ON THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH
APPLICATIONS TO SEQUENTIAL ANALYSIS!

By Apnan F. Irram?
University of Illinots

Summary. {X,} is a sequence of random variables defined on some probabil-
ity space, ® = { Py, 6¢ 0} is the family of distributions of {X,} and @, is the sub-
field generated by (X;,j < n). It is assumed that © is a real interval, X, —
6 a.e. Py and that, for each n, X, is sufficient for ® on @&, while ® is a homo-
geneous monotone likelihood ratio family on @, . Let ps, denote the density of
P, with respect to some o-finite measure on @, and consider the sequence {R.},
where R, = pPoyn/Pon and 6; < 6. . Conditions are given for the occurrence of
the following limiting behavior of R, : (1) there exists a 6y, 61 < 6 < 62, such
that R, — 0 or « a.e. Py according as § < or > 6 and (2) Py, (b < R, < a)
— 0for0 < b < @ < . This limiting behavior of R, guarantees the termina-
tion with probability one of sequential probability ratio tests based on {X,}.
Let go, denote the density of P, on the Borel field generated by X, . In order
to describe the results of this paper we introduce Condition A; which states,
essentially, that n™ In [ge(z)/K(n)] — h(6, z) for some functions K and h
satisfying very mild conditions. Condition A, requires h(8, z) to possess, for
each fixed z, a unique maximum at § = z. It is shown that under condition
A;, part (1) of the above limiting behavior of R, is equivalent to the statement
that h(6, x) satisfies Condition A, with 6, being the solution of h(8y, z) = h
(61, ). Moreover, under Condition A;, part (2) is implied by Conditions A;
and Ay, where Condition A; states that ga,n(6 -+ ¢/7)/qs,n(60 + ¢/n) — ae®
for some a, 8 > 0 and all ¢ ¢ 0, while Condition A, requires 7}(X, — 6) to
possess under Pg, a limiting distribution which is continuous at 0. For the pur-
pose of checking the above conditions we study the asymptotic behavior of
generalized Laplace integrals. The results enable us to assert that a certain
Condition B (stronger than Condition A;) obtains, where B states, essentially,
that ge, (2) ~ K(n)C(8, z)e™®? for some functions K, C, and h satisfying mild
conditions. The same techniques enable us to verify Condition A; also. The ap-
plications include the sequential ¢-, F-, x*-, T*- and other tests.

1. Introduction. Let (2, @, P') be a probability space, where @ is a o-field
of subsets of @ and @ is a family of probability measures on @ indexed by &:
® = {Ps, 6eA}. {Z}} is a sequence of random variables defined on @ where
each Z; takes values in a k-dimensional Euclidean space. Let {X,} be another

sequence of variables where X, = f.(Z1, -+, Z,) and f, is a Baire function
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mapping kn-space into the real line. It will be understood throughout that
n = ny, where n, is some appropriately chosen positive integer. Let @, denote
the subfield generated by (X;, 7 < n) and let @ denote the minimal subfield
containing ®, for all n. Suppose that, for each n, the joint distribution of (X,
j = n) depends on é only through a certain real valued function of §, say 6 =
6(5), and that 6(A) = O is an interval. The family of distributions of {X,} is
denoted by ® = {Py, 6 ¢ ©}. Let Py, and Py, be two members of ® and let py,,
be the density of Py, with respect to some o-finite measure u, on @, for 7 = 1,
2 and all n. Finally, we let B, = poyn/De;» which makes R, defined a.e. Py, .

The limiting behavior of R, first considered by Wirjosudirdjo [27] is impor-
tant for its implications in sequential analysis, where it is desired to know whether
a sequential probability test (SPRT) [24] based on {X,} terminates with prob-
ability one. Since a SPRT has a positive lower stopping bound and a finite upper
stopping bound, the test terminates with probability one with respect to any
Py, if either lim inf B, = 0 a.e. Py or lim sup R, = « a.e. Py. The same con-
clusion holds for a generalized SPRT if the stopping bounds are bounded below
by a positive number and above by a finite number.

It was remarked in [27] that if the X, are identically and independently dis-
tributed, R, — 0 or « a.e. Py according as § < or > 6, where Fy, In B; = 0,
whereas lim inf R, = 0 and lim sup R, = « a.e. Py, . Sequences { X,} of neither
independent nor identically distributed random variables arise in tests of com-
posite hypotheses, in the presence of nuisance parameters, when the principle
of invariance is invoked. Examples of this situation include the sequential ¢-,
F-, x*-, T*-, ordinary and multiple correlation coefficient tests. We shall see in
a later section that, in each of these examples, the situation regarding the limit-
ing behavior of R, is similar to that of the case of identically and independently
distributed random variables: for any 6; < 6, there exists a 6y, 6 < 6, < 6,
such that

(1.1) R, — 0 or a.e. Py according as § < or > 6,
(1.2) Py(b < R, < a) >0for0 <b <a< «,and
(1.3) lim inf R, = 0 and lim sup R, = « a.e. Py, .

The preceding result for the sequential ¢-test is implicit in a paper by David
and Kruskal [4] and is obtained in the stated form by Wirjosudirjo [27]. The
sequential F-test is treated by Johnson [15], but the asymptotic formula used
is not justified. A different approach for the sequential F-test is given by Hoel
[13] using weighting functions [24] rather than invariance for testing composite
hypotheses. A special case of the sequential F-test, when the hypothesis is null
(6, = 0), is treated by Ray [23]. Jackson and Bradley [14] have a treatment of
the sequential x’- and T"-tests. However, their termination proof is given in
detail only for the x’-test, while it is claimed that the termination proof for the
T-test can be reduced to that of the x’-test. This seems unjustified to us. In
fact, it will be seen in Section 4 that the behavior of R, in the T-test is identical
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to its behavior in the F-test. The correlation coefficient tests (V and VI of Sec-
tion 4) as well as special cases of VII are mentioned in [10] while Application
VIII is also treated in [16].

The foregoing examples fall under the following general problem. Let the se-
quence {X,} and its family of distributions ® = {Py, 0 ¢ O} satisfy the following
assumptions:

(i) The index set O is a real interval and 6; < 6, .
(ii) For each n, X, is a sufficient statistic for ® on @, .
(1.4) (iii) For each n, ® is a monotone likelihood ratio family on @, .
(iv) For each n, ® is a homogeneous family on @, .
(v) X, — 0, a.e. Py, for each 6 ¢ 6.

We recall that @ is said to be homogeneneous [11] on @, if for every " and 6"
£ 0, Py is absolutely continuous with respect to Py» on @, . By virtue of As-
sumption (iv) of (1.4), R, becomes defined and finite a.e. Py for all 6 £ @. As-
sumption (ii) (Lemma 2.1 of [27]) implies that R, = @o,n/qs,n , Where go, de-
notes the density of P, with respect to u, on the Borel field generated by X, .
Thus, there exists a Baire function r, mapping the real line into itself such that
R, = r(X,). In view of (ii), Assumption (iii) states that r.(x) = gsn(x)/
go,»(2) is a nondecreasing function of = [19]. We shall see in the sequel that As-
sumptions (iii) and (v) enable us to consider r,(z), rather than R, itself, for
studying the limiting behavior of R, .

Wirjosudirjo [27] has treated this general problem under the first four assump-
tions with f, restricted to be a symmetric function of (21, -+, 2z,) and the Z;
restricted to be identically and independently distributed real random variables.
Actually, the treatment and the conclusions in [27] need no change if the Z; are
allowed to be vector valued and possibly dependent while the symmetry as-
sumption of the f, is replaced by the weaker assumption that ).®, is the trivial
subfield (Q, ¢), where ®, denotes the subfield generated by (X;,j = n). In
particular, the a.e. convergence of R, to a constant continues to hold under the
new assumptions. Wirjosudirjo’s results are close to (1.1) and (1.2), but not
quite as strong.

It has come to our attention that R. Berk, in a recent and as yet unpublished
dissertation [2], has obtained results which overlap those presented here. Proofs
of termination of SPRT’s follow as a by-product of his different methods and
approach.

The almost sure termination of SPRT’s is only a consequence of the results
given in this paper on the asymptotic behavior of densities. These results could
be used for other purposes such as an investigation of the ASN function (aver-
age sample number [24]) of SRPT’s. Moreover, the aymptotic behavior of
generalized Laplace integrals could be applied in non-sequential inference prob-
lems also.



