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PrEFACE. The main result in this paper relating sufficiency and invariance
was originally found by Charles Stein before 1950 but was not published and
not widely known. It has since been rediscovered independently by Burkholder
in 1958 (reported in [7]), by Hall in 1959 ([18], [19]), and by Ghosh in 1960 [16];
the best theorems of this kind have since been developed by Wijsman. This
result is closely related to a theorem of D. R. Cox [9], published in 1952 and
widely used in sequential analysis (e.g., [14], [17], [22], [23]) though Cox made
no explicit use of invariance concepts. The result, together with extensions (due
to Wijsman), related results on transitivity (due to Ghosh), and sequential
applications (due to Hall and Ghosh), is now finally published as a joint con-
tribution, with the permission of Stein and Burkholder.

This paper is presented in two parts. Part I, largely written by Hall and
Ghosh, discusses the implications of the main result and sketches a proof. It
also discusses a result in transitivity and the application of it and the main
result to sequential analysis. Several normal theory examples and a sequential
rank test are treated in some detail. Part II, largely written by Wijsman, pre-
sents the general theory in the subfield mode, including related results on condi-
tional independence and transitivity, and additional examples.
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PART I: EXPOSITION AND SEQUENTIAL APPLICATIONS

I.1. Introduction. We investigate in what sense sufficiency properties are
preserved under the invariance principle and thereby obtain an interpretation
of the sufficiency of a statistic in the presence of nuisance parameters—an inter-
pretation which facilitates the derivation of some sequential tests of composite
hypotheses.

Sufficiency and invariance are reduction principles—principles for condensing
or reducing the data x to a few statistics which can then be used for purposes of
drawing inferences concerning the probability model of the data. Loosely speak-
ing a sufficiency reduction replacing z by s = s(z) discards information which is
not relevant to the parameter  of the model; an invariance reduction (for an
explanation of the invariance principle, see [30]) replacing « by u = u(z) dis-
cards information about 6 which does not pertain solely to a parametric function
v = ~(8) of special interest; the two reductions applied in tandem, replacing
z by v = v(z) where v(z) = vi(s(x)) or vo(u(z)), retain only relevant informa-
tion pertaining solely to v. It is the interpretation of this latter statement that
concerns us here.

More specifically, suppose we consider a family of distributions indexed by ¢
and some group of transformations on the sample space (e.g., changes in sign,
location, scale or order) which leaves the family of distributions unchanged.
Then decision procedures will not be affected by the transformations if they are
based on invariant functions on the sample space; such invariant functions have
distributions depending only on some function, say v, of 8. We shall show that,
loosely speaking, if a statistic s contains all relevant information about 6 then a
mazximal tnvariant function of s contains all the relevant information about v that
is available in any invariant function. We call such functions invariantly sufficient;
they are sufficient for the family of distributions of a maximal invariant function
—or in a sense to be explained, of any invariant function—on the sample space.
This result is a consequence of the Stein Theorem presented in this paper. It may
be illustrated by the following diagram, in which vertical arrows indicate maximal
invariance reductions and horizontal arrows sufficiency reductions:

0| Xo—So

U
Yy U, —V,



SUFFICIENCY AND INVARIANCE 577

Here X, may be thought of as the probability model for the data z, with dis-
tribution depending on 6; S; as the probability model for a sufficient statistic s,
whose distribution also depends on 8; U, as the probability model for a maximal
invariant function w, with distribution depending only on v; and V, as the prob-
ability model for an invariantly sufficient statistic », obtained by either route
in the diagram—as a sufficiency reduction on U, (definition of invariant suffi-
ciency) or as a maximal invariance reduction on Sy . In applications it is usually
the sufficiency reduction on U, that is wanted, while it is the maximal invariance
reduction on Ss that is the easier to perform. That these two routes are equal
under certain conditions is the content of the Stein Theorem.

These results seem to be implicitly assumed by other authors. Thus Lehmann
[30] derives most of the common significance tests about normal models as uni-
formly most powerful invariant tests based on these statistics obtained via the
upper route (Xy — Sp — V). In these normal theory problems, sufficiency and
invariance frequently reduce the data to a single numerical-valued statistic—
the sample mean or its magnitude (see I1.3), the sample variance (1.3), the
t-statistic (1.3), the F-ratio (1.6), Hotelling’s T*statistic (1.6), the (multiple)
correlation coefficient (I1.7), and others ([30], [13], [1]). In Lehmann’s treatment
of rank tests [30], sufficiency and invariance reductions are applied in alternating
order. For example, when testing whether two random samples come from the
same population with a continuous distribution function against the alternative
that one variable is stochastically larger than the other, sufficiency and invariance
reductions reduce the two samples to the ranks (in the combined sample) as-
sociated with one sample (I1.8). Without the Stein Theorem the justification and
interpretation of these reductions is not clear.

The situation is similar as regards sequential analysis. Bahadur [4] has shown
that reduction by the sufficiency principle is also possible in sequential analysis
if the sequence of sufficient statistics, for the data up to stagen,n = 1,2, --- is
transitive (as defined by him). By interpreting the Stein Theorem as a theorem
on conditional independence, it can be shown that the transitivity of a sufficient
sequence is preserved under an invariance reduction. Hence, in this case also, one
may either reduce first by invariance and then by sufficiency or follow the reverse
procedure, and the latter is usually easier.

Moreover, the sufficiency assertion in the Stein Theorem may be used to con-
struct sequential tests for certain kinds of composite hypotheses. The method
essentially consists of applying a Wald SPRT for simple hypotheses about v
(or any other sequential test based on likelihood ratios) to what we shall call an
invariantly sufficient sequence of statistics, the successive values of ». This method
has been described by Cox [9] who gave conditions under which the joint density
of n terms in this sequence factors conveniently. Application of the Stein Theorem
clarifies the motivation of these tests, reinterpreting them through the principle
of invariance, and also constitutes a simplification and extension of Cox’s factori-
zation theorem. Moreover, it should be noted that Cox’s result is imprecisely
stated, some vital assumptions having been omitted (see I1.5).
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In these sequential applications, and also in many nonsequential contexts,
invoking invariance can be considered as a way of handling nuisance parameters.
(Fraser [12] has considered a generalized sufficiency definition in the presence of
nuisance parameters, differing from this approach through invariance. It is shown
in [16] that Fraser-sufficiency and invariant sufficiency sometimes, though
rarely, coincide. See also the end of 1.7.) Sometimes we are not concerned with
6 as a whole but only some function (say v) of it—the remaining variability in
the parameter space being ascribed to nuisance parameters. For example, a
normal distribution with mean 6 and known variance may be considered as a two-
parameter distribution, one parameter being the magnitude of the mean (y = |9])
and the other its sign. By invoking invariance under changes in sign, one ob-
tains the magnitude of the sample mean as an invariantly sufficient statistic—a,
statistic which contains all the information about |f| that is available in any
invariant statistic, the sign of 6 being a nuisance parameter (see 1.3). Similarly,
with normal mean and variance unknown and 6§ = (g, ¢"), the sample variance
is invariantly sufficient for the population variance v = ¢ under changes in
location, and the ¢-statistic is invariantly sufficient under changes in scale
(v = w/0);in fact, the t-statistic is invariantly sufficient in a wider context (see
II, Example 7.3). Unfortunately, however, invariance theory is not always ap-
plicable in problems with nuisance parameters—seldom is it applicable in discrete
models.

Invoking invariance in inference or decision problems insures that the error
probabilities or risk functions will be independent of the nuisance parameters.
However, it may be possible to reduce the error probabilities or the risk functions
by using non-invariant decision procedures, and in fact as shown by Stein (see
pp. 338-339 in [30]) there are examples where all invariant procedures are in-
admissible. On the other hand the (extended) Hunt-Stein Theorem shows that in
a number of important cases minimax solutions may be invariant [30], and in-
variance theory may then provide a useful means of deriving or characterizing
minimax procedures.

1.2. Invariantly sufficient statistics. We represent a probability model
(space) by Xy = (X, @, Py) where X is a sample space of points z, @ is a given
o-field of subsets of &, and Pj is a probability measure on @. For simplicity, one
might like to think of X, as a notation for a random sample from a population
with density or mass function ps . We represent a class of probability models
indexed by 8 by Xe = {X;:60 ¢ ©} where O is some index set.

Any (measurable) function ¢ on & induces a new probability model which we
denote by Ty = (3, @, P,") with analogous notations for other functions. Here
Py is the induced probability measure on @ = #(®@) and 5 = t(9C) is the sample
space of ¢ (that is, the density or mass function p,’ of ¢ is obtained by transforma-
tion from ps).

We consider a group G with elements g of one-to-one (measurable) transforma-
tions from & onto itself, and assume, as in [30], that each ¢ induces a transforma-
tion § from © onto itself defined by Py(gre A) = Py(zed), Ae@, 6¢O.
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Hence, the transformed model is among those considered originally. We represent
these assumptions symbolically as gXe = Xe, and say the class of models s in-
variant under G. G will denote the group with elements §.

The group @ partitions X into equivalence classes or orbits. A function ¢ on
&, which is constant on an orbit, is snvariant. More specifically, ¢ is called in-
variant on X under G if t(x) = t(gx) for all ¢ and z. If an invariant function u
on X assumes a different value on each orbit, it is a maximal tnvariani. In other
words, u is a mazimal tnvariant on X under G if u(z) = u(gzx) for all g and z and
if u(z') = u(z) implies the existence of a g ¢ G for which z = g2'. Maximal in-
variants always exist, and they have the property that all invariant functions
are functions of the maximal invariant; also, if ¢ is invariant under G then its dis-
tribution depends only on a maximal invariant function, say v, on © under G
[30]. We denote the probability model corresponding to an invariant statistic
t by

T’r = (Sy @’ty P’rt)y » yel' = 7(@))

A set A £ @ is an snwariant set if x € A implies gz ¢ A for every g € G. Any in-
variant set is of the form {z: u(z) ¢ A*} where u is a maximal invariant.

A (measurable) function s on @ is said to be a sufficient statistic for Xe if for
every A ¢ @ and s, € 8 there is a version of the conditional probability Pe(4 | sp) =
Py(x e A | s(z) = s) which does not depend on 6.

If ¢ is any statistic for which ¢(gz) = ¢(ga’) whenever t(z) = i(z'), we say
that G induces a group G of transformations g, on 3. Here g, is defined by g4 =
t(ga’) for t e 3 and 2 satisfying ¢(z’) = ¢. Clearly, if . is invariant on 5 under
G, then u = ud(=w.[t(z)]) is invariant on € under G. Hereafter, we drop the
brackets in our notation for composition of functions, writing 2(-) = zy(-)
for z,[y(-)].

Finally, we shall assume that any sufficient statistic s which we consider is
such that G actually induces a group G of transformations on the sample space
8 of s. Although this assumption holds in all interesting examples known to us,
counterexamples can easily be constructed; but without this assumption the in-
variance reduction on Sy indicated in the diagram cannot even be defined.

In summary then, our basic assumptions are that we are considering a class of
probability models X¢ , a group G of one-to-one transformations on the sample
space 9 which leaves the class of models invariant (¢§Xe = Xe), and a sufficient
statistic s on 9 which has the property that G induces a group G, of transforma-
tions on the sample space of s. ,

We now define tnvariant sufficiency, which describes the lower route in the
diagram:

DEerINTTION. A function » on & is invariantly sufficient for Xe under G if

(1) v is invariant under G, and

(ii) the conditional probability of any invariant set A given v is parameter-
free for 6 ¢ ® (for suitable determination of the conditional probability).

By (i) we may write v = v,u where v, is a function on U and « is a maximal
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invariant on . Then a statement equivalent to (ii) is

(ii") v, is sufficient for Uy ,
since Pygy(u e A“|v, = wy) is the same as Po(u(z) e A” |v(x) = v). It is
tempting to think of (ii) as stating that v is sufficient for the distributions of any
invariant ¢ but this would require an extended definition of sufficiency which did
not require v to be expressible as vi. (With such a definition, namely that the
probability that ¢(x) lies in any ¢-set given v is known, the sufficient statistic v
may well contain more information about the parameter than does ¢, but certainly
not less.) We can say, however, that v (or rather v, where v = »,w) is sufficient
for the distributions of w = (v, ) where ¢ is any invariant function. It is with
these various interpretations in mind that we state loosely that » contains all the
information about v that is available in any invariant function.

We are now prepared to give an informal statement of the main theorem:

SteIiN THEOREM. Under certain assumptions, if s is sufficient for Xe and us 1s a
mazxtmal tnvartant on § under G, then v = wu.s ts tnvariantly sufficient for Xe
under G.

In the case of discrete distributions (actually, only s need be discrete), the
Stein Theorem can be proved without any additional assumptions. The proof is
elementary and is given here in two parts:

1.° For any 6 and s, for which Py(s(x) = so) > 0, any g, and any invariant set
A (ie,gA = {gr:xe A} = A), we have Py(4 | s0) = Po(x e 4, s(x) = s0)/
Po(s(z) = s0) = Pgo(x e gA, s(x) = g:80)/Pg(s(x) = gs30) = Ppa(gA | goso) =
Pjo(A | gs80). Since s is a sufficient statistic, the extreme members are param-
eter-free so that P(A4 | s9) = P(4 | g:%)-

2.° Let A be an invariant set and let Py(s | vo) denote Py(s(x) = s |v(x) = v0);
then Ps(A |v0) = D Py(s|v)P(A | s) where the summation is over alls-values
for which u,(s) = v, . Since u, is a maximal invariant, all those s-values are of the
form g.so, with sy fixed, g, € G,. Therefore, Ps(A | ) = 2 Po(geso|20) X
P(A | gs50), where the summation is over all g, . But P(4 | gs80) = P(A4 | s0) by
1° so that it factors out of the summation, leaving a sum which is unity. We have
thus proved that Py(A4 | vy) = P(A | s0), free of 8, which concludes the proof.

