RIGHT HAAR MEASURE FOR CONVERGENCE IN PROBABILITY
TO QUASI POSTERIOR DISTRIBUTIONS

By M. StonE
University College of Wales

1. Introduction and summary. Many statistical problems contain an infinite
parameter space or are analyzed as if they contained one. In a Bayesian analysis
of such a problem, there is often, for one or more of several reasons, an attraction
in employing an infinite measure on parameter space in the role of ‘prior distribu-
tion’ of the parameter. The employment of such a quast prior distribution con-
sists in its formal substitution as the prior density in Bayes’s theorem to producea
quast posterior distribution. (We will qualify the “posterior distribution,” ob-
tained in this way, as quast, even if it is a probability distribution with integral
one, as will be assumed for the rest of this paper). The attractions referred to are
that the quasi prior distribution

(i) may be thought to represent ‘“‘ignorance’” about the parameter;

(il) may give (quasi) posterior distributions satisfying some ‘natural” in-
variance requirement;

(ii1) may itself satisfy some ‘“natural” invariance requirement (the Jeffreys
invariants);

(iv) may give (quasi) posterior distributions on the basis of which statistical
statements may be constructed which closely resemble those of classical sta-
tistics.

[A separate argument for the quasi prior distribution is that, for an infinite
parameter space, the class of Bayes decision functions may be complete only if
the class includes those derived from quasi prior distributions (e.g. Sacks (1963));
but in this paper we will go no further than consideration of posterior distribu-
tions.]

In the foundations of Bayesian statistics, associated with the names of Ram-
sey, de Finetti and Savage (but not Jeffreys), quasi prior distributions do not
appear. When finally arrived at, subjective prior distributions are finite measures.
Moreover they are, for any given person, uniquely determined, so that there
should be no question of choice. Hence, matters such as the representation of ig-
norance, invariance and the degree of resemblance to classical statistics are not
relevant. But it is possible to accept this standpoint and then to argue that the
consequences of using quasi prior distributions are worth investigating if only as
convenient approximations in some sense. As Welch [(1958), p. 778] reveals, such
an attitude must have been implicitly adopted by those nineteenth century fol-
lowers of Bayes and Laplace who ascribed a probability content to the interval
between probable error limits of some astronomical or geodetic observation.
(With a normal distribution of known variance taken for the observations, the
implicit quasi prior distribution was, of course, uniform on the real line.)

Received 16 June 1964; revised 19 October 1964.
440

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access

The Annals of Mathematical Statistics. IIKOIRS ®

to

WWWw.jstor.org



QUASI POSTERIOR DISTRIBUTIONS 441

One sense of the ‘“‘approximation” is straightforward. Imagine fixed data. A
quasi prior distribution may be a satisfactory approximation to the actual prior
distribution for this set of date if it locally resembles or simulates the actual
distribution over some important compact set of parameter points determined by
the data; the fact that the quasi prior distribution is not integrable on the comple-
ment of this compact set may not be important. For example, if, in sampling
from a normal distribution, the quasi prior resembles the actual prior in the
region where the likelihood function is not close to zero, then the approximation
may be satisfactory. Thus, for given data, actual prior distribution and criterion
of satisfactory approximation, the question of deciding whether a certain quasi
prior distribution is employable is theoretically straightforward, the answer being
based on a direct comparison of the actual posterior and quasi posterior distribu-
tions. Furthermore, even without knowledge of the data, a calculation of the
prior probability (evaluated by the actual prior distribution) of obtaining data
for which the quasi prior distribution is employable will provide the necessary
prospective analysis. However, when no actual prior distribution is given, two
courses of justification of a given quasi prior distribution are available.

One, suggested by a referee, would consist of the demonstration that, for each
member of a wide class of proper (and possibly actual) prior distributions, the
corresponding posterior distributions are (with high probability) satisfactorily
close to the quasi posterior distribution.

The other, which formally avoids any decision as to when two distributions are
satisfactorily close to each other, is asymptotic and would ask the question
“Does there exist a sequence of proper prior distributions such that, as we pro-
ceed down the sequence, the posterior distributions converge in some sense to
the quasi posterior distribution?”

