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1. Introduction. Let X and Y be independent binomial random variables
with parameters (n; , p1) and (ns, p2), 0 < p; < 1,7 = 1, 2. A statistical problem
of great practical significance is that of testing the equality of the two propor-
tions p; and p. , that is, the hypothesis H, : p; = p; . For alternative hypotheses,
one usually considers p; ## ps, p1 < P2, or p1 > p» . In any case, the usual test of
the null hypothesis is a conditional test, based on the tails of the conditional
distribution of X for fixed values r of X + Y. The probability density of X, con-
ditional on the fixed sum X + Y = re{0, 1, -- - , n1 + ne = n}, is given by the
“extended hypergeometric’’ function

(1) f(z;8) = g(2)t*/P(1), a b,

where @ = max (0, r — 72), b = min (ny, 7), t = P1g/Po1, ¢: = 1 — s,
g(x) = ("H(2)/(F), and P(t) = 2 sg(y)t” is the factorial generating func-
tion of the ordinary hypergeometric distribution. If p; = p,, then t = 1, and
P(1) = 1, so that f(z; t) reduces to g(x). More generally, we observe that the
density f(z; t) is of fundamental importance in considerations of power functions
for tests of independence in 2 X 2 contingency tables ([1], [5], [6], [9]). The
parameter ¢ is often interpreted as a measure of dependence or association in
such contingency tables; ¢ = 1 indicates independence and ¢ < 1 and ¢ > 1
correspond to positive and negative dependence respectively. As pointed out by
Lehmann ([7], p. 145), ¢ is equivalent to Yule’s measure of association given by
Q = (1 —1t)/(1 + t). Goodman and Kruskal [3] have discussed these and other
measures of association.

In Sections 2 and 3, we discuss moments, moment inequalities, and maximum
likelihood estimation of ¢, all for finite samples. In Section 4, we obtain approxi-
mations for the density f(x; t), taking full advantage of the corresponding results
for the particular case when ¢ = 1, as given for example in [2] and considered by
Van Eeden [12]. In the last two sections we discuss the asymptotic distribution of
the maximum likelihood estimator and construct confidence intervals for ¢.
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2. Moments. In terms of the hypergeometric series
Fla; 8573 1) = 25 (@)i(B)7/71(¢)s,
where, for example, (a); = J[ie1 (@ — s + 1), it is easily seen that
2= ()5 = ("F (a; 8575 0)
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with @« = —n;, 8 = —r, and v = n, — r + 1, where we assume here that
n -+ r = n. It readily follows that the kth factorlal moment u(y of the hyper-
geometric distribution is given by uy = (o)(B)i*F(k) / (v)kF(O), where, for
brevity, F(k) = F(a + k, 8 + k;v + k;t), fork = 0, 1, . Using the recur-
rence relation ([11], p. 31)

(2) t(1—t(a+ 1B+ 1)F,
+ (v + Dy — (@ + 8 + DIF, = v(y + 1)F,,

we find that the first and second ordmary moments u;” and u, about the origin
are related by 2(1 — t)u,’ = nurt — Catt, With ¢, = n — (my —|- r)(1 — t), S0
that the Varlance ° may be expressed in terms of the mean p' as (1 — t)o® =
it — copr’ — (1 — ) (') Alternatively,

() w' = {—cu + [ea + (1 — O)nr — 4(1 — 1)’*P}{2(1 — )}

Further, it is easily shown that the derivative of u,’, as a function of ¢, is equal to
o”/t, which shows that the mean is an increasing function of {. Recurrence rela-
tions for higher moments may be obtained similarly, but appear to be of little
value. The calculation of u;’ requires the evaluation of the ratio of two poly-
nomials in ¢ of degree b = min (n, ) and is tedious. We proceed therefore to
obtain upper and lower bounds on u;’.

Denoting by u,'(—1) the mean value when the parameters n,, r, and n are
each reduced by one and using (2), we find that

(4) pl = nrt{(1 — D' (—1) 4+ o + (1 — )17}

(5) we' = p'{m(—1) + 1}

(6) o = w'{w'(—1) — w' + 1}.