618 ADNAN F. IFRAM

2. Conditions guaranteeing the desired limiting behavior of R, . In this section
we characterize, under Condition A;, the desired limiting behavior of R, given
in (1.1) with respect to any Py, 6 = 6. A sufficient condition is given guaran-
teeing the desired behavior of R, with respect to Py, . From now on we assume
that ge.(z) > 0 for z € ® and 0 for z £ ©. Thus, for each (6;, 6;) r.(z) will be
considered as a function on ©.

TurEoREM 2.1. Let Assumptions (1.4) hold and let 6, & ©. Then, (1) R, — 0
a.e. Py, 0 < 6o, if and only if r.(z) — 0,z < 6y, and (2) R, — o a.e. Py, 6
> 6o, if and only if ro(x) — o, > 6.

ProoF. We prove the equivalence in (1) only since that in (2) can be ob-
tained from (1) by interchanging the roles of 6; and 6, . We have seen in Sec-
tion 1 that R,(w) = r.(Xa(w)), for w e Q. Let r,(z) — 0 for all 2 < 6 and let
6 < 6. Suppose w is not in an exceptional null set so that X,.(w) — 6, by (v)
of (1.4), and choose x such that § < x < 6,. Thus, there exists N, such that
Xu(w) < xzforalln = N,. By (iii), 7.(Xa(w)) S r(zx) for n = N, . Since
72 (Xa(w)) = 0 for all n and r,(x) — 0, we conclude that r,(X,(w)) — G. We
assume next that B, — 0 a.e. Py, 8 < 6. Let £ < 6, and choose 8 such that
z < 6 < 6. For all w not lying in an exceptional null set, X, (w) — 6 and R, (w)
— 0. Thus, there exists N, such that X,(w) = x forn = N, . By (iii), (X,
(w)) = ru(x) for n = N, . Since 7,(X,(w)) — 0 and r,(x) = 0 for all n, we
conclude that r,(z) — 0.

In the following it is understood that all functions are measurable and that
all limits are taken as n — . We introduce the following definitions:

ConDITION A;. {go(x)} s said to satisfy Condition A, if:

(i) there exist functions K > 0 and h such that n™" In[ge.(x)/K(n)] — h(6,
x) for each 0, x & ©. This implies that n™" In r,(x) — g(x) = h(6:, z) — h(6:,
x) for any 61 < 6.

(i) g(x) s strictly increasing and continuous on O for any 6; < 6.

ConpIiTION A . A measurable function of two real arguments h(6, x) is said to
satisfy Condition As if, for each fixed x, h(6, x) hao a unique maximum at § = z.

ConpITION A;z. {gs(2)} 7s said to satisfy Condition Az if for any 6 such that
n 7 In 7. (6) — 0, 7.(60 + ¢/n) — ae® for some a, B > 0 and all ¢ = 0.

ConpITiON Ay. {ge(2)} is said to satisfy Condition Ay if for any 6y such that
w7 In r,(8) — 0, n*(X, — 6o) has under Py, a limiting distribution (not neces-
sarily a probability distribution) Q, say, which s continuous at the origin.

Note that Condition B given below is stronger than Condition A; .

ConprtioN B. {gs(x)} 78 said to satisfy Condition B if:

(i) there exist functions K, C > 0 and h such that qm(x) ~ K(n)C(8, z)-
e for each 9, x & ©. This implies that n™* In r,(z) — g(z) = h(6:, x) —
h(6., z) for any 6, < 6,.

(ii) g(x) s strictly increasing and continuous for any 6, < 0.

TureorEM 2.2. Let Assumptions (1.4) hold. The following three statements are
equivalent under Condition A; (and therefore under Condition B also):

(1) For any 6, < 6y, there exists 6y, 61 < 6y < 62, such that r.(x) — 0 or «
according as x < or > 6.
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(2) For any 6, < 62, g(x) = 0 has a (necessarily unique) solution stricily be-
tween 6, and 0, .

(3) h(8, ) satisfies Condition A, .

Proor. (1) implies (2): If > 6, and g(z) =< 0, then for 2’ such that 6, <
<z, g(x') < 0by (ii) of Condition A; so that 7,(z") — 0 which contradicts
(1). Hence g(z) > 0 for z > 6, . By the continuity of g, g(6,) = 0.

(2) implies (1): Take 6, equal to the solution of g(xz) = 0.

(3) implies (2): ¢g(6:) > 0 and g(6;) < 0 by (3). Thus, (2) follows by Con-
dition A; (ii).

(2) implies (3): By Condition A;, (2) implies that g(6,) > 0 and ¢(6;) <
0 for all < 6. This implies that h(8, z) < h(z, ) forx < @ and = > 6.
Thus h(6, x) satisfies Condition A,.

LeEmMa 2.1. Let Assumptions (1.4) hold. If Conditions As and A4 are satisfied,
then Poy(b < R, £ a) >0 forall 0 < b < a < . Moreover, Poy(R, = a)
— Q([0, ©)), Py(Ra = b) — Q((—, 0]) and Q s necessarily a probability
distribution.

Proor. (The following proof is as given in [27] for a special case.)

(2.1) Po(6p — c/n < Xn < 6o+ ¢/n) = Py, (c/nt < n} (X, — 60) < ¢/n’.

Since the interval (—-c/n*, ¢/n') can be made arbitrarily small by taking n
large enough and since @ is continuous at the origin, it follows that

(2.2) Py (80 — ¢/n < X, < 6p + ¢/n) — 0.

Given 0 < b < a < o, there exists ¢ > 0 such that ae™ < b < a < ae®.
By Condition A;, there exists N such that r,(6, — ¢/n) < b and r.(60 + ¢/n)
> aforn = N. Thus, for n = N, Pg,(b < ra(Xa) = a) = Py(ra(60 — ¢/n)
< 1a(Xa) < 1a(60 + ¢/n)) = Poy(6o — ¢/n < Xn < 60 + ¢/n), by (iii) of
(1.4). Using (2.2) we find that Py (b < R, < a) — 0. Similarly, Py, (60 + c¢/n
< X,) = Py (c/n = n(Xn — 6)) — Q([0, «)) and the same is true if ¢ is
replaced by —c¢. There exists N such that 7.(6 — ¢/n) < a < r.(60 + ¢/n)
and, therefore, Po,(8 + ¢/n = X,) = Py(a = 1(Xn)) = Py(6 — ¢/n =
X,) for n = N. Thus, Py,(¢ = 7.(X,)) — Q([0, «©)) and Pe(r.(X.) < b)
— Q((— =, 0]). The last statement of the theorem follows from the fact that
Q((— o, oo)) = lim Py, (R, e[— o, ©]) = 1.

CoroLLARY 2.1. Let Assumptions (1.4) hold. If Conditions Ay, Ay, As and
A, are satisfied, then R, possesses the limiting behavior (1.1) and (1.2) where
6o s the solution of h(6;, x) = h(6:, z).

Proor. By Lemma 2.1 and Theorems 2.1 and 2.2.

THEOREM 2.3. Let Assumptions (1.4) hold and let Conditions A, As , and A, be
satisfied. Denote the solution of h(6;, x) = h(6,, ) by 6, and assume that 0 <
Q([0, ©)) < 1. If N .®. is the trivial subfield (Q, ¢) where B, denotes the subfield
generated by (X;, j = n), then R, possesses the limiting behavior (1.1)-(1.3).
Moreover, h(0, x) necessarily satisfies Condition A, .

Proor. Since we assume the triviality of the tail field of the {X,}, we can use
the results of [27]: R, — 0 a.e. Py, 0 < 6, and R, — a.e. P; > 6. Using Theorem
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g(z) = 0 for z = 6,. This implies that 6, £ [6; , 6:]. Notice that the triviality of
the tail field gives: lim inf R, = ¢ a.e. Py, and lim sup R, = ¢ a.e. Py, for some
constants cand ¢ with0 < ¢ £ ¢ < w.If¢ > 0orc < , the conclusions of
Lemma 2.1 are contradicted since Py, (r,(X,) = a) and Py, (r,(X,) < b) have
positive limits for all 0 < b < @ < . Thus, (1.3) follows. Since we have es-
tablished that R, does not converge a.e. with respect to Py, , 6, # 6, and 6,
# 0, . Hence 6o & (61, 6;) so that (2) of Theorem 2.2 is satisfied and this, in turn,
implies (3) of that theorem.