Jeffreys [(1957), p. 68] and Wallace [(1959), p. 873] have adopted the latter
course. Wallace shows without difficulty that, roughly speaking, given a quasi
prior distribution, there exists a sequence of proper prior densities whose corre-
sponding posterior densities tend to the quasi posterior density for each fixed set
of data. Reintroducing the concept of satisfactory approximation, the existence of
this type of convergence, which may be called Jeffreys-Wallace convergence, as-
sures us that, for all reasonable criteria of approximation, given the data there
will be a member of the constructed sequence of prior distributions whose corre-
sponding posterior distribution will be satisfactorily approximated by the quasi
posterior distribution. Since this particular prior distribution could be the actual
prior distribution of some experimenter, a certain justification of the quasi
posterior distribution is thereby provided. This justification can be made sepa-
rately for each set of data thereby yielding an apparently prospective justifica-
tion of the quasi prior distribution itself (that is, a justification of its use for
all sets of data). However, it is clear that the justification is essentially retro-
spective, since the prior selected may depend on the data or, in other words,
the convergence (of posterior distributions to quasi posterior distribution) may
not be uniform with respect to different data.

In this paper, we will, like Jeffreys and Wallace, adopt the asymptotic justifi-
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cation course (fearing that the more statistically relevant alternative is exceed-
ingly complex) but our justification will be genuinely prospective. To obtain this
prospective asymptotic justification of a given quasi prior distribution, we may,
perhaps, impose the condition that the convergence be uniform. However, even
where it is possible, such a requirement is stronger than is statistically necessary.
All we need is convergence in probability defined as follows. (The precise definition,
applied to a special context, is given later.) There is convergence in probability
to the quast posterior distributions corresponding to a giwen quast prior distribution
if there exists a sequence of proper prior distributions such that, at each parameter
point, the corresponding sequence of posterior densities converges in probability to
the quast posterior density. The latter use of ‘“converges in probability’” is the
customary one with the Bayesian slant that the sequence of probability dis-
tributions with respect to which it is defined are the marginal distributions of
data corresponding to the sequence of prior distributions. From this definition it
is clear that, for all reasonable criteria of approximation, for each e > 0 there will
be a member of the postulated sequence of prior distributions such that the prior
probability of obtaining data for which the quasi posterior distribution is a satis-
factory approximation to the posterior distribution corresponding to the member
will exceed 1 — €. Since this member could be the actual prior distribution of some
experimenter, a genuinely prospective justification of the given quasi prior dis-
tribution is thereby provided.

Wallace’s theorem shows that there is Jeffreys-Wallace convergence to all
quasi prior distributions, so that all quasi prior distributions are asymptotically
justified in the Jeffreys-Wallace sense. However, no equivalent theorem is avail-
able for convergence in probability, which requires demonstration for each quasi
prior distribution considered.

The above distinction has been drawn previously by Stone (1963), (1964)
for data from the normal distribution—univariate and multivariate. The present
work provides a generalisation of this case.

Two analytical restrictions are made. The first, essential for the results ob-
tained, is that the experiment generating the data should have the property of
invariance under a group of transformations. (Following Fraser (1961), the sup-
posed invariance will generally be conditional on an ancillary statistic). Many
statistical problems have this group invariance structure.

The second restriction (which may well be inessential) is that, given any quasi
prior distribution, only sequences of prior distributions obtained by truncations
of the quasi distribution to compact parameter sets will be considered.

In Section 2, the group invariant structure of the experiment is outlined. In
Section 3, we follow Hartigan (1964) by introducing relatively invariant prior
dustributions. In Section 4, convergence n probability in this context is defined and
in Theorems 4.1 and 4.2 it is shown that right Haar measure (as quasi prior dis-
tribution) is, under certain conditions, sufficient and necessary (among relatively
invariant prior distributions) for convergence in probability. In Section 5, general
statistical applications are considered.
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2. Group invariant structure of the experiment.

SurpositioN 1. The data x has a probability distribution dependent on a
parameter 6.

We write z = (a, s), where a is an ancillary statistic.

SurrosiTiON 2. The spaces S of points s and © of poinis 6 are isomorphic to a
group G of transformations g.

In S and O, s, and 6, (resp.) are the points corresponding to the identity ele-
ment e of G. Any point g of G is a one-one transformation of S onto S and ® onto
©, the isomorphisms being established by (a) s <> g < s = gspand (b) § g &
6 = g6, . Following Fraser (1961), it will often be notationally convenient to
index G by the corresponding points of either S or ®. Thus in the expression
“g~'s”, 67" stands for the point g for which 8 = (§7")7'6,, while the 6, 6, just
written have their ordinary meaning. Which meaning is to be attached to a
symbol will be clear from the context.