Part 2° of the proof easily generalizes to the general (instead of discrete) case,
by noting from the conclusion of part 1° that P(A | s) depends on s only through
uss = v, and writing Ps(A |v) = Eo(P(A|s)|v) = P(A]s), which is
parameter-free.

Part 1° is not so immediately generalized. In the discrete case, it shows that
the conditional probability of an invariant set, given s, is invariant. More
generally, the question posed is: Is there a version of the conditional probability
which is both parameter-free and invariant? It is only known generally that the
conditional probability is almost invariant (Lemma 3.1, Part IT). Therefore, in
order to assure the invariance of P(A | s), and with it the Stein Theorem, another
assumption has to be made. The choice of the most convenient such assumption
depends on the type of problem at hand, and so in Part II three possibilities are



SUFFICIENCY AND INVARIANCE 581

being offered : Assumptions A, B, and C. We indicate below specialized versions
of each of these which will enable us to apply the Stein Theorem to a variety
of examples; the sufficiency of these assumptions is verified in Part II.

Assumption A is satisfied if every almost invariant function on 8 is equivalent to
an tnwariant function. (We really refer to Assumption A (ii) of Part II since we
assume A (i) as part of our basic assumptions in Part I.) This is commonly true
in parametric problems, a useful sufficient condition being the existence of an
invariant measure on G (see pp. 225-228 and 335 in [30] and II.3, I1.5). More-
over, it always holds for finite groups, such as sign changes or permutations
(see 1.3).

Assumption B is, essentially, that there exists an invariant conditional prob-
ability distribution, P(A4 |s) = P(gA | gss), from which the theorem readily
follows, and this assumption is easily verified in some important nonparametric
applications. In fact, as a useful special case, suppose the sufficient statistic s
has the property that any s-set B may be partitioned into sets B;, By, -+, in
such a way that the set of z-values mapping into B; may be partitioned into 7
subsets of equal probability (for all §) on which s is one-to-one; hence, there are
a finite number of z-values, all “equally likely”, which map into any s-value.
Suppose G is any group which induces a group on 8. Then P(A | s)) may be
taken as the proportion of the z-values mapping into s, which are in A. That this
P(A | s) is invariant is immediate; that it is a version of the conditional proba-
bility is straightforward to verify. An example is provided by s being the order
statistic(s) corresponding to samples from one or more populations and gz
is obtained from z by applying an order-preserving transformation to each
observation (see 1.8 and Example I1.6.1). Another example may be provided
by a sufficiency reduction which is simply the dropping of signs in data with a
symmetric distribution.

Assumption C concerns regular continuous cases, and the Stein Theorem under
this assumption may be considered a rigorous version of the Cox theorem. The
conditions are that x has a multivariate (non-singular) continuous distribution,
the region of positive density not varying with 6, and the factorization of the
joint density of xz may be written go(s(x))h(z) where the transformations
g in G, the sufficient statistic s, and the factor h satisfy certain regularity con-
ditions, namely: for all z-values except those lying in an invariant set Ao having
probability zero and satisfying the condition that s(z) s s(z’) if , but not 2,
isin Ao, we have (a) each g is continuously differentiable and both the Jacobian
and h(gz)/h(z) depend only on s(z), and (b) s is continuously differentiable
with matrix of partial derivatives of maximal rank. Most normal theory examples
satisfy these conditions (see 1.3 and I1.7).

Finally, it is trivial to show that completeness of a family of distributions is
preserved under invariance reductions. However, in the absence of completeness,
minimality of sufficiency is not, in general, preserved (see I1.3). Hence, it is
possible for maximal reductions made by the upper route in the diagram in I.1
to lead to a lesser reduction than maximal reductions made by the lower route.
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1.3. Some examples. As a simple illustrative example consider the following:
x = (21, z2) where the z,’s are independent and normal with means 6 and unit
variances, ® = {6: 6] < a (finite or infinite)}, and G = {g*, g7} where 'z = =
andgz = —2 = (—21, —;). Then G is found to be {§", 7~} where §=0 = +6
so that the class of models is invariant under G. Moreover, s(z) = z; + 3 is
sufficient for Xe , and G induces the group G, = {g.¥, g."}, where g.* = 5=, on s
so that the basic assumptions are satisfied. Moreover, Assumption A holds since
@ is finite.

The maximal invariants are found to be: v(8) = |0]; v = (w1, s, us) where
w(z) = |2, wa(x) = |m), and uz(z) = 1 if xx > 0 and = 0 otherwise; and
us = [s| or v(x) = us(z) = [x1 + 2. We prove it for u only: (i) u(gz) =
w(z); (ii) u(z) = u(z’) implies z; = 42, with the same sign for ¢ = 1, 2, that is,
@ = gz or 2 = g 2’. Thus the magnitude of each coordinate z; , together with
the knowledge of which pair of diagonally opposite quadrants contains (z;, z2),
form a maximal invariant » (a diagram may be helpful).

The theorem states that any conditional probability statement about any
invariant function ¢—that is, any function for which ¢(z) = t(—x)—given v
is free of 6-dependence; i.e., among invariant functions, |x; + x| contains all the
available information about ||. For example, any statement about |z:], or about
(||, |22]), given |z1 + .| is free of dependence on [f]. This example is readily
extended to samples of size n > 2.

For a second example, suppose z = (21, - - - , x,) where the x,’s are independent
and normal with § = (u, ¢), © is the upper half-plane, and G is the group of scale
changes, an element of which multiplies each x; by a specific positive constant
¢ (see pp. 98-99 in [13]). The sample mean and standard deviation together
constitute a sufficient statistic, and the basic assumptions are readily verified
(the induced groups G and G, again being groups of scale changes). Assumption A
is satisfied since the absolutely continuous measure with derivative 1/¢ is an
invariant measure on the Borel sets of the positive reals {c}, and correspondingly
on G. Alternatively, Assumption C may be verified, the set A, being the line on
which z; = 2, = -+ = z, (see II, Example 7.1 and 7.3).

The maximal invariants are found to be v(8) = p/o; u(z) = (21/T0, -,
Tn_1/Zn , SN T,); and v is Student’s {-statistic. The theorem thus states that the
t-statistic is sufficient for the class of distributions of , this class being indexed
by «. If ¢ is any invariant statistic—e.g., the sample mean divided by the sample
range—then the ¢-statistic is sufficient for the distributions of ¢’ in the sense that
any probability statement about ' (z) given v(z) is parameter-free.

Similarly, the magnitude (or square) of the i-statistic is invariantly sufficient
for the distributions of the maximal invariant u(z) = (21/%n, - * , Tn-1/Tn)
under changes in sign and scale, the distributions being indexed by 7.

Uniform and exponential location-scale parameter examples may be treated
analogously.

1.4. Invariant sufficiency and transitivity. In this section we discuss suf-
ficiency and invariance for a sequential experiment. The experiment may be
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terminated at any stage, but performance of stage n implies previous performance
of stages 1,2, --- ,n — 1.

We must distinguish three kinds of probability models:

(i) the component or marginal models Xno = (Xn, @n, Pr) for the stage n
dataz, (n = 1,2, ---),

(ii) the joint (n-fold) models Xy = (Xmy , @y , Pmys) for the accumulated
data 2@y = (21, + -, x,) through stage n, and

(iii) the sequential model Xy = (X, @, Py) for the whole sequence of data

= (21,2, ).
Here, %,y and X are the product (n-fold and infinite, respectively) sample spaces
with components 9;, %2, - -+, %, - - - , and @y and @ are the respective product
o-fields of events [32]. For each 6 £ ®, Py is a probability measure on (X, @)
and P, and P, are the corresponding joint and marginal probability measures
derived therefrom; thus, for A € Gy , Pmye(A) is the probability according to
Py that the n-tuple 2, , obtained by truncating the sequence z, lies in A, and
similarly for P .

We shall largely be concerned with the sequence of joint models {X (s}. The
concepts of sufficiency and transitivity are defined (below) in terms of this
sequence. Invariance, however, is more suitably defined in terms of the sequential
model X , although, by giving up justification for invariance reductions, we could
avoid the sequential model altogether.

If, for each n, s, is sufficient for the class X ye of joint models (§ £ ®), then
s = (81, 82, ++-) is called a sufficient sequence for Xg ; s, is a function of the
first n observations.

For each n, suppose t, is a function of x¢, . If, for all § and each n, the con-
ditional distribution of ¢,.1 given z(, is identical with the conditional distribu-
tion of ¢,4; given ¢, , then t = (i1, &y, - --) is said to be a transitive sequence for
Xeo . This definition is adequate for the discrete and continuous case examples
treated here; a general definition appears in I1.4 and [4]. The idea is that all the
information about ¢,41 contained in z, is carried by t, = t,(Twy).

In sequential inference problems about 6, Bahadur [4] has shown that atten-
tion may be confined to sequential decision rules, here called s-rules, which
depend at each stage n only on s, , provided s = (s, sz, -« -) is a sufficient and
transitive sequence for Xe .

We now introduce an invariance structure on Xe . Suppose @ is a group of
transformations g on the sequential sample space & for which gXe = Xe with
maximal invariant ¥ on @. We shall further assume that each g induces a trans-
formation g, on the n-fold sample space X, , that is, if ," is the nth component
of ' = ga then xz,,) = gmTwm - It is easily seen that gy Xme = Xme , that is,
the joint models are also invariant (but see the next paragraph). In particular,
this further assumption holds if ¢ acts component-wise: gr = (gix1, go2, - - ),
and this commonly occurs in applications (see also [26]). Typically, the stages
in the sequential experiment are mutually independent copies in which case
g must act component-wise with identical components g,—for example, each
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%, is a Euclidean plane and each g, is a rotation, g rotating each of the n
component planes the same amount.

(Strictly speaking, all identical joint (and marginal) models—which need not
be distinet for all 6 € ® even though the sequential models are—should be given
the same index value, by introducing a reduced parameter index 6, = w,(0) £ 0,
say; the maximal invariant on ©, may also vary with n, being a function of v
however. For example, suppose the z,’s are mutually independent N (u, , u.’),
0= (u1,pm, - -),and 8, = (w1, ---, un), @ new parameter being introduced at
each stage; let g act component-wise with g,x, = ¢.z.(c, > 0), and the maximal
invariants under G and G, are v = {sgn u,} and the first n components thereof,
respectively. We choose to avoid this notational complexity, feeling the im-
precision should cause no real difficulty.)

Now let u, denote a maximal invariant on X, under G, . Since, as is clear,
Gy induces G gy for m < m, u., considered as a function of ¢,y (depending on the
first m coordinates) is invariant and hence a function of w, ; that is, from knowl-
edge of the value of one term in the sequence u = (uy, u2, - --), all prior terms
may be evaluated. However, u itself is not necessarily a maximal invariant
under G; but it is this sequence of maximal invariants (under G(,) that is
relevant in the sequential decision problem since a maximal invariant under G
would depend on the whole sequence z = (21, 2, ---) which is not available
to the decision-maker.

We therefore interpret the principle of invariance in the sequential case as
stipulating that attention be confined to u-rules—that is, to decision procedures
that depend at stage » only on the value of w, . (This is consistent with the
definition in [26] where ¢ acts component-wise. Application of the invariance
principle in the sequential decision problem presumes a cost function which is
invariant under both G and G, for example, constant cost per observation.)
In effect, we replace the original sequence of joint probability models {X ¢}
with the sequence {U,,} where U,, is the model for u,. A component-wise
sufficiency reduction on % leads to a sequence » = (v;, vz, ---) which may be
called an inwariantly sufficient sequence for Xe under @, each v, being invariantly
sufficient for X e under G, . Hence, when invoking invariance, restriction to
v-rules is justified so long as v is transitive for the sequence of models U.,r .

The Stein Theorem provides an alternative means of reduction from the
sequence z to the sequence v, assuming G, induces a group of transformations
on the sample space of s,. The theorem asserts (under certain assumptions)
that a maximal invariance reduction applied component-wise to s leads to an
invariantly sufficient sequence ». (The diagram of 1.1 is relevant only if we
append subscripts (n) to X and U and subscripts # to S and V.)

One problem then remains—that of verifying the transitivity of v. Fortunately,
as shown in IT.4, it is sufficient to verify the transitivity of s, so that the upper
route is completely justified; that is, we may make a sufficiency reduction from
Zw tO 8., verify the transitivity of s, and then make a maximal invariance
reduction from s, to v, , and we will obtain an invariantly sufficient and transi-
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tive sequence v. The reason this is permissible is that, in proving the Stein
Theorem in Part II, a stronger result is actually obtained; this result may be
roughly described as asserting the conditional independence of s, and wu, given
v,—i.e., to the factoring of the conditional joint distribution of s, and w, into
the conditional distribution of s, and the conditional distribution of w,—and
this result can be used to show that transitivity of s implies transitivity of v.