We remiark that the triviality of M.®, will be checked in our applications
by using the Hewitt-Savage zero-one law [12] with f, being a symmetric func-
tion of (21, ---, 2,) for all n.

2.1(1) with 6, replaced by 6; we deduce that g(z) < 0 forz < 6. Similarly,

3. The asymptotic behavior of integrals of a certain form. Let R be a subset
of Euclidean r-space E” and let

(3.1) I(n) = [af(2)ka(2)e™“de,

wherez = (21, - -+, 2) is an r-dimensional variable, dz = dz,; - - - dz, , the domain
of integration R will be specified as the need arises and all the functions used
are measurable. We shall study the asymptotic behavior of I(n), as n — o,
under some conditions on f, ¢, and the k. , which we call Condition (b). We re-
mark that the treatment and the results need no change if » is assumed to be
real valued. However, since the applications of Section 4 involve integral n,
we shall think of n as being integer valued. In order to state Condition (b) we
shall require R to contain the origin 0 and be such that its intersection with any
neighborhood of 0 has positive r-dimensional Lebesgue measure. As a result of
this requirement, continuity and differentiability of functions at 0 are to be
understood in terms of sequences of points belonging to R and converging to
zero (but 0 may be on the boundary of R). It is assumed in Condition (b) that
¥(2) has a unique maximum at zero. The underlying idea in the results is that
the major contribution to I(n), when n is large, comes from a neighborhood of
0. This idea is due to Laplace [5] and the procedure of Laplace’s method is to
approximate ¢ in that neighborhood by the first few terms in its expansion.
This topic is discussed by De Bruijn [5], Erdélyi [7] and Wilf [26]. In fact, some
general results are given in [5]. However, we shall derive some still more general
results. In the following we denote  i_iz* by |z|*.

ConprtioN (b). The functions f, ¢, and, the k. appearing in (3.1) are said to
satisfy Condition (b) on R if:

(1) ¢(2) < ¢(0) forallzin R, z = 0.

(ii) There exist az, B1 > 0 such that ¥(z) = (0) — au for |2| > B; while ¢(2)
18 continuous for |z| < 6.

(iii) There exists a neighborhood of 0 in which ¥ (2) has continuous partial deriva-
tives of the first order (¥i'(2), ¢ = 1, ---, r) with %'(0) = 0forl £ =<1
and ¥ (0) < 0 for ry < i < r, where 7o 1s a non-negative integer = r. In case
ro > 0, ¥(2) possesses, in addition, continuous partial derivatives of the second
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order (Yi;(2), 4,7 = 1, -+, ) with the ro X 1o matriz [Yi;(0)], 4,7 =1, -+,
7o, being megative definite.

(iv) f(2) = 0 for ze R and f(2) > 0 a.e. (with respect to the r-dimensional
Lebesgue measure) tn some neighborhood of 0.

(v) kn(z2) = k(2) uniformly in some meighborhood of 0, k(z) is continuous at
0and 0 < k S ka(2) £k < for some constants k and K independent of n.

(vi) For some positive integer no , I(n,) < .

ReMmarks oN ConprtioN (b). (i) and (iv)—(vi) imply that I(n) < o« for
all n = ny. In the following we let E," denote the positive orthant of E', i.e.,
Ey ={z:z; 20forz =1, ---, 1}.

Tuaeorem 3.1. Let I(n) be given by (3.1) where f, ¥, and the k, satisfy Condition
(b) on R = Ey. Suppose f(z) = f(z)]1imizs, where f(2) is continuous at 0,
F(0) > 0 and the I; = 0. Assume that [$:;(0)], 4,5 = 1, --+ , 7o, 45 in the diagonal
form. Then

I(n) ~ F(0)k(0)Cne™,
where
c= 23+ 1) + Dignli+ 1)
and
¢ = JTr GG + 1))27(—$7:(0)) —3(1: + 1)
el (G 4+ 1)[— (0)] 4.

Proor. (0) Without loss of generality the neighborhoods in (iii)—(v) can be
assumed to coincide and be Jz] < v where 0 < vy < 6.

(1) Without loss of generality, we assume that ¢(0) = 0, np = 0, f(0) =
1 and %(0) = 1. We show that I(n)n°C™" — 1.

(2) Taylor’s theorem and continuity of the partial derivatives imply: given
e > 0 there exists § (0 < § < v) such that for |2| < & (some of the following
sums might be vacuous for ro = 0 or r)

(8.2)  Dimroan¥i (0)z: + 32 ic1 D i=1 15(0) — 26)zi2; < ¥(2)
S D imea¥d (0)ze 4+ & Doy D i (¥i5(0) + 2¢€)zaz; .

The terms in the double sums with ¢ or j > 7, can be absorbed in the single
sums. Noting that D .jzz; < 708 for 2| < 8(¢ = ro'd’e),

(3.3)  Dimrosr(W(0) — m)zi + 3218 (¥1:(0) — 28)z° = ¥(2)
S Dicren(W(0) + m)zs + 3 D2 (¥i(0) + 28)2

for || < &, where & and 5 may be chosen so small that ¢, (0) + » < 0 for
< i rand : D WH0) + 292" < 0forz = 0, ze By, in view of (iii).

(3) There exists p > 0 such that (z) < —p for |z| = 6. This is trivial if &
= B, by (ii). If § < B: we observe that y(z) is continuous for § < [¢| = 61,
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and thus attains its maximum at a point £ in this closed set. Take p = min (—y
(&), a) > 0.

(4) Let I,(n) and I(n) denote the integral (3.1) taken over the subregions
|e] = 6and |z| > b of Ey respectively. Thus I(n) = I;(n) + I:(n). We use the
symbols [ < and [ to denote integrals over the subregions |z| < & and |2| >
6, respectively. By (iv) of Condition (b) and (3) of the proof, 0 < I(n) =
¢ ™ [5f(2)kn(2)dz. Using (v) and (vi) together with (1) we conclude that
for some K,

(34) 0 < I(n) £ Ke ™,

(5) Let @ and Q" stand for the left and right hand members of (3.3) respec-
tively. (3.3) implies

(8.5) [ F@ka(2)e™de S Li(n) < [ s (2)n(2)e™ de.

Let F(Q') denote ]i=z:¢"® and let F(Q") be similarly defined. Notice that
Q and Q" satisfy all the properties of ¥ in Condition (b) and that j[ F(Q")dz
is a special case of I(n). Thus, there exist o, K' > Osuchthat 0 < [SF(Q')dz
< [SF(Q")d: < K'e ™.

(6) Denote by inf < (sup <) the infimum (supremum) taken over the subregion
2] < 8. Let ¢,(2) = f(2)ka(2) and o(2) = f(2)k(2). Using (5) we obtain

(36)  [<f(2kn(2)e" e 2 inf feu()}f <F(Q)dz — K'e],
(3.7 [ sf(2)ka(2)e™ dz < sup <fea(2)} [F(Q")dz.

(7) It follows from (3.4)—(3.7) that inf <{e,(2)}[[F(Q)dz — K'¢ ™| < I(n)
< sup<len(2)JF(Q")dz + Ke ™.

(8) Let Q be the expression obtained from Q and Q" by replacing e and
by 0. For I, A\, m > 0,

(3.8) cule Mmdu = T((L + 1)/m)m =\~
and
(3.9) [F(Q)dz = TTi% [o°z' explinyi:(0)2dz:

c ierein [o72 exp [’ (0)zildzs = Cn™,
where ¢ and C are as given in the theorem. A similar expression is obtained for
JF(Q")dz and [F(Q")dz with ¥7;(0) replaced by ¥i:(0) F 2 and ¢.'(0) re-
placed by ¢."(0) T n. We denote the values of these integrals by C'n° and ¢"n™°
respectively.

(9) It follows from (7) that
(3.10) inf (fpa(2)}[C" — K'n’¢™™] < I(n)n° < sup <{ea(2)}C” + Kn'e ™.

n

Asn — o, n’¢ "™ and n°¢ ™ — 0. The hypothesis of the theorem and (v) of
Condition (b) imply that ¢.(2) — ¢(2) uniformly in a neighborhood of 0, so
that inf <p,(2) — inf<p(2) and sup <g.(2) — sup<e(z). In (3.10), let n —
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o first and then let e and § — 0. Using the continuity of ¢ at z = 0, we obtain
I(n)n° — C. By (1), this is the desired result.