SupposITION 3. @ is a locally compact topological group (Halmos, 1950, Sec-
tion 0).

(To avoid triviality, G must not be compact). Supposition 3 implies (ibid.
Ch. XI) the existence of two measures u, » on the Borel sets of @ together with a
real valued function A(g), with the properties (to be used extensively later):

A(g) > 0, A(gig:) = A(g1)A(gs)
u(gd) = u(4), v(4g) = »(4),

w(4g) = A(g)u(4), v(gd) = A(gT)v(4),

w(d) = »(47), I h(g) dv(g) = [ h(g)A(g™) du(g).

(Integrals without indicated regions of integration will be over the whole space.)

w(v) is the left (right) invariant Haar measure of G and A(-) is the modular
function.

The supposed isomorphism will be used to transfer u to S and » to 0, that is,
forBC S,C C 0, u(B) = u({g|gzoe B}), v(C) = »({g|gboe C}).

SupPoSITION 4. Given 0 ¢ ©, x = (a, 8) has a probability distribution in which
the conditional distribution of u = 6's given a is independent of 6. In addition, the
probability density function of a and uw with respect to product measure of N (for the
space of a) and u (for u) exists and may be written with probability element

fa, ) d\(a) du(u).
There 1s no proper subgroup G, of G such that, for any a, fA fla, w) du(u) = 0
for all Borel sets A disjoint from G .

3. Relatively invariant quasi prior distributions. Distributions and quasi prior
distributions of  will be defined by their density with respect to right invariant
» measure.

DeriniTioN 3.1. ¢o(8) is the density of a quasi prior distribution for @ if
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[ 40(8) dv(6) = . (In requiring that a quasi prior density cannot be normed
to unity, we differ slightly from Wallace (1959)).

DerintTioN 3.2. The quasi prior density qo(8) is relatively invariant if qo(6)
is continuous and

qo(010:) = qo(61)qo(62)

for 6, ¢ ©, 6; € ©. (6105 means 6;0.0p where 6; ¢ G, 6, € G, 6, € ©). Definition 3.2 is
consistent with existing terminology in that the measure corresponding to a
relatively invariant quasi prior density is relatively invariant (Halmos, 1950,
p- 265). Note that ¢,(8) = 1 (corresponding to ») and ¢o(6) = A(8) (corre-
sponding to ) are special cases of relatively invariant quasi prior densities when,
as will be assumed, G is not compact. Let ®Rq denote the class of relatively in-
variant quasi priori densities.

DerintTioN 3.3. The quast posterior density of 6 given z, say ¢(8 | z), corre-
sponding to ¢o(8), is that “posterior density” obtained by formal use of g,(8) as
the “prior density”” in Bayes’s theorem.

We have the joint “probability” element go(8)f(a, u) d\(a) du(u) d»(6). The
conditional “‘probability”’ element for 6 is

q(6 | z) dv(6)

= ¢o(0)f(a, w) d\(a) du(u) dv(0)/fo 0(6)f(a, u) d\(a) du(w) dv(0)
90(6)f(a, 67's) du(67's) dv(6)/fo qo(6)f(a, 67's) du(6™'s) dv(6)
g0(0)f(a, 67's) dv(0)/[ go(6)f(a, 67's) du(6)

since du(67's) = du(s).
From this point on, it will be convenient to work with the quantity

(3.2) v = 5.

TuroreM 3.1. If qo(6) € Rq , the quast prior distribution of v is independent of s.
Proor. By (3.1),

q(v | z) dv(v)
(3.3)

(3.1)

I

q(0] ) dv(6)
qo(sv)f(a, v's0) dv(sv)/ [+ qo(sv)f(a, v 's0) dv(sv)
20(v)f(a, v7s0) dv(v)/[ qo(v)f(a, v"'s0) dv(v) ,

which is independent of s. This independence allows us to write ¢(v |z) =
q(v | @). Theorem 3.1 repeats, in this context, the conclusion of Hartigan (1964)
that ®e is a statistically ‘“‘natural” class of quasi prior distributions to consider.
Their employment leads to statistical procedures which are invariant under
transformations which leave the problem invariant.