Since ¢* = 0, it follows from (3) and (4) that, for 0 < ¢ < 1,

7) ' = Nenrr/m, p'(—1) = Noa(ng — D(r—-1)/n—1

where A, is the unique positive real number satisfying
(8) Mfl = (m/n) — (r/n) + M(nr/n")} = 1 — M(ma/n)}H1 — M(r/n)},

and M\, is defined as \, with 7, , 7, and n replaced by n; — 1,7 — 1, and n — 1.
Upper and lower bounds dy(t) and d(t) on u, for 0 < ¢t < 1, can now be ob-
tained using (4) in conjunction with (7). It is found that

(9) du(t) = nrt{[(1 — t)(m — 1)(r — Dhaa/m — 1] + [ea + 1 — g}
< w' £ Nanr/n.
Finally, for ¢t > 1, it can be shown that
(10) w' = EX|m,rn;t) =n— B(X|n,n—rntb),
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TABLE I
z 0 1 2 3 4 5 6
f@; 3 .00677 .08120 .29914 .37219 .20035  .04785  .00349
TABLE II
x <3 3 4 5 6 7 8 9 10 11 12

f(z; 6) 0 .00001 .00016 .00209 01625 07521 .20511 .31906 .26507 .10327 01377

from which upper and lower bounds for ;" may be obtained using the bounds
for a mean value when ¢ < 1.

ExampLE 1. Let n; = 6,7 = 12, n = 20, ¢ = .5. The probability distribution
of X is given in Table I. We find that u,” = 2.854, ¢* = 1.072, and the bounds for
w’ [using (8)] are 2.850 < u’ < 2.892.

ExampLE 2. Let n; = 12, r = 15, n = 30, ¢t = 6. In Table II we give the
probability distribution of X. Here, u,’ = 9.09946, ¢* = 1.48202, and the bounds
for uy’, obtained by first finding bounds on E(X | 12, 15, 30, 1) using (9) and
then noting (10), are 9.000 < u, < 9.121.

3. Estimation of {. Let X, ---, Xy be a random sample of size N from a
population having a probability density f(z; t) of the form given in (1). We ob-
serve that a random variable X having this density has a generalized power series
distribution, as defined by Patil [8] and that the parameter ¢ does not have a
minimum variance unbiased estimator (see [8], p. 1052), for any finite sample
size N. We consider the estimation of ¢ by the method of maximum likelihood.

On setting the first derivative of the likelihood function equal to zero, we
find that the maximum likelihood estimator { of ¢ must satisfy the equation
w'(£) = X, where u,'(f) = E(X;t) |;mtand X = N7 DV, X, . If X = 0, then
{ = 0, while if X = min (n,, 7), { = + . We note also that if X = ny/n,
then f = 1. For all other values of X, the computation of  is tedious, so we con-
sider finding the upper and lower bounds on £. This is accomplished by using the
upper and lower bounds derived for ;" as given by (9) together with (10).

If X < ny/n, then { £ 1, so that

(11> db(t) M1 (t) = dU(t)

where d. (%) and dy(f) are obtained from dz,(t) and dy(t) by replacing ¢ by £
wherever ¢ appears in these expresswm Inverting the inequalities in (11), we
find that, for X < nyr/n,

(12) i<ttt + Xngr — nX)/nr(nm — X)(r — X)
where i = X(n — ny — v + X)/(ny — X)(r — X). If X = nyr/n, we find that
(13) L+ {(m—X)(n—X —nr)/mn—r)(m —X)(r—X)} ' si=st

ExampLe 3. Let ny = 12,7 = 15, n = 30. In Table III we give the interval
in which { lies for various values of X. If X = 6, { = 1, while for X = 0, ¢ = 0
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TABLE III

X 3 9 10 11

Interval (.167, .181) (5.54, 6.00) (11.4, 13.0) (31.86, 38.5)

and for X = 12,{ = + «. Note that the bounds for f do not depend on the sample
size N, so that all the results hold for the special case N = 1.