In Theorem 3.2 given below we shall take R to be the Cartesian product
E"° X By = {212, (— o, ©)fori =1, ---,rand 2; £[0, ) for z = r
+ 1, -+, r}. The determinant of the matrix [a.;] is denoted by |[a.;]|.

TaEOREM 3.2. Let I(n) be given by (3.1) where f, ¢, and the k, satisfy Condition
(b) on R = E™ X E; . Suppose f(z2) = F(2) [Lizross 2 where f(2) is con-
tinuous at 0, f(0) > 0, and the I; > 0. Then I(n) ~ f(O)k(O)an_de""’(o), where
d = 1/2+ Dicron (b + 1) and D = [—(2m)"/|W5(O)][F TTizrnn T +
1)[=: (0)] .

Proor. There exists an 7, X 7, orthogonal matrix P such that P'[¢7;(0)]P
is diagonal. Denote this diagonal matrix by A = [\,;]. Since [y:;(0)] is negative
definite, \i; < 0 for 7 = 1, ---, 7. We change the variables in (3.1) from the
2: to the y; , where y; = z;for ¢ = 7o+ 1, --- ,rand (y1, -+, ¥r,) = Pla1,

-, 2,) . This change of variables and the particular form of R and f allow us
to assume that I(n) is as given in the statement of the theorem with [¥7;(0)]
= A. We may write I(n) as the sum of 2™ integrals over E,” by partitioning R
and changing the sign of some variables if necessary. It is easily seen, by (iv)
of Condition (b), that the hypothesis of Theorem 3.1 is satisfied for each of
these integrals with I, = 0 for 1, ---, 5. It follows from Theorem 3.1 that
I(n) ~F(0)k(0) 27°Cn e"*'”, where C and ¢ are given in Theorem 3.1. Because
I nie = |[¥5(0)]] and T(3) = ', it follows that 27°Cn™° = Dn™" where D
and d are given in Theorem 3.2.

Nore. If in Theorem 3.1 the I; = 0 and k,(z) = 1, then the conclusion gives
the result in [5] on p. 65 for the cases 7o = r = 1, and 7o = 0, r = 1 and on p.
71 for the case 7y = r.

We shall make use of the preceding results in establishing some of the condi-
tions of Section 2. For this purpose we consider a sequence of densities {gs.(z)},
6, e ®, such that

(3.11) gon(2) = K(n)I(n; 6, z)
with K > 0 and
(3.12) I(n; 6,2) = [2](z; 6, 2)ku(2; 6, 2)e"* ",

and for each (0, z), I(n; 8, x) satisfies the hypothesis of Theorem 3.2. We give
the following definition: ,

ConprtioN (c). The functions f, ¢, and the k, appearing in (3.12) are said to
satisfy Condition (¢) on R at x = 6 if:

(i) For each (z, 0), ¥(2; 6, &) has a continuous derivative ' (z; 6, x) with respect
to x in a meighborhood of x = 6, .

(ii) f(z; 6, ) and ¥ (2; 6, x) are continuous in the pair (z, x) for each fived 6.

(iil) k.(2; 0, ) — k(z; 6, x) as n — oo uniformly in (2, x) for (2, x) in a
neighborhood of (0, 6,) and each fized 6.

THEOREM 3.3. Let the sequence of densities {qs.(2)} be given by (3.11) and (3.12)
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where, for each (6, z), I(n; 6, x) satisfies the hypothesis of Theorem 3.2. If 8*(0;
0, x)/309x exists and is > 0 for all 0, x £ O, then Condition B (and therefore Con-
dition A;) 1s satisfied with h(8, x) = ¢(0; 6, x). Let 6, be the solution of h(6,,
x) = h(6y, z), where 6, < 6,. If f, ¥ and the k, satisfy also Condition (c) at x
= 6y for all 6, < 6y, then Condition As, is satisfied with 8 = ¢'(6,), where g(z)
= h(02 ) .’L') - h(01 ) .’E).

Proor. Theorem (3.2) implies that Condition B(i) is satisfied with A(6, z)
= ¢(0; 0, z). Condition B(ii), i.e., g is strictly increasing and continuous, follows
from the assumption that 8°(0; 6, x)/36dx > 0. Condition (c¢)(i) implies that
for each (z, ), and ¢ # 0 and n large enough:

(3.13) ¥(2; 6, 6 + ¢/n) = ¥(2; 6, 6) + (c/n)¥ (2; 6, b + (¢/n)e),

where 0 < «, < 1. (3.11)-(3.13) give, after suppressing  on the right hand
side,

(3.14)  gou(x)
= fRf(z; 00 + ¢/n) exp e (z; 6o + (c/n)an)lka(2; 60 + ¢/n)e"*F0de.

Notice that (ii) and (iii) of Condition (¢) imply that, as n — oo, ¢'(2; 6, +
(¢/n)ay), f(z; 60 + ¢/n) and k,(z; 6, + ¢/n) converge uniformly in a neighbor-
hood of z = 0 to ¢/ (2; 60), f(; 6,) and k(z; 6,) respectively. Thus, these functions
appearing in (3.14) satisfy the same conditions as k,(2) in (v) of Condition (b).
Theorem 3.2 and the fact that ¢(0; 6, , 6.) = ¥(0, 6, , 6,) imply:

(3.15) (8o + ¢/n) — ae®,

where 8 = gl(0o) > 0and o = {f(O, s, 90)]0(0, 0, , 00)D(02, 0())/f(0, 0., 00)
k(0; 6;, 60)D(6,, 6)} > 0. Thus, Condition A; is satisfied.

ReMarRk oN TaeoreEM 3.3. In most of the applications that we shall study
in Section 4 the densities are representable as integrals of the form (3.11)—(3.12)
with ¢(z; 6, ) achieving its maximum at z = #,(6, ) instead of the origin. A
linear transformation taking the origin to 2, will make the densities satisfy the
hypothesis of Theorem 3.3. However, this linear transformation need not be
performed for the purpose of obtaining h(6, x), since max.y¥(z; 0, z) = ¥ (2 ;
6, x) = h(6, x).

ConprtioN (a). The functions f, ¥ and the k, appearing in (3.1) are said to
satisfy Condition (a) on R if:

(1) ¥(2) = ¥(0) for all z¢ R.

(ii) ¢(2) s continuous at 0.

(iii) f(z) = 0 for z e R and f(2) > 0 a.e. (with respect to the r-dimensional Le-
besgue measure) in some neighborhood of 0.

(iv) There exist constants k and k' independent of n, 0 < k < k' < oo, such
that k < k,(2) < k' for all z¢ R.

(v) For some positive integer ny , I(ng) < oo.

Remarks oN ConprrioN (a). (i) and (iii)—(v) imply that I(n) < o for n
= n. Notice that Condition (b) implies Condition (a).



ASYMPTOTIC BEHAVIOR OF DENSITIES 625

TueoreM 3.4. Let I(n) be gwen by (3.1) where f, ¥ and the k, satisfy Condition
(a) on R. Then, n " In I(n) — ¢(0).

Proor. (1) We assume without loss of generality that ¥(0) = 0 and n, = 0.
It is sufficient, by (iv), to prove the theorem for the case k,(z) = 1.

(2) We use (i)—(iii) to conclude that for any ¢ > 0, there exists 6 > 0 such
that —e < ¥(2) < 0and f(z) > 0 a.e. for |2| < 4.

(3) Notice that I(n) = [<f(2)e""? de = [ f(2) de > 0, by (2), and that
I(n) £ 1(0) < o, by (i) of Condition (a) and (1). Thus, 0 < ¢ "*[ < f(2) dz <
I(n) £I(0) < wand —e + 7 'Inf < f(z) dz < n'In I(n) < n " In 1(0).

(4) Letting n — oo first and then letting e — 0 we obtain n~" In I(n) — ¢(0).

CoroLLARY 3.1. Let the sequence of densities {qs(x)} be given by (3.11) and
(3.12) where, for each (0, x), I(n; 0, z) satisfies the hypothesis of Theorem 3.4
with R = E™ X Ey ™. If 9°(0; 6, z)/369x exists and is > 0 for all 6, x ¢ O,
then Condition A, is satisfied with h(6, x) = ¢(0; 6, x).