4. Convergence in probability. Given ¢o(0) € Bq and a sequence of ( compact)
fsets ©;, Oq, - - -, define the corresponding éruncation sequence of prior densities

p1(6), p2(6), - - - by
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00(8) dv(0)/fo; q(6) dv(0), 0e0;

= 0, otherwise.

pi(6) dv(6)

Then the corresponding sequence of posterior densities p;(8 | 1), p2(0 | 2,), - -+
is given by

q0(0)f(a;, 67's;) dw(8) )
Jo; 0(8)f(as, 67%s:) dv(6)’ 00

= 0, otherwise.

pi(0|z;) dv(6) =

In terms of v = s;7'6,

ve s O;

; 2) dv - 9 (v)f(ai, 0—180> dv(v)
@1) pi(v|z:) dv(v) Toier o) (as, v50) (o)

=0, . otherwise,

where we have used that fact that g,(0) € Rq .

(Subscripts have been attached to z, a, s to indicate that the data is not
considered fixed. Each prior will be separately evaluated with respect to the
data it generates.) Write p:(v | ;) = p.(v | a:, s:).

DeriniTiON 4.1. The sequence pi(v | a1, s1), p2(v | a2, ), -+ converges in
probability to the quasi posterior density ¢(v | @) if, for each fixed value a of the
ancillary statistic, plim.., p:(v | a, s;) exists and

(4.2) Plimise pi(v | @, s:) = ¢(v | a).
By (4.2), we mean that, for every ¢ > 0 and each v,
limi—mo J‘R(s,‘,e)p‘i<si l a/) dl’o(sz) = 1)

where R(si, ) = {s;||pi(v]a, s;) — q(v]|a)| < ¢ and pi(s;|a) is the condi-
tional probability density of s; in the joint marginal distribution of s;, a; ob-
tained by integrating the probability element p:(6)f(a:, 6 's:) d\(as)-
du(s:) dv(6).

DeriniTiON 4.2. If there is convergence in probability to a quasi posterior
density, the quasi posterior density is a probability limat.

Keeping a; fixed in Definition 4.1 is justified by the fact that, as an ancillary
statistic, the distribution of a; is independent of 6 and therefore of p;(#) and
therefore does not change with ¢. This s in contrast to s, , whose distribution
does depend on . The restriction to fixed a is simply one of convenience. Since a
will be held constant throughout the rest of the paper, explicit reference to it will
be omitted. However, it should be remembered that all distributions involving
s; will be conditional on a; = a. The effect of this on notation is that, for example,

f(a, 0_130) - f(v_lso)

pi(v|a, ;) — pi(v]s)
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q(v|a) —q(v)
pi(si| @) — pi(si).

We now investigate conditions for convergence in probability.
LemMA 4.1. For v such that ¢(v) > 0, plim,., pi(v | 8:) = q(v) iff
(i) limee P(sie®p™") = 1 and
(i) limise Eri(s:) =1

where

ri(si) = Juimie, @o(0)f(7s0) dv (0) /] qo(0)f(v7s0) dv(v).

[The probability P and expectation E are evaluated with respect to pi(s;).]
Proor. From (3.3) [in which ¢(v | z) = ¢(v)] and (4.1),

q(0)/pi(v | 8:) = ri(se), s;e @t

= o, ] otherwise.

So “plimie pi(v | 85) = q(0)” & “plimise ¢(0)/p:i(v | &) = 17 & “limi,e,
P(s; e O®07") = 1and plim;,, 7:(s;) = 17 < “(i) and (ii),” since 0 < r:(s;) < 1.

TuEOREM 4.1. If go(0) € Rq and qo(0) # 1 then plim,.. pi(v | s:) # q(v) for
any v such that g(v) > 0.

Proor.
pi(s:)du(si) = [opu(0)f(67"s:)du(67's:) dv(0)
= [fo:00(0)7(67"s:)dv(6)/ [0.40(6)dv(8)1du(s:)
= [[s-10:00(0)f (v "50)dv(v) / [s=10ig0(v)dr (v) i (s2).
Hence

f[fs-lei 200 () f(v%s0) dy(v) ]’ dus)
(4.3) Eri(s;) = f"—l@i qo(v) dv(v) )
f90(0>f(7)_180) dv(v)

With x4(-) denoting the characteristic function of a set 4, the numerator of
(4.3) may be written

f J q(v)f 1 "s0) xe=10; (1) do(v1) [ qo(v2) (v "80) xs=10, (v2) dv(v2) du(s)

(4:4) fs‘lei qO(”) dV(”)
= ff Qo(%)Qo(Uz)f(?)l_lSo)f(02_180>H(01, v2) dv(v1) dv(vy),
where
_ [ xs—10;(v1) x50, (02)
Ho,v0) = f fs—-1®i qo(v) dv(v) du(s)-
But

J10,00(0)dr(v) = A(s) [0,00(0)dr(8)/q0(s).
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So
H(vy,v:) = [[q0(s)xs=10; (01) xs-10; (02)dp(5)]/ [ 0,90(8)dr(8)
< min,yof [0(8) xa—10; (v,)dv(5)} /[ 0:00(0)d(6)
= minj_1{qo(v;) "'}
Substituting in (4.4) and (4.3) gives

oy < L0 (g ()7 (0 50)S (05 's0) mins s {go(0) ™} do (o) do(es)
(45) ET@(S@) = J’q0<v)f(v—1so) dy(?)) .