Finally then, a problem of interest in applying the Stein Theorem to obtain
v-rules is the verification of the transitivity of the sufficient sequence s. The
following result (see Theorem 4.3 in IT) is quite useful for this purpose. Suppose
the original random variables with values z = (21, @2, - +) are mutually in-
dependent; then s is a transitive sequence if s,;1, a function of (=
(Tmy , Tns1), 18 a function of s,(xw)) and .41 only, ie., if 8,41 depends on
only through s, . This condition is easily verified for exponential class laws,
where s, is of the form s, + f(2,+1), and for nonparametric problems where sets
of ordered observations constitute the sufficient statistic at any stage. In par-
ticular, this condition holds in all examples discussed in this paper (I.5-8).

1.5. Application to sequential tests of composite hypotheses: v-rules. Cox
[9] has proposed that sequential tests of simple hypotheses about a parametric
function v, which are composite hypotheses about 6, may be obtained by applying
a SPRT—or any generalized sequential probability ratio test (GSPRT) [27] for
that matter—to a sequence of statistics whose distributions depend only on ~.
(It should be noted that Wald [45] and Barnard [5] have proposed alternative
approaches to deriving sequential tests of such hypotheses; see also [25], [14],
[36].) In the framework of the previous section, an invariantly sufficient and
transitive sequence v is such a sequence, and restriction to v-rules is simply a
consequence of invoking the invariance principle; restriction to SPRT’s applied
tovy, 02, - -+, which turn out to be v-rules, is on the other hand largely a matter
of convenience.

Since v, is sufficient for the distributions of any invariant function of which
v, is a function (see remarks after definition of invariant sufficiency in 1.2),
v, is sufficient for the distributions of vpy = (1, -+ -, v.). Therefore, the joint
density (with respect to a suitable dominating measure) of v, factors accord-
ing to the Fisher-Neyman factorization theorem for sufficient statistics. The
ratio of densities of v, at fixed values of v, say v1 and yo—on which any GSPRT
is based—thus reduces to the ratio of densities of v, at v; and v ; hence a GSPRT
based on v depends only on v, , not vy, at stage n, and is thus a v-rule. The
(joint) density of vy need not be known since only the (marginal) density
of v, is required. This factorization is the essence of Cox’s theorem.

Actually, Cox’s theorem is incompletely stated ([9], [22], [14]). The invariance
assumption gXe = X is not explicitly assumed by Cox, but used in the proof
(to establish the last line on p. 291 of his paper). That the theorem is invalid
without this assumption is demonstrated by the following counterexample
(Cox’s notation): (z1, 2, x3) are independently normal with unit variances
and means (6;, 6; + 62,0),t1 = 21,1t = 2, u = zs + x3, and the transforma-
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tions take (1, 22, x3) into (1, 22 + ¢, 3 — ¢). Then t; and u are independent so
that their joint density factors, but the second factor, the N(6; + 6., 2) density
of u, involves 6; . In this example the model is not invariant under the transforma-
tions, and the conclusion of Cox’s theorem is invalid although his conditions (as
we understand them) are satisfied.

Our basic assumptions and Assumption C provide a corrected version of Cox’s
conditions; however, it is usually simpler to verify Assumption A than Assump-
tion C, and, through Assumption B, an extension to some nonparametric applica-
tions is also made possible. Moreover, the justification for confining attention to
v-rules is made precise and this enables further investigation of the properties
of sequential procedures based thereon. Thus our approach corrects, simplifies,
extends and motivates the application of Cox’s technique.

Since the v,’s are not independent and identically distributed, SPRT’s applied
to them do not, in general, have any known optimum property (but see the end
of 1.7).

We list under four headings below the properties that are known:

(i) strength: For tests of simple hypotheses about v, use of Wald’s boundaries
B = 38/(1 — a) and A = (1 — B)/a provides approximate upper bounds
(a, B) on the true error probabilities, whatever the values of the nuisance
parameters. [It is frequently suggested (e.g., [9], [10] and pp. 98 and 250 in [30])
that in order to use Wald’s boundaries for a SPRT one must prove termination
with certainty. However, it is easily verified that the requirements on the error
probabilities are fulfilled as approximate upper bounds, rather than approximate
equalities, whether or not termination is certain. (The word ‘“‘approximate”
before ‘“upper bounds” is really only justified if the error probabilities are small,
but may in fact be deleted throughout if Wald’s conservative boundaries B = g
and A = 1/« are used.)]

(ii) termination: Many such procedures, including those in which », has a
monotone likelihood ratio (MLR), may be shown to terminate with certainty
(for all # or even more generally). For some specific examples, termination with
probability one has been known for some time (e.g. [10]); more recently, rather
general termination results were obtained by Wirjosudirdjo [47], Ifram [21]
and Berk [6]. One or more of these references provides proof of termination for
all examples in this paper (though only under H,and H;in the rank test example).
When termination under H, and H; is assured, the approximate bounds in (i)
become approximate equalities.

(iii) OC-function: The operating characteristic functions of these tests—or
of any GSPRT’s of v, vs. v1 applied to v—depend on 6 only through v, and, if
v, has a MLR for v in T, the OC-functions are monotone in v (real) [15]; this
occurs in most normal theory and exponential class examples. Thus, assuming
7o < 71, these tests are effectively tests of the hypotheses v = yovs. v = v
But approximations to the OC-functions are not generally available. (Wald
[45] has given a monotonicity theorem but his proof is incomplete. In the prob-
lem considered by him, he claims that it is sufficient to prove that the density
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ratio at 1 and v, is monotone in », but he did not verify this claim. Also, the
proof of a similar monotonicity theorem in [29] is invalid for tests based on a
sequence of dependent variables, such as v. A valid monotonicity theorem for
the case of independent variables, such as the z-rules of 1.7, appears in [29] and
[30]. Valid theorems for the dependent case appear in [15] and [16] and, implicitly,
in [47].)

(iv) ASN-function: Little is known about the average sample number functions
for these tests except for some heuristic approximations supported by empirical
investigations (see [25], [35], [2], [22]). The results of Ifram [21] may be used to
obtain alternative approximations.

We now consider the examples introduced in I.3. First, suppose the observa-
tions are independent N (6, 1) and we wish to test [§] = o against the two-sided
alternative |6 = v (>7 = 0). The class of probability models is invariant
under the group of sign changes for every n, as are the hypotheses. In 1.3 we
found v, = |1 + -+ 4+ .| to be invariantly sufficient for the joint models of
the first n observations, and v = (v1, v, - --) is then found to be an invariantly
sufficient and transitive sequence; restriction to v-rules is then justified under the
principle of invariance.

A SPRT of v, vs. 1 based on » depends at stage n only on the ratio of densities
of v, (using the sufficiency factorization), and this is readily found to be

exp [—n(v® — ¥°)/2] cosh (vav1)/cosh (vayo).

Sampling is continued as long as the ratio remains between Wald’s boundaries B
and A (or B, and 4, for a GSPRT). Since v, may be verified to have a MLR in
v = |6|, the OC-function—which depends only on y—is monotone in v, and the
test terminates with certainty for all ¥ [21] (and even more generally [6]). The
true error probabilities are approximately equal to the prescribed ones.

This example has application in the sequential testing for the significance of
the difference between two means against two-sided alternatives when the obser-
vations are normal with equal and known variances, a difference being observed
at each stage of sampling. The Sobel-Wald [43], Armitage [3], and Schneiderman-
Armitage [40] sequential test procedures are alternative to the one above, and
not based on invariance theory, but the symmetric version of each is still a v-rule,
and in fact a GSPRT based on v.

Consideration of the second example of 1.3 would lead to the WAGR one-sided
sequential t-test of u/o < v vs. p/o = v1 with v, equal to the ¢-statistic (or a
monotone function thereof) based on the first n observations ([10], [36] and p.
250 of [30]) ; its properties are analogous to those above (i)—(iv). We omit further
consideration of it, but consider the two-sided case—the variance unknown
analog of the first example above—in the next section; see also 1.7. That these
{-tests have a broader applicability may be seen from Example 7.3 in IL.7.

Sequential tests about one or two normal variances and sequential tests about
normal correlation coefficients may be derived analogously.
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1.6. Sequential ¥, ¢, and 7" tests. Sequential F-tests and T"-tests appear to
have been introduced by Stein [44]. Sequential F-tests were also considered by
Nandi [33]. Johnson [23] invoked Cox’s method and Hoel [20] employed the weight
function method of Wald [45] to justify sequential F-tests; Hoel also pointed out
invariance properties of them. F-tests are also treated in [35], [38], and [14].
Cox’s method has been recently applied to sequential T"-tests (and x’-tests) by
Jackson and Bradley [22]. The two-sided ¢-test, or £-test, is treated here as a
special case of the F-test (or the T"-test); it appears in [34] and [37]. Some com-
parisons. with alternative £-tests appear in [41]. Sequential tests for components
of variance problems ([24], [14]) may also be derived through sufficiency and
invariance considerations but will not be considered here. Our purpose here is to
show in outline how these tests (or slight extensions thereof) can be derived
from sufficiency and invariance considerations; we thus provide a rigorous basis
for justifying and interpreting them. Alternative tests may be constructed by the
methods of 1.7.

F-test for fized-effects model: We consider a sequential experiment in which
each stage consists of a replication of a fixed-effects linear model experiment.
We assume that the data from each stage are separately reduced to canonical
form as described in Section 7.1 of [30] so that stage n yields data z, =
(Tn1, * -, Tnp), Where the z,.’s are independent normal observations with com-
mon (unknown) variance o and with means6; , - -+ ,6;,0, ---, 0, (I £ p). The
hypotheses to be tested are Hy : v = vyo vs. Hy : v = vi(v1 > 70 = 0) where
v = D %4626 k = 1. If v, is taken to be zero the null hypothesis may be
described as6; = - - - = 6, = 0; however, since such a hypothesis is usually known
to be false a prior: it may be more reasonable to assign a type I error bound to a
larger parameter set, and a y-interval is a mathematically convenient choice.

The sequential F-test for this problem will now be briefly described and
justified. Many of the arguments sketched below can be verified in analogy with
results in [30].

We define a group G of transformations g which act component-wise in an
identical way on the canonical forms of the respective stages of the experiment.
Each transformation is defined by an arbitrary positive number b, an arbitrary
orthogonal matrix C, and [ — k arbitrary numbers a1, - - - , @z, and transforms
the stage n data as follows:

(xnl’ o e ,xnk)-——)b.<xn1, o e ,xnk).cy
(xn,k+1 y Ty xnl) - b'(xn,k+1 + Qpy1, **° 5 Tnl + al),
(xn,l-)-l; 73:”1)) —>b'($n,l+1, ] xnp)'

This group leaves the model for the data through stage n invariant, with vy
(defined above) as a maximal invariant on the parameter space.

The sample means &1, -+, & of the first [ components of the observations
through stage n together with the conventional error mean square E, (based on
va = (n — 1)l + n(p — 1) degrees of freedom) constitute a stage n sufficient
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statistic, say s,, and s = (s1, sz, --+) is a sufficient and transitive sequence.
The following transformation is induced on the sample space of s,, :

(inl, tet 7$~nk) _>b’(fn1, M ,jnk)'o
(Tnptrs = 5 Tnt) = b (Tnpir + Grta, -+, Tt + @)
E, —b-E,.

A maximal invariant under this induced group is the F-statistic ¥, (with % and
v, degrees of freedom) conventionally used to test the hypothesis v = 0 (or
¥ = ) based on all the data available through stage n; thus F, is the ratio of
the mean squares due to hypothesis and error based on the first n replications.

Since every almost invariant function of s, is known to be equivalent to an
invariant function, Assumption A holds, and the Stein Theorem leads to the con-
clusion that ¥ = (Fy, Fs, ---) is an invariantly sufficient (and transitive)
sequence; hence, F, is sufficient for the distributions of any invariant function of
which it is a function, specifically for the distributions of (#y, - -- , F,). (Appli-
cation of the Stein Theorem could also be validated by verifying Assumption C,
in analogy with Cox’s theorem, but the verification is both tedious and unneces-
sary.)The likelihood ratio for (Fy, - -- , F,) at v1 and v, then reduces to the likeli-
hood ratio for F, at v; and v, , that is, the ratio of two non-central F-densities.
This ratio may be conveniently expressed as R, = h,(v1)/hn(vo) where

M(-, -; -) is the confluent hypergeometric function and z, = F,k/», , the ratio of
sums of squares due to hypothesis and error [38]. A SPRT based on the ratios
{R.} has properties (i)—(iv) listed in 1.5 since the non-central F-statistic has a
MLR.

References to available tables for the confluent hypergeometric function may
be found in [42]; asymptotic expansions given there may also be used to develop
approximate procedures. See also [35], [36], [38], [39] in these regards.

Note that we do not reduce the data available through stage n to canonical
form, but only the data of each stage separately. This is essential in our formula-
tion to permit a consistent component-wise group structure. Actually the succes-
sive stages need not be perfect replications of one basic experiment so long as the
canonical forms are perfect replications; in fact, we can permit any number of the
last p — k components, or all of the first &£ components, of the data in canonical
form to be missing at any stage by making only minor alterations above. Indeed,
p and the number (I — k) of nuisance parameters may be infinite, provided only
that each row in the design matrix have a finite number of non-zero entries. Thus,
new nuisance parameters may be introduced at each stage to adjust for suspected
stage-to-stage effects. (We call the stages replications, but they include any time
effects.) Some accounting for such effects, even stage-wise variation in o°, is
also possible by using an alternative procedure, namely an SPRT based on a
sequence of independent F-statistics, one computed from each stage (assuming
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I < p). Such procedures are considered in 1.7 (specifically in the context of
i-tests rather than F-tests).