Proor. Condition A, (i) follows from Theorem 3.4 and Condition A, (ii) fol-
lows from the assumption that 9°(0; 6, x)/d6dz > 0.

We shall encounter in our applications sequences of densities given in a closed
form, rather than in an integral form, as follows:

(316) qon(x) —_ .-yn(e, x)K(n)C(ﬁ, x)enh(ﬁ.x)’

where K, C and the v, are positive valued.

THEOREM 3.5. Let the sequence of densities {qo,(x)} be given by (3.16). If
vu (8, ) — 1 and if 8°h(6, x)/000x exists and is > 0 for all 8, x & O, then Cond;-
tion B (and therefore Condition A,) is satisfied. Let 6 be the solution of h(6,, x) =
h(6, x), where 8, < 0; . If, in addition C (6, x) s continuous in z, if h(6, x) pos-
sesses for each 8 a continuous derivative h' (6, x) with respect to x in a neighborhood
of x = 6y and if v,(0, ) — 1 uniformly in x for x in a neighborhood of 6, , then
Condition A; is satisfied with 8 = ¢ (6,), where g(z) = h(6,, ) — h(6;, z).

Proor. The first conclusion is obvious and similar to Theorem 3.3. To prove
the second conclusion, we have for n large enough and ¢ = 0: k(6, 6, + ¢/n) =
h(6, 60) + (¢/n)H (8, 6o + (¢/n) an), where 0 < a, < 1. Thus

(3.17)  qs(60 + ¢/n)
= 7.(8, 60 + ¢/n)K(n)C(6, 8 + c/n)e™ "™ exp [ch' (6, 60 + (c/n)an].

The hypotheses of the theorem imply that C(6, 6, + ¢/n) — C(6, 6),
K (6, 6 + (¢/n) a,) — (6, 6) and v,(6, 8 + ¢/n) — 1. Therefore, since
h(02 ) 00) = h(ala 00))
(3.18) 7a(60 4+ ¢/n) — ae®
where 8 = ¢'(6,) > 0 and « = {C (62, 6))/C (61, 6)} > 0. Thus Condition A,
is satisfied.

Norte. In the applications of Section 4 we shall use a theorem on the conver-

gence of random variables in probability law to establish Condition A, by show-
ing that v, = n*(X, — 6) is asymptotically normal with mean 0 and variance
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o’(6) with respect to Py . We remark that under certain conditions, in addition
to those of either Theorem 3.3 or Theorem 3.5, the following stronger result can
be established (¢s, denotes the density of ¥,):

(3.19) g (y) — [2ma’(0)]F exp [—4°/26°(6)], pointwise,
where
(3.20) () = —[0°h(06, 6)/02".

We shall notice in Section 4 that ¢*(9) is indeed given by (3.20).

4. Applications. We shall study in this section some special cases of the general
problem described in Section 1. In each case it is desired to test the hypothesis
6 =< 6, against the alternative 6§ = 6, where 6; < 6. . G is a group of transforma-
tions that leaves the sequential testing problem invariant. Let @,  be the Borel
field generated by (Z:, ---, Z,). For n = n,, X, is obtained through a reduc-
tion of the problem by sufficiency and invariance on @, applied in that order.
It will be shown below that { X, } satisfies Assumptions (i)—(v) of (1.4). ASPRT
based on the sequence {gs,.(2)/qs,»(x)} has then a monotone power function, as
shown by Ghosh [9], and as implied by Lemma 2.4 in [27]. It suffices therefore
to control the error probabilities at 6; and 6 .

Assumptions (i)—(v) of (1.4) hold in each case: (i) and (iv) are obvious,
(iii) is a well-known property of the family of distributions in question, and (ii)
and (iv) will be discussed in the following paragraphs. We recall that X, was
not required to be related to (Z;, ---, Z,) by a symmetric function, and, in
fact, it is not in the last application treated in this section.

Assumption (ii) requires X, to be sufficient on @, , where @, is as defined in
Section 1. Since (X;, 7 = n) is an invariant function of (Z,, --- , Z,) under G,
it is enough to show that X, is invariantly sufficient [10], i.e., sufficient for the
family of distributions of any invariant function. Let @,” be the Borel field gen-
erated by a maximal invariant of (Z;, - - -, Z,). Notice that @, < @,” and that
it is enough to establish the sufficiency of X, on @,” or, equivalently, the inter-
changeability of the order in which sufficiency and invariance are applied. Dif-
ferent conditions guaranteeing this interchangeability are given in [10]. One
such condition is what the authors of [10] call Assumption A. In order to avoid
the introduction of further notation we describe Assumption A in view of (iii)
of (1.4), instead of quoting [10], as follows: (i) each ¢ ¢ G induces a correspond-
ing transformation in the space of any sufficient statistic, (ii) any @(X,)-meas-
urable function (@(X,) is the Borel field generated by X,) that is almost
invariant under @ is equivalent to an invariant @(X,)-measurable function. As-
sumption A(ii) holds under some conditions, stated in Theorem 4 of Chapter 6
in [20], the least immediate of which is the following: there exist a Borel field
® of subsets of G and a s-finite measure v over (G, ®) such that for any B ¢ ®
with »(B) = 0, »(Bg) = 0 for all g ¢ G. This property is in particular satisfied
by a right Haar measure [22]. It is shown in [22] that a right (left) Haar meas-
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ure exists for a locally compact metric group. This will be a case in all our ap-
plications except Application VII in which case Assumption A(ii) follows from
the fact that G is a finite group.

Since in every instance X, is a continuous function of sample moments (and
perhaps sequences which converge a.e. to constants), we conclude that X,
converges a.e. to some constant. The reasoning is as follows: (1) sample moments
about the origin converge a.e. to the population moments when the latter exist;
(2) if Up— aa.e.and V, — b a.e. then (U,, V,) — (a, b) a.e. and hence sample
moments converge jointly; (3) if W, — ¢ a.e. and ¢(-) is continuous at ¢ then
g(Wa.) — g(c) a.e., and hence continuous functions of sample moments converge
a.e.; (4) sample central moments are continuous functions of sample moments.
The constant to which X, converges a.e. is shown to be § (Assumption (v)) by
using a theorem of Cramér [3] (28.4 and 27.7.3), according to which the sample
moments appearing in the expression of X, should be replaced by the correspond-
ing population moments to obtain the constant. This procedure is illustrated in
Application I.

Condition A, follows from the stronger result that »}(X, — ) is asymptoti-
cally N (0, ¢°(9)) where ¢°(9) is given by (3.20). We have verified this directly
in our application but we shall illustrate it only in Applications I and VII. An
alternative procedure is possible by the theorem of Cramér [3] (28.4) which
guarantees the asymptotic normality of continuous functions of sample moments
with a variance of the form ¢/n (where ¢ is given by (27.7.3) in [3]) provided
that ¢ > 0. This alternative procedure will be illustrated in Application I.

NoraTiON. A sequence of random variables { W,,} is said to converge in law to
the random variable W if the sequence of distribution functions {F,(w)} of {W,}
converges completely to the distribution function F(w) of W ([16], [21]) i.e., at
points of continuity of F. We shall denote this convergence by: W, — W; and
say that W, is asymptotically distributed as W. Given {Z;;, 7 = 1, ---, I,
j=1,---,J} welet Z ;stand for I ') i Z:; ; Z:. and Z.. have a similar mean-
ing. If a random variable has the ¢-distribution with n degrees of freedom, it
will be referred to as a ¢, variable. If the distribution is noncentral with noncen-
trality parameter £, it will be referred to as a ¢, (¢£) variable. The symbols x,* (£)
and F,. (&) denote similarly defined chi-square and F variables. A normal vari-
able with mean £ and variance o will be denoted by N (¢, ¢°).