4. Limiting distributions. It is well-known that the ordinary hypergeometric
distribution is asymptotically binomial, Poisson, or normal, depending upon the
growth to infinity of n;, r, and n. In this section, we shall derive binomial and
Poisson approximations to the density f(zx; {)—a normal approximation has
been given previously in [4], which we shall state below for completeness.

TuaeoreEM 1. (Binomial Approximation). Let ny, n — 4« in such a way that
m/n—p,0 < p < 1. Then for each fixed (but arbitrary) value of X € {0,1, --- 7}
andr {0, 1, ---},

(14) limf(z;t) = Q)6(1—0)"", 6=pt/(g+p), q¢=1—p, t>0.

Proor. This result follows easily from inequalities ([2], p. 57) on the ordinary
hypergeometric distribution.

TuarorEM 2. (Poisson Approximation). Let ny, r, and n — © in such a way
that nyr/n — u. Then for each fixed value of X € {0, 1, 2, -- -},

(15) lim f(z;t) = e *(ut)*/x!, t> 0.

Proor. We consider first the case when ¢ e (0, 1]. According to the Poisson
limit theorem for the hypergeometric distribution, lim g(z) = ¢ *u°/x! Using
Feller’s continuity theorem ([2], p. 262) we see also that im P(¢) =
exp {u(t — 1)}, so that (15) follows, for § < ¢ < 1.

Suppose next that ¢ > 1. Since P(¢) is the factorial generating function of the
hypergeometric distribution, we have

P(t) = Xioowum(t — 1)*/kl, where u = PO(1) = (m)i(r)i/(n)
is the kth factorial moment, and b = min (n;, r). From the inequality
piern = (e — k) (r — B)um/(n — k) < nowp/n < (nr/n)*,
it follows that
(16) lim P(¢) < lim > iy (nyr/n)%(t — 1)*/k!
= lim exp {n(t — 1)/n} = exp {u(t — 1)}.

Now let e > 0 be arbitrary and let A7 be an integer such that Do fu(t — 1)} /k!
> ™Y — ¢ Then we have that

(17) lim P() 2 lim D iiouin(t — 1)*/kl = D i {u(t — DY /L > 7Y — ¢

sinee im upy = u* for k = 0, 1, ---, M, for any fixed integer M. Therefore,
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since e > 0 is arbitrary in (17), in view of (16) we see that lim f(x; ¢)
= ¢ *(ut)%e "V /xl = e (ut)"/x.

As for the normal approximation to (1),let P;,0 < P, < 1,7 = 1, 2, be the
unique numbers satisfying

(18) P1Q. = tPxQy, P 4 nePe = 7.
Then the normal approximation given in [4] (modified slightly) is given by.

TrEOREM 3. Let Hy = (nP;:Q:) """, H* = Hi + Hj, and X = H(k — niPy)
Then f(z; ) ~ Ho(Xy) as H, HX,® — 0, and D p—of(k; t) ~ ®(Xgp1) —
®(X.y) as H) HX.)) HXs® — 0, where ¢(z) = (27)™* exp {—2%/2}, ®(z) =
[% ¢(y) dy, and “a ~ b means the ratio of a and b tends to one.

It is relatively easy to show that the moments of the extended hypergeometric
distribution converge to the corresponding moments of the binomial or Poisson
distributions, depending on the mode of convergence of the parameters. For the
normal case, it is more difficult to prove such convergence. We now show that
the mean and variance, when divided by 7, converge to the mean and variance
of the appropriately normalized limiting normal distribution. In the following
two theorems, we let n; , r, and n — -+ o such that ny/n — 91, r/n — 9,

THEOREM 4. lim u'/n = Nqmy, where \ is the unique positive real number
satisfying the equation
(19) ML = 0 — me + M) = (1 — M) (1 — Mpa).