Finally, the sequential F-test may be shown to be valid in any situation in
which the non-sequential F,-test, based on the accumulated data through stage n,
has a power function depending on v only. In this case, one can transform to new
observations z, , where xzn) is a function of x(, , and in terms of the new observa-
tions the first £ components are replicated equally, or not at all, at each stage so
that the preceding analysis is applicable for the primed data.

Two-sided t-test: The above F-test reduces to a two-sided t-test, or £-test,
when k = 1; we further assume below that p =1 = 1. (Thecasek =1,p =1 = 2
is discussed in [17].) Thus, based on a single sequence of observations x; , 2, « - -,
from a normal population with unknown mean u and unknown variance o°, we
wish to test Ho : (u/0)’ £ 8 (=70) against H; : (u/0)* = 8 °(=41). (The trans-
formations take each z; into #bx,; and thus constitute changes in sign and scale;
see 1.3.) The likelihood ratio after n observations is as given above for the F-test
with », = n — 1,k = 1,and F, the square of Student’s ¢-statistic based on n — 1
degrees of freedom ; more conveniently, 2,/ (1 + 2,) = (D rm1 @)/ Dt 2 = Tu,
say. When 8, = 0, the SPRT reduces to the common WAGR two-sided i-test
treated in [34] and [37]. The restricted [3] and wedge [41] procedures are alternative
GSPRT’s based on the same invariantly sufficient sequence of *-statistics. See
also 1.7. (Note: Using Wald’s weight function one can obtain a similar test with
the modification of reducing by unity the first argument of the confluent hyper-
geometric function. However, even for 8’ = 0, the case considered by Wald, we
know of no rigorous proof of Wald’s inequalities on the two error probabilities; for
the kind of arguments required, see [5].)

Tables [34] are available for carrying out the SPRT when 8, = 0. Otherwise,
tables of the confluent hypergeometric function are required (see above). Alterna-
tively, one can approximate the confluent hypergeometric function to obtain a
simpler form of the test. Following Rushton [36], one obtains the following ap-
proximate sampling procedure, using his simplest approximation: continue
sampling only if a, < r, < b, where a, = n{[1 + 2\* + (\/p)(a/n)]} — 1}%/\*
and ¢ = log A, N = (81 + 80)/2, p = (8 — 8&)/2, and similarly for b, with a re-
placed by b = log B. Better approximations or the exact formulas could be used
whenever 7, lies close to a critical value a, or b, .

T"-test: The same approach as for the F-test above could be carried through
for multivariate linear models, as in Section 7.9 of [30], but a single (numerical)
maximal invariant on the space of the sufficient statistic or on the parameter
space is usually not available; instead, the roots of certain determinantal equa-
tions play these roles. Sequential tests of simple hypotheses about these para-
metric roots could be carried out, but such hypotheses would seem to be of little
practical interest; there is no available sequential analog of the maximum root,
trace, or likelihood ratio tests for this problem (but see 1.7). However, whenever,
there is a single non-zero root, the problem reduces to that of a sequential T°-test,
an important special case of which we outline below. (See [30] and [1].)
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Consider two p-variate multinormal populations with equal (and unknown)
non-singular dispersion matrices = and unknown mean vectors 6; and 6, . At each
stage of the experiment an observation from each population is drawn inde-
pendently, say 1 and z,» (p-vectors). We wish to test the hypotheses v < v, vs.
Y = = "/1(’)/1 > Yo ; O) Where Y = (01 —_ 02), _1(01 —_ 02) Wlth Yo = 0, thlS iS the
problem of sequentially testing equality of two mean vectors.

Let g be a component-wise transformation with identical components taking
Zni into (2n: + @)-L(Z = 1, 2) where a is an arbitrary vector of constants and
L is an arbitrary non-singular matrix. These transformations leave the problem
invariant, and v is a maximal invariant on the parameter space. The two vectors
of sample means, £,; and &2 , and the pooled sample dispersion matrix D, form a
sufficient statistic based on the data through stage n; the sequence of sufficient
statistics is transitive, and a transformation is induced on the sufficient statistic
taking &, into (Z.: + a)L(4 = 1, 2) and D, into L'D,L; moreover, Assumption A
holds. A maximal invariant is T,’, the non-zero root of the determinantal equa-
tion |A.D, " — M| = 0 where A, = (&n1 — &n2) (&n1 — Tna). (T, is an arbitrary
constant forn < (p + 1)/2.) Hence, T° = (T, T4, - - -) is an invariantly suffi-
cient and transitive sequence and may be used to construct sequential tests
about the parameter function ~.

Since T,” is a Hotelling T”-statistic (with 2(n — 1) degrees of freedom), its
distribution is essentially that of non-central F; hence, the stage n likelihood ratio
is of the same form as in the F-test, with &k = p, v, = 2(n — 1) — P + 1, and

= T.’/2(n — 1). When p = 1, this reduces to the two- sample £-test [17].

Slmllarly, an invariantly sufﬁment and transitive sequence of Hotelling
T’-statistics (with n — 1 degrees of freedom) may be constructed for testing
hypotheses about v = 6,'=7'6; when sampling from a single p-variate normal
population with mean vector 6, and dispersion matrix =; the transformations
then are of the form 2,1 — .1 L.

If = is assumed known in these problems, one may obtain analogously se-
quential x-tests [22].

L7. Alternative sequential tests: z-rules. An alternative approach to the
construction of sequential tests about a parameter v, when the successive stages of
the sequential experiment are mutually independent, is as follows: let ¢, be a
statistic based on the stage n data (a function on 9,) whose distribution depends
only on v, and let z, be a function of {w,y) = (&1, -+, ¢,) which is sufficient for
the distributions of ¢, . Then a GSPRT of, simple hypotheses about v can be
based on the ¢-sequence, or equivalently (by sufficiency) on the z-sequence. We
call such tests z-rules, decisions at stage n depending only on the value of z, .
An advantage of z-rules is that the ¢,’s are mutually independent and possibly
identically distributed as well, in which case Wald’s ASN and OC approxima-
tions and his termination proofs are applicable; Lehmann’s [30] monotonicity
theorem for the OC function may also be applicable. However, unless such pro-
cedures are also v-rules (see below), they waste pertinent information about v and
so are presumably less efficient that v-rules; in fact, they may perform no better,
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as far as the ASN is concerned, than nonsequential tests of equal strength (see
(24]).

To derive z-rules from sufficiency and invariance considerations, we first note
that, in the framework of 1.4, ¢ induces a group @, on %, with elements g, . Let
w, be invariantly sufficient for the component models X,e under @, . For z-rules,
invariance reductions (to w,) are made separately stage-wise, and then sufficiency
reductions yield the z-sequence; for v-rules, invariance reductions (to u,) are
made on the accumulated data, and then sufficiency reductions yield the v-se-
quence.

Now it may be necessary to group the successive stages of the experiment in
order that the w-sequence does not degenerate into a sequence of constants. As
an example, consider a one-sided {-test situation (see I.5 and 1.3) in which ob-
servations are taken in successive groups of size k (>1) from a normal popula-
tion. Student’s ¢-statistic calculated from the stage n data (¢ — 1 degrees of
freedom) is invariantly sufficient under scale changes on the stage n data and
v = u/o. Thus w is a sequence of independent i-statistics. An SPRT of v, vs. 11
based on w is easily constructed; this is a z-rule (we can let 2, = w,). After a
total of nk observations this z-rule would utilize n t-statistics with a total of
n(k — 1) degrees of freedom; in contrast, the WAGR ¢-test, which is a v-rule,
would utilize one ¢-statistic with nk — 1 degrees of freedom. Hence, the z-rule
wastes n — 1 degrees of freedom (the between stages degrees of freedom); also,
it only permits termination after multiples of % observations. On the other hand,
approximations to its OC and ASN functions are available.

A compromise between these two approaches would retain some of the ad-
vantages of each; specifically, observations may be taken one at a time and, after
nk -+ m observations (1 <m = k,n = 0,1, ---), decisions based on the prob-
ability ratio of the mutually independent ¢-statistics &y, ta, -+ , tn, tnis , each of
the first n t,,’s being based on k& — 1 degrees of freedom and ¢, being based on
m — 1 degrees of freedom (termination is not permitted when m = 1).

Examples of z-rules in the literature include a range test for normal variances
introduced by Cox [8], some sequential tests for variance components introduced
by Johnson [24], and two sequential rank tests for the two-sample problem
proposed by Wilcoxon, Rhodes and Bradley [46] (see 1.8). Other possibilities are
abundant; for example, a group sequential test for the multivariate linear hy-
pothesis could be constructed based on a sequence of independent maximum root
statistics, trace statistics, or likelihood ratio statistics.

Now it may happen, though not in any of the examples considered so far in
this paper, that a z-rule is in fact a v-rule. This occurs whenever wg, =
(w1, ++ -, wy) is a maximal invariant under G, , that is, wy = u, . This is so in
particular if G, is isomorphic to Gy X Gy X --- X @, . An example of this is
provided by a modification of the ¢{-test example above. Suppose the & observa-
tions in stage n are independent N (yo, , 0" ) ; thus the mean and standard devia-
tions (all unknown) may now vary from stage to stage but the ratio remains
constant. Let ¢ = (g1, g2, - +) where g, applies a scale change to the stage n
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data, and g, may now vary with n. Then w,y above is easily seen to be invariantly
sufficient under G, and w, under G, . Thus, under these conditions, an SPRT
based on the sequence of independent ¢-statistics is both a z-rule and a v-rule. The
sequential F-test and other normal theory examples could be modified analo-
gously.

‘When w,y does coincide with u, , SPRT’s constructed from the w-sequence (as
in the t-test example above) are easily seen to have a Wald-type optimality
among all invariant procedures, that is, the ASN is minimized for all § such that
v(8) = ~o or v1 among all invariant procedures with the same or smaller error
probabilities. We conclude this section with a second example; a third example
will be given in the next section. (If the w,’s are Fraser-sufficient as well as in-
variantly sufficient, as in the example below, then the restriction to invariant pro-
cedures in this optimality may be removed; see [16] and [12].)

Suppose stage n of the experiment yields two independent normal observations
with unit variances and unknown means u, + v and p, , respectively. Suppose G
is the group of transformations which adds an arbitrary constant a, to both ob-
servations from stage n(=1, 2, - - -). Then w, may be taken as the difference be-
tween the stage n observations, and u, = (w;, -+, w,) is a maximal invariant
under G, as is v under the induced group on the parameter space. (The same
statements hold if u, and a, are constants u and a.) Then z, = v, = ZLI Ww; .
An SPRT of simple hypotheses about v based on the w-sequence has the Wald
optimal property.

1.8. Nonparametric sequential applications. In a sequential test (at least in a
SPRT), the two hypotheses and two kinds of error are treated in a similar fash-
ion. In most nonparametric tests, however, the alternative hypotheses are
typically rather vague or all-encompassing. Thus, to obtain a sequential non-
parametric test from available theory, one must consider rather specific alterna-
tives—sufficiently specific so that the probability distribution of some test
statistic (perhaps invariantly sufficient) is completely specified by the alterna-
tive hypothesis, as it is by the null hypothesis. The practicality of such a speci-
fication is perhaps rare.

One such example, however, is the sign test for which one reduces nonparametric
measurement data to binomial data by classifying successive independent ob-
servations (or pairs of observations) simply as “‘successes” or “failures” (see pp.
147-149 in [30]). Sequential binomial tests of whether the success probability is
large or small can then be performed. Sometimes such data reductions may be
justified by invariance considerations, e.g., in paired comparisons (p. 220 in [30])
or when testing for symmetry (p. 242 in [30]); see also the example below. Here,
the lower route is the convenient one—reducing by invariance and then by suffi-
ciency—so that the Stein Theorem is not required. However, when testing two-
sided hypotheses which are symmetric about % in the success probability p, in-
variance may again be applied after sufficiency to reduce the data further to the
magnitude of the deviation of the proportion of success from 3; here y = |p — 3|.
Then the two-sided sequential binomial test may be derived, using the methods
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of 1.5. Both of these sequential sign tests have properties (i)—(iv) described
in L5.

Some examples from the theory of most powerful rank order tests [28] can also
be handled. In this theory (nonsequential), one does specify a particular type
of alternative against which maximum power is desired, for a test of level a. A
sequential test of specified strength («, 8) can, at least in principle, be based on
a sequence of most powerful test statistics, calculated stage-wise or from the
accumulated data. When invariance considerations are applicable, the Stein
Theorem may facilitate such tests. We exemplify this with a two-sample se-
quential rank test; an analogous one-sample rank test of symmetry about the
origin may also be developed.