But minj—12{go(v;) 7} = 3go(v) ™" + go(@2) 7] — % |go(v1) " — qo(v2)”’|. Substi-
tuting in (4.5), one obtains Eri(s;) < 1 — 3D/[qo(v)f(v"s0)dr(v), where

D = [[ lgo(v2) — gqo(vs)| f(or  s0)f (w2 s0)dv(v1)dv (v2),

the algebraic reduction involving the identity [f(v™so)dv(v) = [f(u)du(u) = 1.
Using ¢qo(- ) € Rq, D can be written

T lgo(ua)™ — qolwn) ™| F(wn)f () A (w2) da (e

Hence, unless qo(u) = constant, a.e. Py (where P, is the probability measure
whose density element is f(u)du(u)), we have Er;(s;) = K < 1 for some K and
i=1,2, --- . Choose an open Borel set B on which P; and u (and therefore Py
and ») are equivalent (mutually absolutely continuous). [For example, for ¢ > 0
small enough, {u | f(u) > c} is a non-empty set whose interior has the required
properties.] Since the choice of s, is arbitrary, we may suppose that e ¢ B.

If qo(u) = constant (C), a.e. Py, then q(u) = C, a.e. », for u ¢ B, which, by
continuity of go(w), implies that go(u) = C for u ¢ B. But ¢ ¢ B and go(e) = 1
(by qo(-) € ®Re) so that C = 1 and ¢o(u) = 1 for u € B. Then, by ¢qo(+) € ®Rq,
go(u) = 1 for u e B™; hence go(u) = 1 for u ¢ Bu B, henceforu e (Bu B
(for arbitrary positive integer r) and hence for ue E(B) = UY(BuB™)".
By Hewitt and Ross (1963), p. 34, E(B) is a subgroup of G. Moreover, there
exists an increasing sequence of such Borel sets B, B; C B, C--- , such that
all such B’s obey B C lim B;. Then E(B;) C E(B;) C--- and it may be veri-
fied that G, = lim E(B;) is a subgroup of G. Suppose G, # G. Then for any
Borel set A disjoint from G, , we must have [.f(u)du(u) = 0 for, by construc-
tion, G, contains all the P, probability. This contradicts Supposition 4. Hence
G. = G. But qo(u) = 1, u ¢ E(B;). Hence qo(u) = 1, u ¢ G, = G; or go(u) = 1.
That is, go(u) = constant, a.e. Py, implies go(u) = 1.

So, unless go(u) = 1, we have Er;(s;) £ K < 1forsome K and¢= 1,2, .- .
So,unless qo(u) = 1, lim Er;(s;) # 1 and hence, by Lemma 4.1, plim p;(v | ;) 5
g(v) for any » such that ¢(v) > 0.

Theorem 4.1 implies that, given an experiment with the group invariant
structure, a necessary condition that there is convergence in probability to the
quasi posterior distribution derived from a particular relatively invariant quasi
prior density, using a truncation sequence of prior densities (obtained by trun-
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cating the quasi prior density to a sequence of compact 6-sets), is that ¢,(0) = 1,
that is, that the quasi prior measure be right invariant Haar measure.

We examine now whether this condition is also sufficient.

DrriNiTION 4.3. G is Haar conirollable if, for each compact (measurable) set
C, there exists a sequence Gy, G:, -+ such that lim.,. »(GC])/»(G:) =1
where Gi[C] = {g | gC < Gi}. (If a conjecture in Section 5(g) is correct, not all
locally compact topological groups are Haar controllable.) (The definition is
equivalent when stated with left Haar measure and right translations of C.)

TreorEM 4.2. If G is Haar controllable then the quasi posterior distribution
corresponding to right invariant Haar measure is a probability limit.

