 20" + 82 2 i o
2T = J(h, 0)fa(h, 8) = 61 2o oo + 6 20 7
where
Vi = (1) 221 Yo
F(h, o) = (&) 22121 oy exp (b anr)
Fi(hy ) = () 22121 exp (b2 22r)
Fo(h, o) = () 2121 o1 Zsr €xp (o2 Thr).

The form Q(8) is evaluated at o8 + &, o + 95, ---, o + .18, f + 093, -
accepting 10 as the first value such that Q(6) is reduced. The values obtained in
the iterative computation of 8* are shown in Table 2. |,
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The computed 6™ is then taken as the starting point in the solution of
20 (Ve = flwe, 05)u(mi, 0%) = 622010 + 82 fife

2o (Yo — f(@e, 0 falze, 6%) = 810 fufs + 000 f

The form Q(6) is evaluated at § = 6* + 2*sfork = 0, 1, - - - , until a value is
obtained for which Q(8) is reduced. This value then becomes the starting point
for the next iteration in the solution of §. The calculation of § is shown in Table 3.

Whilst 6; = 1.0969 and 6, = 1.0945 are fairly close to the true parametric
value 6; = 1. The discrepancy for §; = —2.5922 and 6, = —2.5604 from 6, = —1
appears to be considerably larger. Approximate large sample formulas for the
variances and covariances of 6;, 6, (or of 8, 8;) reveal the following results:

Var 6; = 0.312, Varé, = 1.68, and Cov b, 6, = —.53

I

indicating (among others) that the difference [f. — 6;] = 1.56 is about 1.2 times
its estimated standard deviation. ’
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