Suppose at each stage of experimentation an observation is taken independently
from each of two populations with (unspecified) continuous distribution func-

tions F and F’, respectively, and one wishes to test H,: F' = F against
H, : F' = F* (see [28] or [13]). This is a particular case of the “one variable is
stochastically larger than the other” alternative. Letting r1, 72, -+ -, 7, be the

ordered ranks (increasing order) of the observations from the second population
from a combined ranking of all the data available through stage n, we find that
Un = (11, + -+, 7,) is invariantly sufficient (and transitive) under the group G, an
element of which applies an identical monotone continuous transformation to each
observation (see remarks on Assumption B in I.2). Using the Stein Theorem and
[28], the probability ratio at stage n is found to be

2'ri(re + 1)« (1 +n—1)/2n 4+ 1)(2n + 2) --- (3n),

and a SPRT is readily performed by comparing this ratio at each stage with
Wald’s boundaries A and B. Similar results are available when the alternative is
F' = F*(k > 1) or F' = h(F) for specified h(-)(F' < F); also, sampling in pairs
is not essential (see final paragraph). Nothing is known about the properties of
these tests other than that specified bounds (approximate equalities) on the error
probabilities are met (i), and termination occurs with certainty if either of the
two hypotheses is true (ii); the latter follows from a theorem of Wirjosudirdjo
[47],but whether termination is certain under other hypotheses is not known. How-
ever, under the invariance principle, any good test must be a v-rule, and these
tests are v-rules. An alternative group sequential procedure, a z-rule, will be given
in the last paragraph below.

Now let us consider a variation on the above example. We replace F and F’ by
F, and F', in the assumptions and hypotheses, and no longer require the compo-
nents g, of ¢ = (g1, ¢z, - - - ) to be identical; that is, the pair of observations from
stage n, having distributions F, and F’,, are both transformed by the same
monotone continuous transformation, but the transformations and distributions
may vary with n. The required invariance assumptions still hold. Letting w, = 1
or 0 according as the sign of the difference between the stage n observations is
positive or negative, we find that w, is a maximal invariant under G, and
Un = (w1, +++ , w,) is a maximal invariant under G, . A sequential binomial test
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or sign test (of p = 3 = P(w, = 1| H,) against p = £ = P(w, = 1| Hy)) is
then a v-rule and a z-rule and has the Wald optimal property among invariant
procedures.

Finally, suppose k, and k,” independent observations are to be taken at stage
n, if stage n is performed, from populations with distribution functions ¥, and
F', , respectively. (The sequences of numbers k, and k,’ ,m=1,2 --. arenon-
negative integers, arbitrarily determined but not dependent on the observations.)
Thus, the distributions may vary from stage to stage but not within stage. The
group G has a parallel structure: the component g, of g transforms each observa-
tion from stage n by the same monotone continuous transformation but the
g.’s may vary with n. Letting w, denote the ordered ranks from the second
(primed) population from a combined ranking of only the stage n data, a SPRT
based on the w-sequence is both a v-rule and a z-rule and has the Wald optimal
property among invariant procedures. (At stage n the probability ratio is given
by the product of the stage-wise probability ratios, and each of them is of the
form 2" ri(re 4+ 1) -+ (mr + & — 1)/ (k+ & +1)(k+ % +2) - (k+ 2k).)
However, if the hypotheses (and transformations) do not permit variation from
stage to stage (F, = F, F', = F’ and the components of g are identical), then
this procedure is still a valid z-rule but not a v-rule; it terminates with certainty
and has a known ASN (approximate), but presumably is less efficient than the
v-rule which would re-rank all the available data at each stage rather than rank
only within stages. This z-rule, and an analogous z-rule based on the rank sum
>~ r; (there is no rank sum v-rule since the rank sum is not invariantly sufficient),
have been proposed by Wilcoxon, Rhodes and Bradley [46], and designated the
configural rank test.

PART II: GENERAL THEORY

I1.0. Summary. ® is a family of distributions on a o-field @ of subsets of
&, Qs is a sufficient subfield of @, G is a group of invariance transformations ¢ on
X, @ is the o-field of invariant members of &, and @g; is the intersection of @ and
@; . The main result establishes, under certain conditions, that Qs; is sufficient
for @;. This is implied by the slightly stronger conclusion that Gs and @; are
conditionally independent given ®s;. Both conclusions have been established
under any one of three assumptions. Assumption A is that g@s = @ for each g,
and that every @s-measurable and almost invariant function is equivalent to an
Gsr-measurable function. Assumption B is that there exists a conditional prob-
ability distribution @ such that Q(g4, gz). = Q(A4,z) forall A e @, ze%, ge@.
Assumption C is that @ is a family of densities on n-space of the form py(z) =
ge(s(x))h(x), the functions g and h being positive, and that on some Gg; set of
probability 1 each transformation g is differentiable with Jacobian depending
only on s(z), s(z) = s(z’) implies s(gz) = s(gz’), s is differentiable with its
matrix of partial derivatives of maximal rank, and A(gx)/h(x) depends only on
s(z). A counter example shows that ®@s; need not be minimal sufficient for @; if
@s is minimal sufficient for @. On the other hand, completeness of ® on @®g is
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inherited by Gs;. Some theorems concerning transitivity in the sequential case
are given. Theorem 4.1 states that {®,} being transitive for {®,} is equivalent
to0 ®, and G4y being conditionally independent given ®q, for each n. Theorem
4.2 states that if, for each n, @ C Qi C @, @3 C Qo0 C @, , and @y, and G,
are conditionally independent given @, , then {Q.,! transitive for {@,} implies
{@s,} transitive for {@,}. This implies (under Assumption A, B or C) that {@sz,}
is transitive for {@.} if {@s.} is transitive for {@®,}. Theorem 4.3 states that if
®1, Bz, -+ - are independent subfields, @, = ®, v --- v ®, for each n, and
{@Qw} any sequence such that Gy, C @, and Qowiy € Qo V ®Bnyr, then {Qo,) is
transitive for {@,}.

II.1. Introduction. The question with which this paper is concerned is phrased
in Part I essentially as follows: If a sufficiency reduction and an invariance
reduction of a problem are performed in succession, is the result independent of
the order in which these two reductions are carried out? The purpose of Part IT
is to present a treatment of this question and its various solutions entirely in
the language of subfields.

Let & be a space, @ a o-field of subsets of &, ® a family of distributions on @,
and Qg a sufficient subfield of @. Let G be a group of invariance transformations
g of & onto itself (precise definitions are given in Sections 2 and 3). Let @; be the
o-field of invariant members of @. The intersection @g n @; will be denoted by @s; .

Suppose that @ is induced by a sufficient statistic (S, @°, s), where s is a func-
tion from X onto 8 and @’ is a o-field of subsets of § such that @s = s~ (@°). The
notion of a sufficiency reduction followed by an invariance reduction cannot be
formulated very well unless every g induces a transformation in 8, i.e. s(z;) =
s(z2) implies s(gz1) = s(gze). In the subfield language this means that ¢ trans-
forms any member of @s into a member of @g. We shall assume throughout that
every g € G has this property (Assumption A (i)). It is clear that the inverse
images under s of the invariant sets of @° constitute the subfield Gg; .

An invariance reduction applied after a sufficiency reduction leads to a maxi-
mal invariant function on 8, say « (where w is supposed to be @°-measurable).
Since u induces the o-field of invariant sets in @°, the function u(s(-)) on &
induces @g; . The question stated in Part I is whether a maximal invariant fune-
tion on § is tnwariantly sufficient, i.e. sufficient for @ restricted to the invariant
sets. Translated into the subfield language this question becomes: Is Qs; suffi-
cient for @;?

It is not known whether the answer to, the question in the preceding sentence
is yes, in general, if only Assumption A (i) is made. C. M. Stein, in an unpub-
lished manuscript (see Preface), was the first to recognize the problem, and to
give sufficient conditions under which a maximal invariant function on § is in-
variantly sufficient. In the present paper we shall prove the desired result under
various other sets of conditions, different from those of Stein. More specifically, we
shall propose three different sets of conditions, called AssumptionsA, B, and C. In
applications it is convenient to have several possibilities to choose from, for, to
give an example, conditions that are easy to check in situations involving normal
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distributions may be hard to verify in nonparametric situations, and vice versa.
It turns out that Assumptions A and C are usually easier to apply in parametric
problems, B in nonparametric problems.

The sufficiency of @s; for @; turns out to be a consequence of the following
interesting relationship between the subfields @s, @; and Qs; : @s and G are
conditionally independent given Qg; . This conditional independence obtains under
any one of the Assumptions A, B or C. The formulation in terms of conditional
independence of subfields has the advantage of being symmetric in @s and @,
and in simplifying proofs, e.g. in Section 4.

Sequential aspects are treated in Section 4. At each sampling stage n we have
the subfields @, , Gsx , Grn , @srn . Whether or not Qg is sufficient for @, depends
only on the three subfields Qgs. , @, and @, , not on the whole sequence. How-
ever, an additional notion enters that does depend on the whole sequence, namely
the notion of transitivity, introduced by Bahadur [4]. Questions of transitivity
are answered in Section 4, relying heavily on the notion of conditional inde-
pendence of subfields.

In Section 5, Assumption A is discussed. In the language of statistics Assump-
tion A (ii) means that an almost invariant function on § is equivalent to an in-
variant function on §. There are problems where Assumption A (ii) cannot be
checked, since the only known theorem that covers Assumption A (ii) assumes
a certain property of the structure of ¢, and, in addition can be applied only if @
is a dominated family. This excludes application to nonparametric problems.
Theorem 6.1, in Section 6, avoids those handicaps by using Assumption B, which
is the existence of an invariant conditional probability distribution. Such a dis-
tribution is usually easily exhibited in cases where the conditional probability
distribution is discrete, such as in certain nonparametric problems. Example 6.1
illustrates this case. On the other hand, in a large class of problems involving a
family of densities with respect to Lebesgue measure, Assumption B may be
difficult to verify directly. In order to cope with such cases, Theorem 7.1 in
Section 7 gives sufficient conditions (called Assumption C) for Assumption B
to be valid if ® is a family of densities on m-space of the form py(zx) =
go(s(x))h(x), where the various functions, gs, s, k, and each transformation g
satisfy certain regularity conditions. This theorem could perhaps be regarded as a
rigorized version of Cox’s theorem [9]. Its advantage over Assumption A is that
its conditions can be checked in a straightforward way. In particular, it does not
involve the topological structure of (G. The use of Theorem 7.1 is illustrated in
examples 7.1, 7.2 and 7.3.

I1.2. Preliminaries on transformations and conditional independence. Let
% be a space of points z, @ a o-field of subsets of &, P a probability measure on
@. If @ C @ and @, is a o-field, we shall simply denote this by @y C @, and we
shall, for short, call @, a subfield of @, or simply a subfield. If & and @, aretwo
subfields, their intersection @; n @; is also a subfield. With the union @; u @, this
is not usually the case. We shall denote by @, v @, the smallest subfield contain-
ing both @, and @;. All functions will be understood to be @-measurable real-



598 W. J. HALL, R. A. WIJSMAN AND J. K. GHOSH

valued functions on %, and, if required in the context, P-integrable. If two func-
tions f; and f, are equal except on a set of P-measure 0, i.e. fi = f; a.e. P, we shall
denote this by fi ~ f2 , and sometimes term this ‘f; is equivalent to f .” If @ C @
and f is @p-measurable, we shall sometimes term this “an @, function f.” The
conditional expectation of f given @, written E(f| @), is defined as any @
function whose integral over any A, ¢ @y equals the integral of f over 4, (this
follows Logve’s definition [32]; Doob [11] relaxes the definition somewhat by
including all functions that are equivalent to an @, function with the above
mentioned property). The conditional expectation of f given @, is defined up to
an equivalence within the @, functions, and we shall sometimes speak of the
various ‘“‘versions’ of this conditional expectation. The conditional probability
of a set A, P(A | @), is the conditional expectation of the indicator of A.

Let g be a 1-1 transformation of % onto a space Y of points y. We write
Y = ¢gX, and y = gz if y is the image of z. The point transformation g induces in a
natural way a set transformation, which we shall also denote by g¢. Thus, g4
is the image of A ¢ @. The collection of all g4 is obviously a o-field of subsets of
9, which we shall denote by g@. Furthermore, g induces a probability distribu-
tion, denoted gP, on gG: gP(gA) is defined as P(A4). Finally, to each function
f on % corresponds a function on 9, denoted gf: gf(gx) is defined as f(x). (This
definition of gf makes sense even if f has an arbitrary range space.)

The transformation g produces an isomorphism between (X, @, P) and
(g%, g@, gP). Thus, if @ C @ then g@y C ¢@, and if f is a P-integrable function
on X then gf is a gP-integrable function on g and a possible version of E(gf | ¢@o)
is gE(f | @), so that

(2.1) E(gf | @) ~ gE(f| Q)

(the equivalence ~ is here with respect to gP on ¢gQy).

The considerations given so far will be applied in the case Y = &, i.e. g is a
1-1 transformation of & onto itself. In that case it makes sense to talk about
the possibilities g@ = @, gf = f, ete.

The rest of this section is devoted to propositions on conditional independence.
Let @1, @ and @; be three subfields; then @; and @, are defined in [32], p. 351,
to be conditionally independent given Qs if for any A, e @y and 4, ¢ @ we have
P(A14,| G3) ~ P(A1| G3)P(As| @;). Instead of giving the definition in terms
of conditional probabilities of sets, we may, equivalently, give it in terms of
conditional expectations of integrable functions. Since this is more convenient
in the sequel, we shall state '

DeriNITION 2.1. Subfields @; and @, are conditionally independent given @;
if for any @; function f; and @, function f» we have

(2.2) E(fifo| Gs) ~ E(fi| @) E(fa| @s).