Proor. It is easily verified that N\, — A, where \, is defined by (8). Ior
0 <t < 1, from (9) it follows that lim u;’/n < Mumz . On the other hand, using
the lower bound for u," as given in (9), we see that

lim pi'/n 2 mat{ (1 — Mgz + 1 — (e + m2) (1 — O},
which is easily shown to be equal to A, using (19). For ¢ > 1, we have
lim w'/n = lim {n/n — E(X |, n — 7, n;{)/n}
= m—m(l — n) =mfl — (1 — n)},

where v satisfies the equation {1 — v }{l — »(1 — n2)} = wt{l — g1 — (1 — n2)
+ vm(1 — 52)}. However, from (19) and this last equation we find that 1 — Ap.
= (1 — 72), from which the conclusion follows.

THEOREM 5. Lim o*/n = (2 iami )™ = tyme(dN/dt), where m = \nma,
e =m — T, M =1 — m,andm =1 — m — w2 — w3, and \ salisfies (19).

Proo¥. Since o* = uy {u (—1) — w' + 1} and w1’ /n — Mumz, we must show
that u'(—1) — w4+ 1 — NU(dN/dt) = Mma( Di = m )™" The validity of
this last limit is established by using the various bounds for u," and u,'(—1)
to obtain upper and lower bounds for u;'(—1) — u;’ + 1 and then passing to the
limit. We omit the details.

Alternatively, we observe that u;" is an infinitely differentiable function of ¢.
Simple calculations show that ¢ = t(dw,’/dt) > 0, so that ui is a strictly in-
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creasing function of . Theorem 5 can then be obtained by showing that
limo*/n = t lim (dw'/dt) = td{lim w'/n}/dt = nmat(d\/dt).

Theorems 4 and 5 suggest that the exact mean u,” and variance o°, for moderate
values of ny, r, and n, may be approximated by u' =~ \nyr/n and ¢° ~
n{ 2t (/7)) ™", where ;* is m; with ny/n and r/n replacing 5; and 7. respec-
tively. It is not hard to show that \,my/n = n,P; and that the approximate
variance is also equal to H> = {(mP1Q:)™" + (noP2Q.)""}™", where P; and P,
satisfy (18). If ny = 12, r = 15, n = 30, and t = 6, we find that the approxima-
tion to w’ = 9.09946 is 9.00, while o> = 1.48202 is approximated by 1.44 = H "

6. Asymptotic properties of { and Z. In considering the asymptotic properties
of { there are several cases which can be examined, depending on the growth
to infinity of n;, r, n and N. However, some of these cases present no real prob-
lems. For example, if n;/n — p, with r and N fixed, it is easily seen that the
asymptotic distribution of {is the same as the distribution of X (1 — p)/p(r — X),
where NX has a binomial distribution with parameters N» and 8 = pt/(q + pt).
(See Section 4, Theorem 1.) Similarly, if nir/n — uasn;, r, and n — + «, with
N fixed, then the asymptotic distribution of f is the same as the distribution of
X /u, with NX having a Poisson distribution with parameter Nut (see Theorem 2).
In the binomial case, the maximum likelihood estimator (m.l.e.) of ¢ is obtained
by first finding the m.l.e. # = X for 8; then the m.l.e. for ¢ is obtained by solving
the equation 8§ = pt/(q + pt) for ¢ and then replacing 8 by . Confidence intervals
for ¢ may be obtained by finding a confidence interval for § and then making use
of the 1-1 correspondence between 8 and ¢. Similar arguments apply in the Poisson
case.

If the parameters n; , r, and n are fixed, then by well-known theorems on the
asymptotic distribution of maximum likelihood estimators, it follows that, as
N — + =, { converges in probability to ¢ and N*(f — t) converges in distribution
to a random variable which is normally distributed with mean 0 and variance
[E{(9/at) In f(z; t)}*]". In this case, E{(8/0t) In f(z; t)}* = o*/¢, so that for
large values of N, the maximum likelihood estimator { is approximately normal
with mean ¢ and variance /N¢’. Finally, we consider the case when f(z; ¢)
may be approximated by a normal distribution. In particular, we shall examine
the asymptotic distribution of £ as n,, , and n each become large in such a way
that ni/n — 1, r/n — 92, 0 < 91, ne < 1. These conditions ensure the validity
of Theorem 3. To simplify the exposition, we assume N = 1; the results for N > 1
follow immediately from this special case. We shall need the following lemma,
which is easily proved.