Proor. Choose a sequence ¢, €, - - - with ¢; > 0 and ¢; — 0 and an increasing
sequence of compact sets (in @) ViC Vo C --- witheeV;,7=1,2,---, and
lim;,.,V: = G. For each e, find a compact set C; such that [c-1,f(w)du(u) >
1 — ¢ and [eo-1f(w)du(u) > 1 — ¢ for ve V. (Such a construction is pos-
sible, since we could take C; = A.V,, where A, is a compact set with the property
that both [4,f(w)du(u) and [4,-1f(u)du(u) exceed 1 — ¢;, and then note that
C'D A and Co D A forallve V,).

Since @ is Haar controllable, we may, for each 7, construct a sequence Gy(<),
G2(2), -+ - such that lim ., [»(G;(2)[C:])/»(G;(7))] = 1. Let ©; = G (i) where
j(2) is chosen so that

(4.6) 1(Giw (DIC])/v(Gi(3)) > 1 — &

and let p;(6) be the truncation of g(8) to ©;. For ¢,(8) = 1,
P(s;ie @) = [0,P(sie O™ | 0)dv(6)/[e:dv(0)

(4.7) = Jo.lfo-16:0-1f (w)du(u)]dr(0)/ [o,dv(0).

But “d ¢ Gj(i)(i) [C))’= “0C; C Gj(,‘)(l.) = Q,"=“ —1®i2)—1 - Civ_l.” But, since
V; increases to the whole space with 7, there exists <(v) such that v e V; for ¢ >
i(v); so that

Jeowmif(w)du(u) > 1 — e
and hence,
(48) Jr100m1f(w)dp(u) > 1 — ¢
for ¢ > <(v) and 6 € G;(;)(2)[C]. Substituting (4.8) in (4.7), we get, for ¢ > (v),

P(s;e®p7") > (1 — ei)[faj(/i)(i){Ci]dv(o)/faj(i)(‘l:)dy(o)]
> (1 — e)

using (4.6). Hence, for any fixed v,
(4.9) lim,e P(sie @p7") = 1.
Also, when ¢o(6) = 1, we find from (4.3)
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Bri(s;) = f[f 6"}-’9{(33(33‘(?‘)] dv(0).

But “6&G0(0)[C)"=“CT0" c 0, = “0,0> .. So, for 6¢
Giy (D)[C, [e;~1,f(u)du(u) > 1 — & by construction of C;. Hence,

Bri(s:) > (1 — &) 6;r010ad7(8)/f0,dv(6)]
> (1 - E¢)3.

So '
(410) lim;,e ETi(Si) =1.

But (4.9) and (4.10) are the two conditions of Lemma 4.1. So, for v such that
q(v) > 0, plime.e pi(v | 81) = q(v).

But ¢(v) = 0= pi(v|s:;) = 0. So plimi.., p:(v | 8;) = ¢(v) and the theorem is
established. :

5. Statistical applications.

(a) Location parameters. Suppose & = (Ti, =+ y Ting 3 3 Thty 5 Thng) €
R" where n=n,+ -+ +mn, 6= (61,--+,6) eR’, and the probability
density function of x with respect to Lebesgue measure in B is f(xy — 61, -,
Ting — 6153 Tmw— Ok, -, Tany — O5). Here, a= (xu— &1, ,Tny —
Toy v 3T — Tny oo, Tkny — @) and s = (&1, -+, Ti), where & = D2/

n; , are convenient representations of ¢ and s. G is the group consisting of simple
translations with representation 6 — 6 + g, s —s -+ ¢, g ¢ R*. Moreover, @ is
clearly Haar controllable. Hence the only relatively invariant quasi prior dis-
tribution, which is a probability limit, is that corresponding to a “uniform prior
distribution for 6.”

(b) Scale parameters. Suppose z and 6 as in (a) but z;; > 0, 6; > 0, and the
probability density function with respect Lebesgue measure in the positive
“quadrant” is

(Hiﬁf"i )f(xll/ol y "y x1n1/91 ;e ;xkl/ok y T -’L'knk/ak)-

Hence, a = (xu/2, -, Tm /a5 @/T*, -+, Ceme/7) and s =
(%, -+, &), where z;* = []2i}™, are convenient representations of @ and s.
@ is the group of scale changes with representation 6; — g:6; , z;* — gs;* where
g:>0,7=1,--- k. For G, u = » has Radon-Nikodym derivative ]J5_ig:™
with respect to Lebesgue measure in the positive quadrant. That G is Haar
controllable is seen by making the transformations g;—é*, 1 =1,2,---,
noting that in the new representation G is Haar controllable and that Haar
controllability is invariant under such changes of representation. Indeed, if we
also make the transformations 6; — ¢’*, 2,* — ¢”, we obtain a representation
entirely coincident with (a).