The definition of unconditional independence of @; and @, follows by taking
in (2.2) G; = {X, ¢} (i.e. @3 is the trivial subfield) and by replacing ~ by =.
The following theorem is proved in [32], p. 351.
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THEOREM 2.1. Gy and @, are conditionally independent given Qs if and only if
for every Qs function f, ,

(2.3) E(fy| @ v @) ~ E(f:] Gs).

From Theorem 2.1 and the fact that (@& v G3) v G; = @1 v @; follows

CoroLLARY 2.1. G1 and @y are conditionally independent given Qs if and only
if @1 v @ and Q. are conditionally independent given Gs .

By taking in Theorem 2.1 @; = {X, ¢} we have

COROLLARY 2.2. @1 and Q. are independent if and only if for every Qs function
f2 we have E(fz | @1) ~ Efg .

If @, and @, are conditionally independent given G;, if G C @, and if f; is
@Qo-measurable, then f; is also @;-measurable so that (2.2) holds. We have there-
fore

Lemma 2.1. If Qi and @, are conditionally independent given Gz, and @ C @y,
then Qo and @, are conditionally independent given Qs .

By taking @; = {X, ¢} in Lemma 2.1 we have

CoROLLARY 2.3. If @; and @, are independent and Gy C @, , then @y and Qs are
independent.

LemMa 2.2. If @y and Qs are independent and G3 C @, then @y and @, are con-
ditionally independent given Q3 .

Proor. Let f, be @s;-measurable. Using Theorem 2.1 and observing @&; v
@3 = @;, we have to show

(2.4) E(fa| Q1) ~ E(f:]| @s).

This is true because both sides of (2.4) are ~Ef,. For the left hand side this
follows from Corollary 2.2, and for the right hand side by first applying Corollary
23 W’lth @0 = @3 .

The various propositions on conditional independence in this section have
their obvious analogues in terms of random variables. For instance, Corollary
2.1 would read: X and Y are conditionally independent given Z if and only if
(X, Z) and Y are conditionally independent given Z. Lemma 2.2 would read:
if X and Y are independent, » a function of X, then X and Y are conditionally
independent given A(X).

II. 3. Sufficiency and invariance in the nonsequential case. Assumption A.
Let &€ and @ be as in Section 2, and let ® be a family of probability measures P.
If we write fi ~ f, this will mean now that f; = fy a.e. @, i.e. the set on which the
equality does not hold has P-measure 0 for every P ¢ ®@. All functions are under-
stood to be P-integrable for every P ¢ ® whenever this is required in the context.
The expectation with respect to P will now be written Ep .

If @; and @, are any subfields of @, with @ C @1, we say that @, is sufficient for
Q1 of for every Gi function fi there is an Qs function fo such that Ep(fi| @) ~ fa
for all P ¢ ®. In particular, let Gg be sufficient for Q.

Let ¢ be a group of transformations g of % one—one onto itself, such that for
each g,
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(a) 9@ = @,

(b) gP ¢ ® whenever P ¢ ®.

A function f is called invariant [30] if gf = f for each g ¢ G; f is called almost
twariant if gf ~ f for each g ¢ G (where the exceptional ®-null set may depend
on ¢g). A subset of X is called invariant if its indicator is. The invariant members
of @ form clearly a subfield. We shall denote it by @;. Hence, for each 4 ¢ @;
we have gA = A. The members of @ that are in both @g and @; constitute the
subfield Gs; = Gg n @;. Clearly Gg; is a subfield both of Gg and of @; .

Concerning the relation between G, @s and @; we shall make the following
assumption:

AssumpTIioN A. (i) g@s = Qs for each g e G; (ii) if fs is @s-measurable and
almost invariant, there exists an Qs; function fs; such that fs; ~ fs .

Before stating the main result in this section (conclusion of Theorem 3.1),
it is convenient to state first the two following lemmas.

Lemma 3.1. Under Assumption A (i), if f is invariant then any version of E(f | Gs)
1s almost invariant.

Proor. In (2.1) on the left hand side we have gf = f since f is invariant, and,
replacing @ by @s, we have g@s = @s by Assumption A (i). Thus, (2.1) reads
E(f|as) ~ gE(f| @s). If fs is any version of E(f| Qs), we have fs ~ gfs,
which is the conclusion of the lemma.

Using Lemma 3.1, and Assumption A (ii) we have immediately

Lemma 3.2. Under Assumption A, if f is invariant there exists an Qs; function
fsr such that fsr ~ E(f| Qs).

The following theorem was first stated and proved by Stein (unpublished)
under slightly different assumptions. The analogue in terms of statisties is
given in Part I, Section 2. The statement and proof given here follow consistently
the language of subfields.

TarorEM 3.1. Under Assumption A, Qg s sufficient for G; .

Proor. We have to show that if f is @;-measurable, there exists an @g; func-
tion fs; such that

(3.1) Epo(f| Gsr) ~ fsr for all P ¢ ®.

To show this, let fs be any version of E(f | @s) . Since Gg; € Gs, we have by a
well-known property of iterated conditional expectations ([11], p. 37):

(3.2) Er(f| @Qsr) ~ Ep(fs | Gsr), Pe®.

From Lemma 3.2 we know that there is an Gg; function fs; such that fo; ~ fs.
Substituting fs; for fs on the right hand side in (3.2), and observing E»(fs: | Gsr)
~ fsr, we have (3.1). This concludes the proof.

There are a few additional properties of a subfield of interest besides sufficiency.
One is completeness, another is minimal sufficiency. Are these properties inherited
by @s; if valid for @s ? We recall [31] that ® on Qs is called complete if, for an
@5 function f, Epf = 0 for all P ¢ ® implies f ~ 0. It follows then immediately
from the definition that if @ is complete on Qg , it is also complete on any subfield
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of @g, in particular on @g;. Hence, completeness is inherited by ®s;. The situa-
tion is different for minimal sufficiency. We recall that a subfield @, , sufficient
for @ , is called minimal sufficient [31] (or necessary and sufficient in [4]) if every
subfield sufficient for @, contains @;, up to ®-null sets. The following counter
example shows that if @gis minimal sufficient for @, it is not necessarily true that
Q®g; is minimal sufficient for @; . Let X;, --- , X, be independently normal with
common unknown standard deviation ¢ and common mean co, where ¢ # 0
is a known real number. Let G consist of all transformations of the form z; — gz, ,
i =1, .-, n,where gis any positive number. Then @; is induced by the maximal
invariant (X1/Xn, +-+, Xn1/Xn, sgn X,). Let X and S be the sample mean
and standard deviation, respectively; then Qg is induced by the minimal suf-
ficient (but not complete) statistic (X, S), and Qs is induced by the statistic
X/S8. However, Qg; is not minimal sufficient for @; since the trivial subfield
{%, ¢} is contained in @s;, not equivalent to it, and also sufficient for @; . The
latter is true because the distribution of the maximal invariant is free of o, so
that any @; function has a fixed distribution.

The relevance of the conclusion of Theorem 3.1 for testing problems is that
for every invariant test function ¢; there exists an Gs;-measurable test function
osr with the same power function. If @s is complete, the property mentioned in
the preceding sentence is possessed not only by the invariant tests, but by all
test functions ¢ whose power function is invariant, including the ¢; as special
cases. To see this we apply first Lemma 2, p. 227, in [30] to E(¢ | ®@s), then
Assumption A (ii), and conclude that there is an invariant version ¢gs; of E(p | Gs).
Under these circumstances, if a test enjoys a certain optimum property within
the class of Gg;-measurable tests, it also enjoys this property among all tests
whose power function is invariant. (An analogous statement may be made in
the sequential case, replacing ‘“‘power function” by “joint distribution of deci-
sion and sample size”.)

We conclude this section by an interpretation of Theorem 3.1 in the language
of conditional independence. The latter notion was defined in Section 2 in the
case of one probability measure P. In the remainder of this paper we shall call
@; and @; conditionally independent given @; if for every P ¢ ® (2.2) holds,
with E replaced by Ep .

LemMA 3.3. The following statements are equivalent:

(i) If fr is invariant, there exists an Qs function fs; such that fs; ~ E(fr | Qs).

(ii) If fr is invariant, then for every P & @,

(3.3) E(f;| @s) ~ Ep(f1| @sr).

(iii) @s and @r are conditionally independent given Gs; .

Proor. (i) follows from (ii) immediately by taking fs: to be any version of
Ep(fr| Gsr) for any P. Conversely, (ii) follows from (i) by writing the right
hand side of (3.3) as Ep(E(fr| @s) | @sr). Then (3.3) follows after remarking
that both sides are equivalent to fs; , using (i). The equivalence of (ii) and (iii)
follows immediately from Theorem 2.1 by taking in this theorem @; = Qs,
G = @, @3 = Qg (s0 that @1 v @ = @Qs), fo = fr, and replacing E by Ep .
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We recognize (i) of Lemma 3.3 as the conclusion of Lemma 3.2. Using Lemma,
3.3 (i) and (iil) we see then that Lemma 3.2 is equivalent to

THEOREM 3.2. Under Assumption A, Qs and @ are conditionally independent
gien Qgr .

Since the conclusion of Theorem 3.1 followed from the conclusion of Lemma
3.2, it follows then also from the conclusion of Theorem 3.2. We could therefore
interpret the results as follows: Assumption A is used to establish the conditional
independence of Gs and @; given Qg , and this in turn implies the sufficiency of
Qs for @; . (It was noticed by J. K. Ghosh that if ® on @5 is complete, then the
conclusions of Theorem 3.1 and 3.2 are equivalent.)

One of the advantages of Theorem 3.2 is that it is symmetric in Gs and @; .
Therefore, any statement implied by the conclusion of Theorem 3.2 remains
true if the subscripts S and I are interchanged. For example, if we do this in
(3.3) (after replacing on the left hand side E by Er) we get for every Gs function
f,g and every P, Ep(f,g I @I) ~ Ep(f,g l @,g[).

I1.4. Sufficiency, invariance and transitivity in the sequential case. Let
{@,,n = 1} be a sequence of subfields of @, and let, for each n = 1, @sn, Grm
and Qs be subfields of @, , defined in the same way as Gg, @; and @s; were in
Section 3. For each n, @g, is sufficient for @, . We shall express this by saying
that {@s.} is a sufficient sequence for {@,}. From Theorem 3.1 we know that if
Assumption A is valid for each n, then {Qsz} is a sufficient sequence for {Qry}.
Besides the notion of sufficiency there is in the sequential case an additional
notion, called transitivity, and introduced by Bahadur [4].

DeriNtTION 4.1, Let {®,, n = 1} and {®¢, n = 1} be two sequences of
subfields such that ®y, C &, for each n. The sequence {®;,} is said to be a
transitive sequence for {®,} if for every n, every ®u+1y function f and every

P £ ® we have
(41} EP(fi (Bn) ~ EP(f[ (BOn)'

The importance of {@s,} being a sufficient and transitive sequence for {@,}
has been pointed out in [4]. A discussion can also be found in Part I, Section 4.
This section will be concerned mainly with the question of transitivity. It is of
some interest that Definition 4.1 is equivalent to a statement in terms of con-
ditional independence of subfields, as follows:

Theorem 4.1. {®¢,} s a transitive sequence for {®,} if and only if for each
n = 1 ®, and ®ouyyy are conditionally independent given Gy, .

Proor. Let f be Byni1)-measurable. Apply Theorem 2.1 with E replaced by
EP , Q1 = B, s Q@ = (BO(n+1) s @3 = Bon (SO that @ VvV G = (Bn> and f2 = f Then
Theorem 2.1 states that ®, and ®Bowsn are conditionally independent given
®or if and only if for each P (4.1) holds.

Two questions will be investigated in the remainder of this section. The first
is whether {@s;,! is a transitive sequence for { Qs,} if {Gs.} is a transitive sequence
for {®,}. This question was answered by Ghosh [16], Theorem 2, Chapter 4,
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in the affirmative under slightly more restrictive conditions than we shall impose
in Theorem 4.2. The second question is under what conditions { @s,} is a transitive
sequence for {@,}. This question was suggested by Ghosh’s theorem quoted
above, and the answer, as formulated in Theorem 4.3 below, is essentially con-
tained in the proof of Theorem 11.5 in [4]. Our proof of Theorem 4.3 is entirely
in terms of conditional independence of subfields. Note that Theorems 4.2 and
4.3 are detached from sufficiency and invariance considerations.

THEOREM 4.2. For each n = 1, let Gu, Qun, Qo and Qs, be subfields, with
Gin © Qn, Qon C Qn and Qzn C Gin N Qo , such that Qu, and @y, are conditionally
independent given Qs, . Then if {Gua} Us a transitive sequence for {@n)}, {@s) 1s a
transitive sequence for {Qay}.

Proor. We have to show that if f is ®suy1-measurable, then for each P

(4.2) Ep(f| Qo) ~ Ep(f] Qsn).

Because f is @3(n41)-measurable, and Qi1 C Quinyy , f is also Q1+1-measurable.
Since by assumption {@u,} is a transitive sequence for {@,}, we have for each P,

(4.3) Ee(f| Gn) ~ Ep(f| Can).

We apply now Theorem 2.1, replacing in (2.3) E by Er, G by Qs , @2 by Gin ,
@3 by @sn , fo by Ep(f| @1a). Then @y v @ is replaced by Gzn V @3n = @sn, and
(2.3) reads

(4.4) Ep(Ep(f] Gun) | @2n) ~ Ep(Ep(f| G1n) | Gsn).
We have now
Ep(f| Qum) ~ Ep(Ep(f] Gn) | G2n)
~ Ep(Ep(f| Q) | @2n) by (4.3)
~ Ep(Ep(f| Qin) | @) by (4.4)

~ Es(f | Gsn)
which is (4.2).