ConcrusioNs (4.0). In each of the first seven applications the density of X,
is written either in the integral form (3.11)-(3.12) or in the closed form (3.16).
In either case h(6, x) is obtained. Conditions B, A; and A; follow from Theorem
3.3 in the first case and Theorem 3.5 in the second together with the positivity
of 9°h/360z. In the last application these conditions are verified directly. The
position of 6, which is the solution of A(6,, ) = h(6;, z) will be specified and
compared with (6, + 6.)/2. By Corollary 2.1, {R,} possesses the limiting behav-
ior (1.1)-(1.2) in Applications I-VIII. Theorem 2.3 implies that (1.3) holds
also and that Condition A, is necessarily satisfied in Applications I-VII and
need not be checked. All the relevant conditions are checked in Application IT
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only since the rest are similar. Thus, in each application, the test terminates a.e.
Py for all 6 ¢ ©.

When the density of X, is put in the form (3.11)—(3.12), 6 and z will be often
suppressed in the notation for f, ¢ and the k, , while the vector z will be denoted
by v, (v, 2) or (v, y, 2) in case the dimension is 1, 2 or 3 respectively.

I. The sequential i-test. The Z; are identically and independently distributed
N(¢, o) variables, § = ¢/o, = (— o, ®), ny = 2 and X, = Z,/S, where
nZ, = 2 ixZiand (n — 1) 8, = D%y (Z: — Z,)". For each n, sufficiency
and invariance under some group of transformations reduce the data to X, ([20],
pp. 222-223), which has the distribution of a n*,_;(n'¢) variable. The family
of distributions of X, is a MLR family ([18], [17], [20]).

Notice that X,, = U,/V, where U, is N(6,n"), V.2 is x4-1/(n — 1) and U,
is independent of V, . Making use of the relation between the densities of U, ,
V. and X, , we obtain for some K(n)

(4.1) gon(z) = K(n) [o"f(0)e™ ™ dv for ze (— o, »),

where f(v) = v " and Y(v) = — (1 4+ 2°)*/2 + 6w — 6°/2 + Inv.

Let ¢ = o/(1 + 2°)% a(z) = e + (& + 4)1/2 and vy = «(£0)/(1 + 2*)%.
It is easy to show that ¢ has a unique maximum at v, . After changing the origin
to vy , we see that gg,(x) is of the form (3.11)—(3.12). Denoting ¥/(v,) by h(6, x)
we obtain
(42)  h(6,2) = 3’(80) + Ina(0) — 36"+ 31In (1 — &) — 1,

(4.3) 8°h/800x = {20°(£0)/(£°6° + 4) dg/dz > 0,

(4.4) h/0z | me = — (1 + 26©)7N

We remark that (4.2) is in agreement with the results obtained in [4] and [27].
It was shown in [27] that 6, lies between 0 and (6, + 6.)/2. Thus, Conclusions
(4.0) hold.

Let us illustrate two methods for showing that n*(X, — 6) is asymptotically
N(0, ¢°(6)) where ¢°(6) is given by (3.20) and (4.4). Since the distribution of
X, is independent of ¢ we may assume that the Z; are N(6, 1) vari-
ables. Let W, = (W, Wi, Was, W), where Woy = D 20(Z; — 60)/n},
W = (n/2)4(8,2 — 1), Was = S, and W,y = (S, + 1)/2. Also let W =
(Wy, Wy, Wy, Wy), where W; and W, are independently N (0, 1) while W; and
W, are degenerate at 1. Finally, let ¥, = n(X, — 6). It follows easily that
Y, = f(W,) = (Wa/Was) — (0Woo/2W,sWos). Way — Wi because W,y
is N(0, 1). Since a x%_; variable has méan (n — 1) and variance 2(n — 1),
W, — W, for ¢ = 2, 3, 4. Thus, W, — W since W, and W, are independent
and hence (e.g. [6], p. 211 where the independence restriction is unnecessary)
F(W,) — f(W) = Wy — (6Ws/2}) which is N(0, 1 + (6°/2)). Alternatively,
since X, = a1/(az — ai’)}, where a; denotes the sample kth moment about the
origin, we use the theorem of (28.4) in [3] to conclude that X, is asymptotically
N(¢, ¢/n) where ¢’ and ¢ are given by formulas analogous to (27.7.3) of [3] (but
in terms of population moments about the origin) as § and 1 + (6°/2) respec-
tively.
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II. The sequential F-test. The Z; are identically and independently distributed

k-dimensional vectors with Z; = (Z;1, -+, Zj), where the Z;; are 1ndependent
and Z;; is N(¢i, o°). It is known that for some s < ky o1 = -+ =& = 0,
O—Zq_lg'/ka forsomeq 1<q<s® [0, «), no—2andX = ,,/V

where kU, = D i Z and knV, = D 0 [D i (Z; — Z.)* + Zmﬂ Z%).
It follows by a procedure similar to that of p. 267 in [20], that for each n suffi-
ciency and invariance under some group of transformations reduce the data to
X, . U, and V, are independently o’x: (kn8)/kn and 0 Xin—s/kn variables re-
spectively. Thus, X, itself is a qFq in—.(kn)/kn variable and the family of its
distributions is a MLR family ([17], [20]).

The density of U, is given in Application III while that of V, has a simple
form. As in Application I, for ¢ = 1 and some K;(n), we have

(4.5) @on(2) = Ki(n) [0 (0)kn (0) €™ do, z >0,
where

ka(v) = 1+ exp [=2kn(m)],  f(0) = ()7,

Y(v) = —3(1 + z)v + (6av)z — 26 + L 1nv,

while for ¢ > 1 and some K(n),

(4.6)  go(2) = K(n) [¢°[o'f (v, 2)ka(v, 2)€*™ 2 dz dy,

where
k.(v,2) = 1 + exp [—2kn(6mv)%2],  f(v,2) = (va) 9?1 — zz)(q_a)”’
Y(,2) = =31 + z)v + (6av)z — 16 + 31no,

Let £ = ¢/(1 + ), a(z) = [(2)' + (2 + 9)%/2, 20 = 1 and v, = *(£6)/
(1 4 z). It is easy to show that, for ¢ = 1, ¢(v) has a unique maximum at v, ,
and that for ¢ > 1, ¥(v, 2) has a unique maximum at (v, %). For ¢ = 1, we
change the origin to v, and observe that gs.(z) is of the form (3.11)-(3.12). We
include here in some detail the corresponding procedure for the case ¢ > 1. We
change the origin to (v, 2) and denote the new variables by (u, y). Thus,
z = 2+ yand v = v, + u. We then change the sign of y and call the new vari-

able ¢, i.e., { = —y. It follows from (4.6) that
(47)  qm(z) = K(n) [Z, [o'g(w, ©)l(u, £)e*™P di du,
where

g(u, £) = {(u + vo)d} (2 — £)} V2

L(u, £) = 1 + exp [—2kn[0z(vy + w)]'(1 — {)] and

e(u, £) = —3(1 4 z)(vo + u) + [6z(vo + w)}(1 — ¢) — 16
+ 31n (vo + u).
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We observe that gs,(z) is of the form (3.11)-(3.12), by enlarging the domain
of integration to E' X E' and setting g(u, ¢) in (4.7) equal to 0 outside the
region indicated in (4.7). The functions ¢, ¢, and I, satisfy Condition (b) on
E' X Ey': (i) follows from the fact that ¢ has a unique maximum at (v, 2),
(i1) is implied by the fact that ¢ decreases as (w, ) recedes from the origin,
(iii) and (iv) are obvious, (v) follows from the monotonicity of {l,} and the
continuity of the I, and of lim,-«, in a neighborhood of the origin (Dini’s
theorem), and (vi) is implied by the fact that g, (z) is a density for n = 2.
Condition (c) is satisfied on E' X E,' and at each z > 0; (i) and (ii) are obvious
while (iii) follows from the immediate extension of Dini’s theorem to functions
on any finite dimensional space. We also observe g(u, ¢) is factored in the form
required by Theorem 3.2.

It follows from (4.5) and (4.6) that ¥(v,) = ¥(vo, 2). Denote this common
value by h(6, z). We have for ¢ = 1,

(4.8) h(8, x) = kl3a’(£0) + Ina(8) — 30 4+ 31In (1 — £) — 1],
(4.9) 8°h/000x = 3ka’(£0)[£0(£0 + 4)]7 dt/dx > 0,
(4.10)  0°h/02"|,mp = —[k{46(1 + L0)}] 7%

Let us denote the function given in (4.2) by h*(6, z) to distinguish it from
the function given by (4.8) and remember that « and ¢ appearing in (4.2) are
different from, but related to, & and £ appearing in (4.8). Algebraic substitution
shows that h(6, ) = h*(¢, 2*). Thus, it follows from Application I that

(4.11) 0 < 8o < (6" + 6,)%/4 < (6, + 6)/2.

