FACTORIAL DISTRIBUTIONS'

By W. H. MAarRLow

The George Washington University

1. Introduction and summary. This note deals with a two-parameter family
of discrete distributions which has interesting moment properties. We are in-
debted to Arthur Schleifer, Jr. for having informed us that the distributions
derived below by formal methods are integer parameter cases of what are called
Beta-Pascal in Raiffa and Schlaifer (1961), p. 238.

We were led to the present family by searching for discrete distributions to be
used in numerical work with inventory problems. In particular, we were interested
in enlarging our discrete repertoire (binomial, Poisson, geometric, negative
binomial, etc.) in two directions. First, we sought convenient closed form ex-
pressions for various associated probabilities and expectations. This would of
course simplify computation of penalty functions and optimal inventory levels.
Second, we sought representation of rather extreme behavior so as to subject
our theoretical formulations to stresses such as large dispersions about average
future demand. It turns out that the present family meets both criteria. Not
only is it highly tractable but corresponding to each value r = 0, 1, 2, - - - there
is a member distribution possessing its rth moment but whose (r 4+ 1)st moment
fails to exist.

Our approach is entirely analogous to the following formal ‘“‘development”
of geometric distributions. We start with the observation that Sred'=1/(1—-9)
is a convergent series of positive terms for 0 < ¢ < 1. Then we normalize to
unit sum and consider the series to represent a probability distribution:

wopg’ = 1 where p = 1 — ¢. If this is done, we obtain the one-parameter
geometric distribution whose mode is zero, whose mean equals ¢/p and whose
variance-to-mean ratio equals (1 4+ mean). Our present effort similarly begins
with a convergent series (of factorial power functions) and we find a two-
parameter family where, interestingly enough, not only is the mode zero but the
variance-to-mean ratio, when it exists, approaches the quantity (1 + mean).

2. Factorial power functions. It is a basic fact [Jordan (1950), Section 16]
that for factorial power functions ™ = (%)nl, Az™ = (z + 1)™ — 2@
nz™ ™, one of whose consequences is

(2.1) (n+ 1) 2 i 2™ = 2" = (n = —1).

One extends for m = 0, 1, 2, - -+ through 2™ = 1/(z + m)"™. This means
that in general 2™ 3 1/2 but instead 1/2™ = (z — n)™. It is readily
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verified that (2.1) is valid for negative powers and we obtain in this way [Jordan
(1950), Section 42] the following basic expression.

(2.2) Doll/(@ + m)®] = 1/(n — 1)(m — 1)*7

wherem >n — 1,n = 2,3, --- . Itis of some interest to note that (2.2) qualifies
as a “most general” formulation based on factors linear in x: if we start with the
analogue of (2.1) with (pz + ¢)™ in place of z” we are again led to an expression
equivalent to (2.2).

3. The basic family. Each admissible pair of numbers m, n in (2.2) leads to a

probability distribution as follows where for z = 0, 1, 2, -- -,

(3.1) j@) = (n = D(m — D"/(m + H”

wherem > n — 1, n = 2,3, --- . This is equivalent t6 the following convenient
form:

f(0) = (n — 1)/m,
fG+1) = [(m—n+1+12)/(m+1+9)]f(5).
Direct calculation of the cumulative yields
Fk)=1—[(m—1""/(m+k)*"]=1—[(m—n+1+4k)/(n—1)]f(k).

The moments can also be computed directly by elementary methods. On account
of linearity, for example, E(m + 7) = m + E(¢) and the left-hand member can

TABLE 1
Distributions with mean 0.10
Distribution q F(0) FQ) F(2)
Poisson 1 0.90484 0.99532 0.99985
Geometric 1.1 0.90909 0.99174 0.99925
n=2>5 2.2 0.93023 0.98289 0.99375
n =4 3.3 0.93750 0.98214 0.99245
n =3 © 0.95238 0.98310 0.99135
TABLE 2
Distributions with f(0) = 0.5
Distribution Mean Variance
Poisson 0.69 0.69
Geometric 1.00 2.00
n =11 1.11 2.93
n =4 1.50 11.25
n =3 2.00 o
n =2 0 0
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be found by summing (m + 9)f({) = (n — 1)(m — 1) /(m + i — 1),
Each distribution has moments through E(¢"*); in particular,

Mean = (m — n + 1)/(n — 2),
(Variance/Mean) = [(n — 1)/(n — 3)][1 4+ Mean].

We record a few more properties as follows.

(a) To each pair, u and n where p > Oand n = 3, 4, - - - , there corresponds a
distribution (3.1) with mean equal to p:m = (n — 2)p + (n — 1).

(b) To each pair, u and ¢ where u > 0 and ¢ > 1 4 u, there corresponds a
distribution (3.1) with minimum n, n = 4, 5, .-, whose mean equals x and
whose variance-to-mean ratio does not exceed g.

(¢) The probabilities f(7) are strictly decreasing in ¢ so that the mode is always
Zero. .

(d) The median defined as Min; {F(¢) = %} equals Min, {f({) = (n — 1)/
2(m — n 4+ 1+ 19)}.
(e) If n > 2 so that the mean exists then

Median = Min; {f(7) £ (n — 1)/2[(n — 2)(Mean) + 4]},
Median = O if and only if Mean < (n — 1)/(n — 2).

4. Hlustrations. If » = 2 the resulting distribution (3.1) has no expectation,
i.e., its mean may be said to be infinite. We find F(¢) = (1 + )/(m + %) which
makes it clear that convergence to unity is indeed slow. If m = 2 then f(0) =
F(0) = 3, F(1) = %, -- - ; for example, in order to have F(k) = 0.9999 we must
have k = 9, 998. In a geometric distribution with F(0) = }, k¥ = 13 would suffice
while for the corresponding Poisson distribution merely & = 5, i.e., 6 terms,
would be enough to exceed 0.9999.

In Table 1 there are illustrated several distributions possessing a common
mean of 0.10 with “¢’’ denoting the variance-to-mean ratio. The last three dis-
tributions are cases of (3.1) for m = 4.3, 3.2 and 2.1, respectively.

Table 2 displays associated moments for several distributions with f(0) =
The last four distributions correspond to (3.1) for the respective cases m
20, 6, 4, 2.

1
2.

REFERENCES

JorpaN, CHARLES (1950). Calculus of Finite Differences, (2nd ed.). Chelsea, New York.
Rarrra, Howarp and ScHLAIFER, ROBERT (1961). Applied Statistical Decision Theory.
Graduate School of Business Administration, Harvard University.