We are especially interested in applying Theorem 4.2 to the case Qs =
G1n N @2 . Taking in Theorem 4.2 Q1n = Qsn, Q2n = Qrm, @ = Qsra, we have

CoroLLARY 4.1. If the conclusion of Theorem 3.2 is valid for each n = 1, and
if {@sa} 15 a sufficient and transitive sequence for {@y}, then {Gsmm} s a sufficient
and transitive sequence for {Gr,}.

THEOREM 4.3 Suppose a sequence ®y, ®s, --- of independent subfields of @
18 gen; suppose Gn = ®1 V -+ V ®, ; let {Qon} be given such that for each n @,
C Qn and Qom+ny C Qon V Buya ; then { Qo) s a transitive sequence for {@,}.

Proor. By the construction of {@,}, @, and ®,.; are independent. We apply
Lemma 2.2 with @& = @n, @ = ®uy1, @ = Q¢ and conclude that @, and
®n+1 are conditionally independent given ®o. . Applying Corollary 2.1 we have
that @, and ®,11 v @ are conditionally independent given G, . We apply now
Lemma 2.1 with Q@ = (Bn+1 vV Qo , @y = @O(n-l-l) N @Ry = (€ y @s; = Qo N and
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conclude that ®owi1y and @, are conditionally independent given Qo,. The
desired result now follows from Theorem 4.1 with ® replaced by Q.

When sampling from an exponential family of distributions the assumptions
of Theorem 4.3 usually apply. For instance, if X;, X,, --- are independent
and identically distributed according to a normal distribution with unknown
mean and known variance, then ®, is induced by X,., @. by (X1, -+, X,),
and Qo by T = X1 4+ -+ - + X, . Hence Qo+ , which is induced by T + X1,
is a subfield of @, V ®,41 . Other examples of the use of Theorem 4.3 are given
in Part 1.

I1.5. Discussion of Assumption A. As explained in Section 1, Assumption A (i)
is a very natural one to make. If @ is induced by a sufficient statistic s with
range 8, then Assumption A (i) is closely related to the property that every
g ¢ G induces a 1-1 transformation of § onto itself. The following theorem is
due to C. M. Stein (unpublished) and gives conditions under which Assumption
A (i) holds.

TuroreM 5.1 (Stein). If Qg is minimal sufficient for @, and if Gs contains all
®-null sets, then Assumption A (i) is valid.

Proor. For each g ¢ G, due to the isomorphism described in Section 2 between
(%, @&, P) and (gx, ¢g@, gP), we have that g@s is minimal sufficient for g@ on
gG. But ¢® = @ and g@ = @, so that both @s and g@s are minimal sufficient for
® on Q. Since they both contain all ®-null sets, they must be the same.

It should be remarked that Assumption A (i) is usually easy to check directly,
and has been found to hold in all interesting examples, whereas it is often not true
that @s contains all ®-null sets, in which case Theorem 5.1 is not applicable.

Assumption A can be phrased in the following way. Noting that gGs = Gs
by Assumption A (i), we can consider @s as our basic o-field, instead of @, i.e.
consider only Gg-measurable functions. Assumption A (ii) then says that every
almost invariant function is equivalent to an invariant function. In applications
@ is often induced by a statistic s, and G induces a group of transformations on
the range $ of s. Considering then only measurable functions on 8 , and invariance
relative to the induced group of transformations on 8, Assumption A (ii) again
says that every almost invariant function is equivalent to an invariant function.
This assumption holds in a good many cases, as implied by a theorem of Lehmann
[30], p. 225. However, Lehmann’s theorem cannot be applied unless ® is dom-
inated, which excludes many interesting nonparametric cases. Futhermore,
Lehmann’s theorem requires the existence of a o-finite measure on G possess-
ing a certain invariance property, so that the applicability depends rather heav-
ily on the topological structure of G. In nonparametric examples the group
@ is usually of such a nature that it is not known how to verify the existence of a
measure with the desired properties.

In some problems @ is finite. In that case, and, more generally, when G is
countable, Assumption A (ii) is automatically fulfilled.

I1.6. Assumption B: invariant conditional probability distribution. The dis-
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cussion in Section 5 brings out the desirability of having another assumption,
alternative to Assumption A, that also permits the conclusions of Theorems
3.1 and 3.2. The following Assumption B achieves this aim, by introducing a
function @, which we shall call an dnvariant conditional probability distribution.
If @ satisfies merely (i) and (ii) of Assumption B, it has been called a conditional
probability distribution by Doob [11] (except that in [11] the measurability
condition is slightly weaker), and a regular conditional probability by Lo&ve
[32]. (We use here the symbol @ instead of the more customary P, since there is
only one conditional probability distribution due to the sufficiency of Gs,
whereas there is a whole family @ of distributions P.) The additional condition
(iii) gives @ a certain invariance property.

AssumprioN B. There is a set Asr € Gsr of ®-measure 1, and a real valued func-
tion Q on @ X X, with Q(4, x) = 0 for every A € @, x 2 Asr, such that

(1) for every x € Asr, Q(-, x) is a probability distribution on @;

(i1) for every A € @, Q(A, -) is a version of P(A | Gs);

(iii) foreveryx e X, A e @ and g ¢ G, Q(gA4, gx) = Q(A, ).

The reason we have to distinguish in Assumption B between % and Ag; is
that it is not always possible in applications to satisfy (i) for all z ¢ &, and at
the same time satisfy (iii). Regarding condition (iii), it is merely necessary to
verify this for x € As;, since if x g Ag; then also gx 2 Ag; ; so that by definition
Q(gS, gr) = Q(4,z) = 0.

Strictly speaking, (ii) and (iii) of Assumption B would be sufficient to obtain
the conclusions of Theorems 3.1 and 3.2, since for any invariant set 4 (ii) and
(ili) say that there is an invariant version of P(A | @s). However, it is more
natural to make (i) also part of Assumption B since the purpose of this assump-
tion is to apply it to cases where a conditional probability distribution satisfying
(1) and (ii) is readily exhibited, and where (iii) can then subsequently be verified.
It should also be remarked at this point that seemingly Assumption B does not
contain or imply Assumption A (i), even though the latter was announced in
Section 1 to be assumed throughout this paper. It is true that Assumption A (i)
is not needed for Theorem 6.1 below, but it is equally true that essentially
Assumption A (i) is implied by Assumption B. To see this, consider the subfield
generated by the totality of functions @ (A, - ), for A ¢ @. This subfield can easily
be checked to be sufficient, contained in Gy, differing from Gs only in null sets,
and satisfying Assumption A (i). Thus, if Assumption A (i) is not satisfied by
Q@s, the latter can be replaced by an equivalent subfield that does satisfy it.

Doob [11] has shown (a proof is also in [32]) that a possible version of E(f| @s)
is defined by

(6.1) E(f]@s)(x) = [ f(«)Q(d, z).

If f is invariant, and @ satisfies Assumption B, then E(f| @s) as defined by
(6.1) can immediately be checked to be invariant. Since E(f| @s) is also @s-
measurable, it follows that the version of E(f| @s) given by (6.1) is an Gg;
function. This is precisely (i) of Lemma 3.3, which is equivalent to (iii) of the
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same lemma, i.e. the conclusion of Theorem 3.2. We have therefore proved
TuEOREM 6.1. If Assumption B holds, then the conclusions of Theorems 3.1
and 3.2 are valid.
We shall now give a nonparametric example of the use of Theorem 6.1.
ExampLE 6.1. Let X;, -+, X, be independent random variables with com-
mon unknown distribution. Let the group G consist of transformations g defined
by gxr = (h(x1), ---, h(x.)), where h is strictly monotonic, continuous, and
maps the real line onto itself. A sufficient statistic is the unordered set {X;,
-, X,}. If = stands generically for a permutation of the coordinates of a point
z, then @ can be described as the family of those sets A ¢ @ that have the prop-
erty: x ¢ A = wz ¢ A for every w. For any z, let m(z) be the number of distinct
points of the form wz (if the coordinates of z are distinct, m(xz) = n!). Given
z and a set A € @, let m4(x) be the number of distinct points 7z that are in A.
Then define Q(A4, x) = ma(x)/m(z). One can verify 1mmedlately that @Q satisfies
Assumption B, with Ag; = X = n-space.

I1.7. Assumption C: invariant conditional density. Assumption B is less easy
to verify if Q(-, z) is not a discrete probability distribution. Theorem 7.1 in
this section is designed to cope with the continuous case. More specifically, it
gives sufficient conditions for Assumption B to hold. These conditions will be
called Assumption C. Assumption C is usually very easy to verify, and Theorem
7.1 may therefore be used as an alternative to Theorems 3.1 and 3.2 in those
cases where the latter also apply. Two such cases will be illustrated in Examples
7.1 and 7.2. The normal theory examples in Part I may also be treated with
Theorem 7.1. The real advantage of this theorem lies in the fact that Assumption
C does not involve the topological structure of the group @, so that the theorem
may be used in cases where we don’t know how to verify Assumption A (ii).
Example 7.3 will illustrate such a case, in which the family of distributions is
nonparametric, and the conditional probability distribution continuous.

We shall precede Theorem 7.1 by

LeEMmMA 7.1. Suppose F is an open subset of n-space, G a group of transforma-
tions of F onto itself, s a differentiable function from F into k-space (k < n) with
range 8. Let D(z) be the n X k matriz whose ij element is 9s;/0x; evaluated at x ¢ F.
We make the following assumptions:

(i) for each g ¢ @, the transformation x — gx 1s continuously differentiable;

(ii) for each g e @, s(z) = s(z') implies s(gz) = s(gz’);

(iii) D(z) is continuous and of rank k for each x ¢ F.

Then each g ¢ G induces a 1-1 and bi-continuously differentiable transformation
g of 8 onto itself, where for s’ & $ we define js' = s(gzx) for any  such that s’ = s(z).

Proor. That the transformation ¢ is well-defined follows from (ii). The
transformation is 1-1 since if for some z, z’, gs(z) = gs(z'), i.e. s(gz) = s(gz),
then s(z) = s(z’), using (ii) with ¢~". The transformations § obviously form a
group G, which is a homomorphism of G.

To show that § is bi-continuously differentiable (i.e. § and § are continuously
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differentiable), it is sufficient to show that § is differentiable, since the same con-
clusion will then apply to § . Incidentally, this will show that the Jacobian of
the transformation § is everywhere positive on s(#). In the following, points
in Euclidean space will be denoted by row vectors, and the same notation will
be used for vector-valued functions. Furthermore, g will be an arbitrary but
fixed element of G. Let s, be an arbitrary point in 8, and let z, ¢ ' be such that
8(y) = o, so that gs, = s(gxo). It follows from (iii) that thereisann X (n — k)
matrix Ey such that the n X n matrix (D(zo), Eo) is nonsingular. Since D(z)
is continuous at zo, (D(z), E,) is nonsingular in a neighborhood N, of z, .
Define the function u, from Ny into (n — k)-space by uo = xE,, and define
vo = (s, uo), so that v, is differentiable, with matrix of partial derivatives
(D(z), E,) nonsingular on Ny'. By an implicit function theorem there is then
a neighborhood Ny of z,, Ny © Ny, such that on N, the function v, is 1-1 and
bi-continuously differentiable. Let My = vo(N,); then v, is a 1-1 bi-continuously
differentiable map of N, onto M,. Similarly, there is a neighborhood N, of
g% , and a function u; on N, such that v; = (s, u;) is a 1-1 bi-continuously dif-
ferentiable map of N; onto M; = v1(N1). Without loss of generality we may
assume N; = gNo. By (i) the transformation g maps N, continuously dif-
ferentiably onto Ni. Let w be the composition of the three functions v, g
and v;; then w maps M, onto M; continuously differentiably (actually bi-
continuously differentiably). Write w; for the first ¥ components of w, so that
w; maps M, continuously differentiably onto s(N:). By the construction of w,
any point (s', ) € M, is mapped by w; into gs". Hence §s’ is a continuously dif-
ferentiable function of (s, ). But we know that gs’ depends only on s’; hence
gs is a continuously differentiable function of s’, for s” in a neighborhood of s .
This concludes the proof of the lemma.

Although not needed here, we shall give without proof an explicit expression
for the matrix of partial derivatives of the transformation §, i.e. the matrix
Wi(s') whose 4 element is 8(gs');/0si, for s ¢ 8. Let Go(z) be the matrix
whose ¢ element is d(gz);/0x:, let D(z), sy and xo be as in Lemma 7.1, and
put Do = D(.’Bo), D1 = D(gxo), Go = Go(xo). Then W1(So) = (DolDo)_lDo,GoDl .

In the following we shall write g instead of §, in conformity with the notation
in Sections 2 and 3.