Thus, Conclusions (4.0) hold.

I11. The sequential x’-test. The Z; are as in Application II except that o° is
assumed to be known and is taken to be unity without loss of general-
ity. 6 = D %, ¢ and © = [0, «), ny = 2, and X, = > 2, 7% . For each n
sufficiency and invariance under some group of transformations reduce the data
to X, which is a n™"x,” (n6) variable (p. 321 in [20]). The family of distributions
of X, is a MLR family [20]. For ¢ = 1, X,,is n " 'x," (n6) and

(412)  gou(x) = (1 + exp [—2n(62))n*(2(2m2))) ™ exp [— (n/2) (&} — 6%)7.

Forq > 1, X, = U, + V. where U, is n”'x" (n6), V, is n o, and U, is in-
dependent of V,, . Using the relation between the densities of the three variables
and changing the variable of integration, we obtain for some K (n),

(413) qu(z) = K(n) [if(2)k.(2)e™" de,

where

fz) = 71 = T k(2) = 1+ exp [—2n(62)%]
and

¥(z) = —3(z + 0) + (6z)*.
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It is immediate that ¢ has a unique maximum at z = 1. After changing the
origin to 1, we see that gs,(x) is of the form (3.11)-(3.12). For ¢ = 1, gs ()
is of the form (3.16) with

(4.14) h(6,z) = —3(z + 0) + (62),
(4.15) 0°h/360x = (1626)* > 0,
(4.16) /0%’ |4g = — (460) 7.

For ¢ > 1, let (1) be denoted by h(8, z). It follows from (4.13) that h(6, x)
is given by (4.14) which implies

(4.17) (60)" = [(6)" + (6)1]/2

go that 6; < 6, < (6; + 65)/2. Thus, Conclusions (4.0) hold.

IV. The sequential T -test. The Z ; are identically and independently distributed
k-variate normal variables, Z; = (Zu, --+, Z;), and have mean vector { and
covariance matrix 2. Let Z, and S, be the sample mean vector and the sam-
ple covariance matrix (at the nth stage) respectively. 6§ = ¢=" ¢ and
X, = Z.8,Z, . The sequential T"-test is discussed in [14] and the fixed sample
size T -test is treated in [20] (p. 300). It follows from Sections 9 and 10 of Chap-
ter 7 in [20] that for each n sufficiency and invariance reduce the data to X, .
By an argument similar to that of Application VI, we are able to show that Z,
and S, converge a.e. P . It is shown in [14] and [20] that the distribution of X,
is the same as in Application II.

V. The sequential ordinary correlation coefficient test. The Z; are identically
and independently distributed where Z; = (U;, V;) is a bivariate normal vari-
able with means (u, 7), variances (¢°, 7°), and correlation coefficient p.
9 =p/(1—p)and® = (— w, ©), e =2and X, = Y,/(1 — ¥,°)" where
nU, = 20U and oV, = 2 iV, Y, = 20U — U)(V. = V,)/
(> (U, — U)o m(Ve — V) Tt is shown in [20] (p. 251) that for each
n sufficiency and invariance under some group of transformations reduce the
data to X, whose family of distributions is a MLR family ([20], [25]).

We use a result of Wijsman [25] according to which X, is representable as
Wo + (6xn/Xn-1), where Wy is N(0, 1), xi denotes ( xi2)} and all three variables
are independent. It is remarked in [25] that X, can thus be described as a con-
stant times a ¢,_; variable with a random noncentrality parameter which is a
6x. variable. It follows that X, is a (n — D)7, _1((n)!Y,) variable where Y, is
on *x, . Letting U,(y) denote a (n — 1)7*,_1((n)'y) variable and p denote the
density function of the variable appearing as a superscript, we obtain [25]

(4.18) gon(2) = [*p" (x)pe™ (y) dy.

The densities of U,(y) and Y, are easily obtained from Application I. Thus,
for some K(n),

(419)  qou(z) = K(n) [ [ (v, )ka(v, y)e™ " dv dy,
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where
J,y) = (vy) 7 exp [3(1 + 2",
kn(v, y) = exp [([(n — 1)n]' — n)yar],
Y, y) = —3(1 + 2" + yaw — 3" + Inv + In (y/60) — 3°/6".

For the purpose of maximizing ¥ (v, y¥) we can use the fact that only the first
four terms of ¥ (v, y) involve v and are as in (4.1) with 6 replaced by y. Let ¢
and « be as in Application I. Also let v, = a(£0)/(1 4+ 2°)* and yo = ©*/(1 — o£)
where ¢ = 6/(1 + 6°)%. It can be shown that ¢ has a unique maximum at (v, , ).
After changing the origin to (vy, %), we see that ¢s,(x) is of the form (3.11)-
(3.12) (see Application IT).

Denote ¢(vo, ) by k(6, ). We compute

(4.20) h(o,z) = —1 — In [(1 + 2°) (1 + 6")' — 0],
(4.21) 9n/000x = {(1 + (1 + ) + 2 + ) — z6} " > 0,
(4.22) /0 s = — (1 + 697,

(4.23) 6 = &/(1 — &)}, where & = (6, + 6)/[(1 + 6°)' + (1 + 6°)%.

By studying the sign of (6; + 6, — 26,) (6, + 62), we see that 6, does not lie be-
tween 0 and (6, + 6;)/2. Thus, Conclusions (4.0) hold.
V1. The sequential multiple correlation coefficient test. The Z; are identically
and independently distributed where Z; is a p-variate normal variable (Z; ,
«y Zip), p = 2, withmean ¢ = (¢, -, &) and covariance matrix £ = [o4;].

Let = be partitioned as
I:Eu 212:|
221 222

where 2y is 1 X 1. Let p° be the square of the population multiple correlation
coefficient between Z;; and (Z;s, ---, 2j,) defined by: p° = 21255 Za1/Zy; .
0= p/(1 —p°),® =0, ©) and ny = p — 1. Let S, be the p X p matrix
where the (¢, 7') element S is given by: (n — 1)S% = Doim (Zi — Z.5)
(Zyiw — Z ;). It is shown in [20] (p. 320) that for each n sufficiency and invari-
ance under some group of transformations reduce the data to the square of the
sample multiple correlation coefficient given by: R,” = S,1287 282/, 11,
where S, is partitioned in the same way as 2. Let X, = R,’/(1 — R,?). The
family of distributions of X is a MLR family [25].
It is shown in [25] that

(4.24) X, = oz + (Wo + 6%:)"1/ X041 5

where the variables appearing on the right hand side of (4.24) are independent,
Wois N(0, 1), and X, can be interpreted as a constant times an F,_; ,_,; vari-
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able with a random noncentrality parameter which is a 6x,” variable, i.e., X,
= U,(Y,) where U,(y) is xo-1(ny)/x2—ps1 and ¥, is 0x,"/n. By (4.6) we ob-
tain for p > 2 and some K(n),

(425)  qw(z) = K(n) [o"[o" [0S (v, y, 2)ka(v, y, 2)e™* " dadydy,
where
J,y,2) = ()P0 (1 — 208
ka(v, 9, 2) = 1+ exp [—2n(yw)*],
Y, 9,2) = =31+ 2 + (yw)z — 3y + $Inv + 3 1In (y/6)
—3(y/0).

For p = 2, qu(x) can be written as a double integral using (4.5) instead of
(4.6). This will be omitted because its treatment is exactly as in the case p > 2.
However, we mention that (6, x) is the same for the case p = 2 as for the case
p > 2. In order to maximize ¥, z should be assigned the value 1. Let ¥* denote
the function given in (4.19) which we write now as ¢*(v, y; 6, ). Let ¥(v, y,
z; 0, ) denote the function given in (4.25). Algebraic substitution shows that
v(v,y,1; 6, 2) = ¥ (0, oF; 6, 2b). Using the results of the preceding application
regarding ¥*, we conclude that ¢ has a unique maximum at (vy, %o, %) where
2o = 1 and v, yo are different from, but related to, their counterparts in Ap-
plication V. By changing the origin to (v, , yo , 20) We see that g, (z) is of the form
(3.11)-(3.12) (see Application II).
It follows from (4.20) that

(4.26) h(8,2) = —1 — In [(1 + 2)}(1 + 0)} — (20)1].
The positiveness of 8°4/860x can be established by using the relation
(4.27) h(6, z) = h*(6 2*),

where 2* denotes the function given by (4.20). We conclude from (4.26) that
(4.28) 60 = &/(1 — &) where &' = (6" + 6")/[(1 + 6,)' + (1 + 6)1].
Using the information obtained about 6, of Application V, we find

(4.29) 16! + 6h) < 8t < 8t
Notice that Conclusions (4.0) hold and that
(4.30) /0, |ams = — [46(1 + 0)]7.