(¢) One location and one scale parameter. Suppose z = (x1, -+ ,Zs) € R",
6= (n0),—® <n< o, o>0, and the probability density function of z



450 M. STONE

with respect to Lebesgue measure is ¢ f((x1 — 1)/0, -+, (@. — 1)/0). Here,
a= (& —&)/8, -, (xa — 7)/8) and s = (%, S),WhereS S (xl—x),
are convenient representatlons of @ and s. @ is the group of transformations
g0 = (a + By, B%°), gs = (a + Bz, BS) — 0 <a< o, > 0. As is well known
(Halmos, 1950, p. 256), this is a case where u > » but du(6) = dndo/o” and
dv(8) = dydo/o. To see that G 1s Haar controllable, we need a construction.
Let Gi={a,8]| -1 <a<1,i'<B<1}. Let C be any compact set of G.
Then C can be contained in a rectangular set of the type C' = {qa, 8 | —4 <
a <A, A7 < B < A}. It is easily verified that

Gl ={a,B| AT <B <A, —14+48<a<1— AB)
for ¢ > A®, whence
y(GIC')) = [e1enda(dB/B) = [4:21(2 — 248)(dB/B) ~ 2 log 1,

while v(G’ ;) = 2log . Hence lim,.., »(G[C"])/»(G:) = 1. But G[C'] € G4 [C] so
v(GHCN)/v(G:) £ v(GAC])/»(G:) < 1. Hence lim,,., [»(GC])/v(G:)] = 1 and
we have established Haar controllability. With greater effort, it can be shown
that necessary and sufficient conditions for the more general sequence G, G, ,
- given by G = {a, B | a1s < @ < azi, B1s < B < Bai} to suffice for the demon-

stration of Haar controllability are

(a) p2i/pri — «©,

(b) pP2; —> O,

(¢) lim infi.q [log p1a/l0g p2a] = O
where p1; = 82 (api — a1s), pei = B (0mi — a1;). From the proof of Theorem
4.2, we know that the 6-sets, used as the basis of the truncation of the quasi
prior (right Haar) density, are drawn from the sequences that give Haar con-
trollability. This explains why the conditions (a), (b), (¢) are formally identical
with the necessary and sufficient conditions for convergence in probability,
given for the normal case by Stone (1963); for we have a <> glor “4” in ibid.]
and 8 <> ofor * in ibid.].

(d) Several location pammeters and one scale parameter. Suppose = as in (a)
but 6 = (n, o°), neR*, ¢ > 0, and the probability density function of x with
respect to Lebesgue measure is

(5.1) o f((@u — m)/oy -+, (@iny — m) /o5 -+ ;
(@ — me) /oy - ) (Tkny, — M) /).

Here, a is ((xa — &)/8, ) (@ — T)/8Y -+ 5 (v — &) /S e, (Teny —
@)/S") ands = (&, -+, %, S) where S = >, >, (27 — &)° G is the group
of transformations

g6 = (@ + pn, B%%),
gz = (a + 6%, 6°S)
with « € R* and 8 > 0. For this groﬁp, p # vbutdv(g) = dedB/B. The same kind
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of argument, as was employed in (c¢), can be used to show that G is also Haar
controllable. A special case of (5.1) is the normal model used in least squares
theory and, for this case, dv(g) was recommended by Jeffreys (1961, p. 150).

(e) Several location and scale parameters. Suppose x as in (a) but § =
(M, m,oy -, 00), neR, 6> 0,4 = 1, -+, k, and the probability
density function of z is

(5.2) (Hwi—ni)f((xu = m)or, -+, (Xiny — m)/01; 0 ;

(xkl - ﬂk)/‘fk y T (xknk - "Tk)/‘fk)~
Here, a = ((x)u — .’21)/31%, sy (@iny, — .’21)/;5'1%; R fk)/Sk%, cry,
(.’L‘knk - oZk)/Sk’) and s = (fl, vy, :I_ik, Sl, ey, Sk), where Sq, = Z:j (xij -

:)". G is the group of transformations g6 = (a1 + Bim, - , aw + Bim , Bioss,
s B, weRF 8> 0,i=1, -, k. Here,

dv(g) = de(dBy/B1)(dBe/Bz) - - - (dBr/Br)

is the product measure of the & right Haar measures da;dB;/B:. Since any
g € G acts separately on each of the k component spaces and each of the separate
components of G is Haar controllable, it follows that @ is also Haar controllable.
A special case of (5.2) is the Behrens-Fisher problem.