AssumprioN C. X ¢s an n-dimensional Borel set, @ the Borel subsets of X,
® = {Py, 0 ¢ O} with O an arbitrary index set, and with respect to n-dimensional
Lebesgue measure Py has a density

(7.1) po(z) = go(s(2))h(x), T e,

in which s is a measurable function from X into k-space (kK < n) with range 8,
gs and h are positive, real-valued measurable functions on 8, X, respectiely, and
s and h satisfy the conditions below. Let G, Gg, @r and Ggr be as ©n Section 3 and
suppose that there is an open set A sr € Ggr of ®-measure 1, such that on Asr:

(1) for each g € G the transformation x — gx is continuously differentiable, and
the J acobian depends only on s(z);

(ii) for each g € G, s(z) = s(z') implies s(gz) = s(gz’);
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(ili) s 2s continuously differentiable, and the matrix D(x), whose 1j element
18 8sj/0z; , is of rank k;

(iv) for each g € G, h(gx)/h(zx) depends only on s(zx).

Note that Assumption C (ii) implies Assumption A (i).

TaEOREM 7.1. Assumption C implies Assumption B and therefore the con-
clusions of Theorems 3.1 and 3.2.

Proor. Asin the proof of Lemma 7.1, to each 2 ¢ As; we can assign a neighbor-
hood and a 1-1 bi-continuously differentiable function on this neighborhood into
n-space whose first k¥ components coincide with s. Since A s; is separable, we can
cover it with a countable subfamily of these neighborhoods, and from this
subfamily we may construct a family {N,, « = 1, 2, - - -} of disjoint sets whose
union is A g; (the N, are not necessarily open, but each N, contains an open set).
On each N, we have then a function u, into (n — k)-space, such that v, =
(8, ue) maps N, 1-1 bi-continuously differentiably into n-space. Let J, be the
Jacobian of v, " and define the real-valued function A[V,] on v.(N.) by

(7.2) hoal(s', w) = h(va" (8, w)Wa(s, u), (5, w) e va(Na).

Note that hlv.] > 0 for each a. In the following, the indicator of any set B will
be denoted by I[B], and the probability with respect to Ps of B by P,B. For any
Ae@ands €8 we put

(7.3) K[A)(S") = 2a [ TIVa(NA)(S, w)hlval(s', u) du
and for K[x](s") we shall simply write K(s'). Now we define, for A ¢ @, z ¢ Ag; *
(7.4) Q(4, z) = KIA)(s")/K(s), s = s(z).

We shall assume for the time being that K (s) is neither 0 nor «, and return to a
discussion of the possibilities K(s') = 0 or « later. Note that K[4](s") does not
change if on any N, the function u, is changed to u. , such that (s, us ) is again
a 1-1 bi-continuously differentiable function on N, . This remark also can be
used to show that K[A](s') does not depend on the particular choice of the
family {N.}:if {Ng, 8 = 1,2, -} is another choice, with 1-1 bi-continuously
differentiable function (s, us') on Nj', then we may employ the family {N,Ns'}
and on N, Ng’ we may take either the function (s, u.) or (s, us ), giving the
same contribution to the double series defining K[A4](s).

We shall show now that @ defined in (7.4) satisfies (i), (ii) and (iii) of Assump-
tion B. That Q( -, x) is a probability distribution for each z ¢ A, is immediate,
so that (i) is true. To show (ii) we first remark that each term on the right hand
side in (7.3) is a measurable function of s’, so that Q(4, -) is Gs-measurable.
Now let By € Gg, then

PyABy = ). PiN.AB,
(7.5) = > o [ IIN.AB)(x)ge(s(z) )h(x) d
= 2 u [ go(s") ds [ Tlva(NaABY)I(s, w)hlva) (s', w) du.
It is readily verified that I[va(NoABo)] = I[va(NaA)lI[s(Bo)]. Therefore, we
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obtain from (7.5):

(7.6)  PoABy = 2 [ssp 9o(s") ds' [ ITva(Nad)1(s', w)hlval(s, w) du
= [ewp 9o(sHKIAI(S)) ds'

using (7.3). By taking in (7.6) A = X we get

(7.7) PsBo = [oap go(s)K(s') ds'.

It follows from (7.7) that the random variable s(X) has a density p,° with respect
to k-dimensional Lebesgue measure, given by

(7.8) p’(s) = go(sHK(s).

We still have to show that the integral of Q(A, -) over By with respect to Py
equals PeABy. Now, using (7.4), we may compute this integral as

(7.9) Jewo [KIAY(s) /K (s)]Ipe' () ds’

and substituting (7.8) into (7.9) we obtain the right hand side of (7.6). This con-
cludes the verification of (ii) of Assumption B. Next we shall verify (iii).

From (7.4) we have Q(g4, gx) = K[gA](gs')/K(gs'), and we have to show
that this equals Q(4, z). Put Ny’ = gN3,8 = 1,2, - -, and let us’ be a function
on Ng' into (n — k)-space, defined by

(7.10) ug'(z) = ug(g 'w), zeNg

(i.e. us = gug). Putting v’ = (s, ug') and using (i), it can easily be checked
that vs’ maps N 1-1 bi-continuously differentiably into n-space. Since {N, s,
g =1,2 ---}is a family of disjoint sets, covering As;, we have, for any
B C As, B = Ug N§/'B, and the sets of this union are disjoint. Applying this to
B = N,gA in the expression for K[gA](gs'), we have I[vo(Nagd)] = > Ilve
(Ng'NogA)] so that

(7.11) KlgAl(gs") = 2 a8 | Iva(Ng' NugA)1(gs', w)hval(gs’, u) du.

On N4'N, we shall use now vs’ instead of v, . By a previous remark this does not
change the contribution to the a8th term on the right hand side of (7.11). Thus:

(7.12)  KlgAl(gs') = 2ap [ Ilos (N5'Nagd)](gs', w)hlvg)(gs", w) du.
By virtue of the construction of v5" one can easily check

(7.13) I[vg (Ns' NagA)1(gs', u) = Ilos(NsAg Na)I(s', ).
Substituting (7.13) into (7.12) and summing over a yields

(7.14) K[gAl(gs") = 206 [ Ilva(NsA)1(s', w)hivg1(gs’, w) du.

Using (iv) of Assumption C, let h(gz)/h(z) = ci(s’), where s’ = s(z). Using
(i) of Assumption C, let the Jacobian |3(gz)/8z| be cs(s). Finally, using Lemma
7.1, let the Jacobian |0s'/d(gs")| be ¢cs(s"). All three ¢’s are >0 on Agr, so their
product ¢(s") = ei(s")ea(s")es(s”) is also positive on As; . With help of (7.2) one
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can verify then that
(7.15) hlvg'1(gs’, u) = c(s')hlvgl (&', w).

If we substitute (7.15) into (7.14) and compare the result with (7.3) we see
that

(7.16) KlgAl(gs') = e(s')K[AI(s")
where, as remarked before, ¢(s’) > 0. Applying (7.16) to A = & gives
(7.17) K(gs') = c¢(s')K(s').

Taking the ratio of (7.16) and (7.17), and using (7.4), gives the desired result
Q(gA, gz) = Q(A, z), demonstrating the validity of (iii) of Assumption B.

We return now to the question whether K(s'), in the denominator of (7.4),
can be 0 or . Since gs > 0 on 8, we see from (7.8) that the subset A g5 of Ag; on
which K(s(z)) = 0 or « is of ®-measure 0 (actually one can easily show that
K (s") cannot be 0 on s(As;), but we shall not need this fact). Moreover, it follows
from (7.17) that Asp is an invariant set. The invariant conditional probability
distribution @, given by (7.4), is well-defined on As; — Agro, which is an Qg set
of ®-measure 1, so that Theorem 7.1 can be applied with Ag; — Agy instead of
A sy . This concludes the proof of the theorem.

Exampre 7.1. Let Xy, --+, X,.(n = 3) be independent and identically dis-
tributed according to a normal distribution with mean g, standard deviation o,
both unknown. Then we may take § = (g, ¢), s = (s1, s2) withsy(z) = 2 2,
se(z) = 2ol h(z) = 1,and

g(s) = ((2m)'a) ™" exp [— (26") T2 + (w/")s1 — (m’/20%)].

Let G be the totality of transformations x — ¢z, ¢ > 0. The matrix D(z) of As-
sumption C is of rank 2 unless all components of x are equal, i.e. unless z is on
the equiangular line. The latter is of Lebesgue measure 0 and in @s; , so that its
complement can be taken as the set As; in Assumption C. All assumptions are
easily verified to hold. As a maximal invariant statistic based on s one can take
s1/(s2 — si/n)¥, which is essentially Student’s ¢-ratio. Theorem 7.1 implies then
that in a sequential ¢-test the t-ratio at the nth stage is invariantly sufficient.

ExampLE 7.2. (multiple correlation coefficient). Let Xi, ---, X, be inde-
pendent and identically distributed according to a p-variate normal distribution
(p < m), with unknown mean vector and.unknown nonsingular covariance
matrix. Let X = (X, ---, X,) so that X is a p X n matrix, and let Y be the
matrix obtained from X by deleting the first row z of X. Define X = > X./n
(in this example o will always run from 1 to n) and 4 = XX’ — nXX , so that
X and 4/(n — 1) are the sample mean and sample covariance matrix. Similarly,
defme Y = D Vo/nand B = YY' — oYY

Suppose inference is desired about the population multiple correlation co-
efficient R’ between the first and the remaining variates. The corresponding
sample multiple correlation coefficient R® can be written as [1] R* = 1 —
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|A|/(au|B]), in which a; is the 11 element of A. Both RB* and R’ are invariant
under the group G composed of the following transformations:

(i) Xo — Xo + b, b an arbitrary p X 1 vector;

(ii) ¥ — CY, C an arbitrary nonsingular (p — 1) X (p — 1) matrix;

(iii) z — ¢z, ¢ arbitrary real and 0.

If the density of X is written down, it is seen to be of the form (7.1), with
9 = pn-space, and for s we may take the vector-valued function (X, 4), whose
components are the p components of X and the p(p + 1) elements a;; of 4, with
(say) 7 = j (for simplicity of notation no distinction is made here between
random variables and the values they may take on). All parts of Assumption C
can be verified to hold. The only step that is not immediate is checking that the
matrix D(z) in (iii) of Assumption C is of maximal rank. It turns out that this
condition is true on the set on which A4 is nonsingular, i.e. an @g; set of ®-measure
1. This can be shown by direct computation (facilitated by considering X and
A functions of new variables, obtained from the z;, by @n orthogonal transforma-
tion), or by the following geometric argument: If the rows of X are projected on
the n — 1 dimensional orthogonal complement of the equiangular line, there
results a matrix X * such that 4 = X*X™ . The only nontrivial part of the proof is
to show that the matrix of partial derivatives of the mapping X* — 4 is of full
rank. Now if the rows of X ™ are linearly independent, then by the Gram-Schmidt
orthogonalization process we can write X* = TU, where T is p X p lower tri-
angular with positive diagonal elements, and U has orthonormal rows. We have
then A = TT’, and the assertion follows from the fact that X* — (T, U) and
T — A are 1-1 bi-continuously differentiable.

Considering the transformations induced by G in the range of s, we can show
readily that R’ is a maximal invariant statistic based on s, so that it induces the
o-field @g; . From the conclusion of Theorem 7.1 we know then that R’ is in-
variantly sufficient. We can use this fact for a sequential test of a hypothesis
concerning R?, by basing the test on the sequence of R at the successive stages
of sampling. The above stated result implies then that R® at the nth stage is in-
variantly sufficient.

The ordinary correlation coefficient between two variates can be treated in a
completely analogous way.

ExampLe 7.3. Let X be n-space with the equiangular line deleted, and the
function s as in Example 7.1. In contrast to the latter, let po(x) = go(s(z)),
where {gs} consists of all positive measurable functions on § such that
[ gs(s(z)) dz = 1. Denotez = (1/x) arc tan [(s; — si/n)t/si], so that 0 < z < 1.
Let G be the totality of transformations x — c¢(2)z, where ¢ is any positive
analytic function on [0, 1] such that ¢(0) = 1 (note that z is a function of z, and
that the transformation does not change the value of z). Part (i) of Assumption
C can be verified by direct computation; parts (ii) and (iii) are the same as in
Example 7.1. The group G produces the same orbits as in Example 7.1, hence the
same @®;. Therefore, the same conclusion obtains as in Example 7.1, i.e. the
sequence of Student’s ratios is an invariantly sufficient sequence.
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In Example 7.3, Theorem 7.1 is easily applied. On the other hand, we cannot
apply Theorem 3.1 directly, since we do not know how to verify Assumption
A (ii) in this case due to the more complicated structure of G. Care has been
taken in Example 7.3 that G does not contain an obvious subgroup that produces
the same orbits and for which Assumption A (ii) can be verified (if there were
such a subgroup, it could be used instead of G to yield the desired conclusion).
The group of Example 7.1 is not a subgroup of G'in Example 7.3 because G does
not contain any transformation x — cx with ¢ constant, except when ¢ = 1.
We can get a similar example by replacing the group (under multiplication) of
functions ¢(2) in Example 7.3 by the group of functions ¢(z) defined by In ¢(z) =
f (exp zy)a(dy), where « runs through the additive group of signed measures on
the real line such that «({0}) = 0 and [ (exp y)|a(dy)| < . The restriction
a({0}) = 0 prevents the group of Example 7.1 from being a subgroup of G.

The essential difference between Assumptions A and C, as far as their verifia-
bility is concerned, is that in Assumption A (ii) the structure of the group G
comes into play, whereas in Assumption C conditions have to be verified only
for each g separately. Example 7.3, even though admittedly artificial, shows that
even when the family of distributions is dominated there may be cases where G
is so complicated that the verification of Assumption A (ii) is either impossible
or more difficult than the verification of Assumption C.
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