VII. A sequential test of the absolule value of the parameter in an exponential
family. The Z; are identically and independently distributed real variables
having density c(#)e’” with respect to some o-finite measure p. The parameter
¢ is real and hypotheses are made about ¢ = |¢|. We assume further that ¢(&)
= c¢(—=9) = c(p), that u(A) = u(—A) for every Borel set 4 and that [Zw
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e”du(z) < ofor0 < ¢ < K < o, where K > 0. G consists of the identity and
reflection transformations. Reduction by sufficiency and invariance leads to the
test statistic X, = |Z,|. It is shown in [20] that ¢(&) is analytic. Letting ¢'(¢)
denote the derivative of c(¢), we take

(4.32) 0= —c(¢)/cle).
The density of X, , with respect to the n-fold convolution of u, is given by
(4.33) gon(2) = nle(e)]"(e™” + ¢ "), o, z, > 0.

From this, the MLR property can be easily established. It is well known [20]
that

(4.34) EsZ; = —c (8)/c(9).

Furthermore, from the symmetry assumptions it follows that E_sZ; = —E;Z; .
Thus, EoZ; = 0. Moreover, the MLR property implies that E,Z; is a strictly
increasing function of &. Thus, |EsZ;| = E,Z; = —[c'(¢)/c(¢)] = 0 (by (4.32))
is a strictly increasing continuous function of ¢, which justifies the parametriza-

tion by 6.
We mention two examples of the situation described above: (1) The Z; are
N9, 1). p%(z) = ¢ """ with respect to (¢ **'%/(2r)?) times the Lebesgue

measure. § = ¢. (2) The Z; + % is Bernoulli (p), ¢ = In p/(1 — p) and, for
ze[—1%, 3], p%(2) = [p(1 — p)]'e” with respect to the counting measure on
{—1%, 4. Here [c(8)] " = ¢”? 4+ ¢"” and 260 = tanh (¢/2).

It follows from (4.33) and (4.32) that gs.(x) is of the form (3.16) and that

(4.35) gn(z) = (1 4 ¢ )n exp [n{ez + In c(e)}],

(4.36) h(6, z) = oz + In c(p),

(4.37) 8°h/00dx = dp/d6 > 0,

(4.38) b0 = —le(6:) — @(6:)]" In [c(e(6))/c(e(6r))].

In (4.32) we let ¢; be the solution of 6, = —c'(¢)/c(¢), for i = 1,2. 6, >, =,

or < (6 4+ 6,)/2 according as In ¢(¢1) — In c(¢2) — (2 — ¢1)/2 >, =, or
< 0. Let y(¢) = Inc(er) — Inc(es) — (¢ — 1) (61 4+ 0)/2 for ¢ > ¢, . Then,
¥(¢1) = 0 so that ¢(¢) has the same sign as ¥/ (¢) provided the latter does not
change SIgn Denoting d6/de by 6 (¢), we compute 2 ¢ (¢) = (0 — 6) — (cp
— <p1)0 (¢) which has the same sign as (0 — 0)/(¢ — @) — 0 (0) = 6(%)
— 6 () for some ¢* Lo <o <o If 6 (<p) is monotonic, we conclude that 6,
>, =,or < (6, 4+ 6,)/2 according as 6 is a strictly concave, linear, or strictly
convex function of ¢. Applied to our two examples, this criterion gives: 6 =
(61 + 62)/2 in the first, and (6, + 6,)/2 < 6y < 6, in the second.

If8 > 0,ie.,8 = ¢, EsZ; given by (4.34) equals —c'(¢)/c(¢) = 6 (by (4.32)).
Furthermore, the variance of Z; is ¢°(8) = o’(¢) = — 9° In c(¢)/0¢" ([20],
p. 58). Thus, the central limit theorem implies that, for & > 0, #*(Z, — 6) is
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asymptotically N(0, o*(¢)). Since Z, > 0 with probability tending to unity,
n'(X, — 6) has the same limiting distribution. Thus, Conclusions (4.0) hold.

VIII. A sequential test of Model II analysis of variance in a one-way classi-
Jication. We describe first the usual fixed sample size Model 11 analysis of vari-
ance test. Let (Z,, ---, Z,) be s-dimensional vectors with Z;, = (Z,;, ---,
Zis)andforti=1,---,m,j=1,---,8;Z;; = u+ a; + e:;; where p is a con-
stant, the a; and e, ; are samples from N (0, o,°) and N (0, ¢.”) respectively. Notice
that unlike the Model I analysis of variance, where ¢,, = 0, the Z;; are not
independent. Hypotheses are made about 6 = ¢,°/c.’, 0 [0, ©). It is shown in
[20], (p. 287) that some proper orthogonal transformations reduce the problem
to the following canonical form: {Y;;, 7 =1, --- ,nandj =1, ---, s} are in-
dependent where Yy, is N((ns)iy, o + noa’), Yo, -+ -, Yy, are N(0, o> + no,’)
and the remaining variables are N (0, ¢.’). Reduction by sufficiency and invari-
ance under some group of transformations leads, for each n, to the test statistic
[20]:

(4.39) W, = D5 Y/ 2 i 2 5a Y

=n 252 — 2.)) 2 2im (Zis — Z.5)"
Notice that Y iy Y3, is (1 + n8)o’x'—y and that D rmy 2 iy V3, s oo x s -
By making use of the density of an F-variable, the family of distributions of
W, is shown to be a MLR family.

An SPRT based on {T,} defined by (4.39) does not exhibit the desired be-
havior (1.1). This is not surprising because such a procedure increases our in-
formation about one population (N (0, ¢.))) but not the other, by holding s
fixed and increasing n sequentially, whereas testing is desired about ¢, /o .

We modify the design so that at the nth stage we have available n observations
on each of n “individuals”:
‘-Z 11 Z21 Z 31

le Z21
(Zul, ) Zyo Lo Zspy, -,
Zu Znm L J
Z13 Z23 Z33
where Z,; has the same distribution as given above. The analysis of this problem
is exactly as before with s = n. We thus have from (4.39),

(4.40) Xo=n 20 (Zy— 2.)") 200 225 (Zey — Z.4)"

It follows that X, is a (1 4 n6)n "Fu_inm_p variable.
We use the density of an F-variable to obtain for some K(n)

(441> qan(x) — K(n)x<"_3)/2(1 + n0)-(n—1)/2(1 + .’E(l + ne)—l>—(n2—1)/2,
and

(4.42) gon(z) ~n "V K (n)0% 7 exp [2"/46" — 1/26]e™ "
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where

(4.43) h(0, z) = 3[—z/6 + In (x/0)],
(4.44) 8’h/800x = (26°)™ > 0,
(4.45) 0’/ 0z |mg = — (26°)7".

Conditions B and A, follow from (4.42) and (4.44). Condition A, is checked
by noting that 8h/d = 0 for 6 = z and that 8°4/96° < 0 for all 6. We obtain

(446) 6y = 0102(02 —_ 01)—1 In (02/01)

By showing that 2[h(6s, (61 + 62)/2) — h(6:, (61 + 65)/2] = f(85/6:), where
(§) = — In &+ 3(¢ — £) and that (1) = 0 while f'(¢) > O for &£ = 1, we
conclude

(4.47) 6 < 60 < (6 + 6:)/2.

Since go,(x) is not written in either of the forms (3.11)-(3.12) or (3.16),
we verify directly, using (4.42), that 7,(60 + ¢/n) — a« exp [cg (60)], where
g (6) = 3(6™" — 0,7"),and o = (6:/6,) exp [(8o7/46," — 1/26,) — (80°/46," —
1/26,)] > 0. Thus, Conclusions (4.0) hold.
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