(f) Scale parameters (generalization). In (b), the restrictions that f = 0 out-
side the positive quadrant can be lifted if z;*, s = 1, - - - , k, in the description of
a,sand Gisreplaced by (X, z3,)% i=1, - -- , k. The isomorphism with (a) is lost
but a specialization of (c) is thereby revealed. The (right and left) Haar measure
element has Radon-Nikodym derivative ][ ¢: ' with respect to Lebesgue
measure in R”.

(g) Multivariate scale. This is an instructive non-application. Suppose z = S
and § = X where S and X are positive definite & X &k matrices (k > 2). Suppose
that, given =, S has the probability density function in R*®**

(5.3) =[P,

where & are the latent roots of |S — AX| = 0. (For example, S might have a
Wishart distribution with covariance matrix X). Observing that (5.3) is in-
variant under the simultaneous transformations S — ASA’, = — AXA’ where A
is any non-singular k X k matrix, it is clear that, to obtain our group invariant
structure, we need a subgroup of the general linear group of nonsingular & X k
matrices that is isomorphic to ©, the space of all positive definite matrices. Such
a subgroup is
G = {Non-singular, upper-triangular k¥ X k matrices}

(although we could also take any one of the k! other subgroups obtained by
permuting the rows (say) of all the matrices in G). If G is a typical point in G

then the isomorphism of G and © is established by G <> = < GG’ = X. From
Hewitt and Ross (1963, p. 209), we find that x = » and
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(5.4) dv(8) = dTydTy - -+ dTw/|TuTs - - Thl,

where T is the upper-triangular k X k matrix defined by TT = =. From a
statistical point of view, the lack of symmetry of (5.4) under permutation of
(1, -+, k) is objectionable and, in this respect, (5.4) differs from the quasi
prior density element d=/|Z[}*™ « dT/|TuTys -+ Twl'**™, which has been
proposed and used by Geisser and Cornfield (1963). It is perhaps fortunate then
that the conjecture that G is Haar uncontrollable has strong support. In support
of the conjecture, set & = 2 and, for simplicity, write Gu = a, Gi2 = b, G2 = c.
For a particular C' in Definition 4.3, take the compact set {3 < a < §, —% <
b < %, % < ¢ <%} Consider the left translate goC of C by the point go = (ao,
bo , ¢o) where ap > 0, ¢p > 0. Since

<a0 b\ /a b <aoa aob—l—boc>
0 ¢/ \0 ¢ 0 coC - ’

it is clear that goC is a section of the cylinder {1a; < a < 3ay/2, 3¢ < ¢ < 36y/2}.
The ends of the section are on the planes b = ==%a; 4+ boc/co . Now in terms of
a, b, ¢, the right Haar measure element is da db dc/|a| |c|>. The fact that @, > 0,
¢o > 0 means that @ > 0 and ¢ > 0 for (a, b, ¢) € goC and, defining L = log a,
I = 1/c, we see that the right Haar measure element for points in goC is dL db dI,
which is the element of volume in Euclidean space of L, b, I. But, in this space,
90C is a section of the cylinder

(5.5) (Lo —log2 < L < Lo+ log 3, 2l <1 < 2Iy},

where Ly = log ao, Iy = 1/c¢y. The ends of the sections are on the surfaces b =
+1 exp Ly + bolo/I. (If either ay < 0 or ¢y < 0 or both, it is necessary to redefine
L but a similar picture is obtained for the left translate of C.) Now to preserve
the possibility of Haar controllability of G, we would have to find a sequence of
compact sets G1, Gs, - -+ such that the vol. (G.[C])/vol. (G;) — 1 as i — o,
where vol. () means the Euclidean volume in the L, b, I space. In view of the
inequalities on 7 in (5.5), the existence of such a sequence seems unlikely, and
the conjecture that G is Haar uncontrollable is therefore supported.

(h) Multivariate scale and location. The remarks under (g) are equally relevant
to the extension where z = (y, S), 6 = (n, ), n, y ¢ R*, and the probability
density function in R¥***¥ is |x|[7**f[(y — n)'=7(y — n), A]. (For example,
y and S might be the sample mean vector and sample covariance matrix in a
random sample from a multivariate normal distribution).
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