LEmMa. X/n —p: M2 .

The next theorem asserts that # is a consistent estimator of ¢ under the assump-
tions just stated.

THEOREM 6. { —p; 1.

Proor. Let ¢n,,rn(y) = y[l — (ma/n) — (v /n) + yl/[(n/n) — yll(r/n) — yl.
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Then ¢, ,-.(y) converges to y(1 — n — n2 + y)/(m — y)(m — y) = ¢(y)
uniformly in y over the closed interval [y, 8], where max (0, n1 + 72 — 1) <
vy =8 < min (91, 72). Since Y, = X/n —p, Mpm: by the lemma, the desired
conclusion follows on applying a result in [13], Problem 4.16, p. 112, which
guarantees that ¢, ,.(Y.) —er o(\pm2) = t.

Since t* = X(ny — nX)/nr(ny — X)(r — X) converges in probability to
zero asm/n —my ,r/n— e, t < { <1+ ¥, it follows immediately from Theorem
6 that 7 also converges in probability to ¢, for 0 < ¢ < 1. The result for ¢t > 1
follows similarly.

In order to find the asymptotic distribution of ¢ (and hence of ), let # = ¢(X)
=X(n—1n—1r+ X)/(mi — X)(r — X). Then from the previous results ob-
tained here (in particular, Theorem 3) and a theorem of Rao ({10], pp. 207-208),
it readily follows that  is asymptotically normal with mean ¢ and variance
o = H Y (mPy)], where it can be shown that o = H’#.

6. Confidence intervals. We now combine Theorems 3, 4, 5, and 6 to obtain
an approximate (1 — «) confidence interval for the parameter {. Let Z., be
such that the probability is «/2 that a standardized normally distributed random
variable Z exceeds Z,; . According to Theorem 3, lim P{|X — mPi| < ZuH '}
= 1 — «. In the notation of Theorem 3, n.P; = MNnr/n, where \, is defined
by (8). Since { —p, ¢, it follows easily that P, = A\,7/n —p: M and Py =
(r — mPy)/(n — ny) —pr n2(l — Mp)/(1 — n1), where A, is defined in the
same manner as was \, , i.e., by (8), but with ¢ replaced by £in (8). It then fol-
lows from Slutsky’s theorem that

(20) lim P{X — mPy| < ZoplH ™'} =1 — @

where A* = {mPy(1 — Py} + {noPy(1 — Py)}™" and explicitly Py = [—é. +
(& + 41 — Dne}l/20(1 —0), Py = (r — mP)/(n — m1), and & = n —
(my + (1 —§.If{ =1, P, = »/n = P,. In summary, H depends on #, but
Slutsky’s theorem permits us to allow the dependence of H on ¢ to be replaced by
a dependence on {. This greatly simplifies the confidence interval. Inverting the

inequalitics in (20) for ¢, we obtain the approximate (1 — a) confidence interval
for ¢

(@ = Zap H )0 — i —r + 2 — Zopp H)
(nl_ili“‘Za/g ﬁ_l) (T_’$+Za/2 [I—l)

(90+Za/2ﬁ_l) (n~n1—r+x+za/2£’*l)
(nll_x—Za/2ﬁl)(r;xﬂzaﬂg—l) )

(21) <t

<

The actual computation of this confidence interval can be simplified by estimat-
ing ¢ by the consistent estimator . If this estimator is used, we find that P, = x/n,
and P, = (r — z)/(n — my), and the resulting confidence interval will continue
to have a confidence coefficient of approximately (1 — ). We illustrate the cal-
culation of 90 per cent confidence intervals for the parameter ¢. Let ny = 12,
r=15,n=30andx = 3. Then P, = ¢/my = 1, Py = (r — 2)/(n —m) = %,
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Ple/P2Q1 =% nlplQl = (12)HB) = & P, = (18)3E) = 4, A =
1= (3 H' =12 Zp = 1.645. Hence, the upper confidence bouud as
glven by (21), is found to be 0.563 and the lower confidence bound is 0.029.
For n; = 120, r = 150, n = 300, x = 30, the approximate 90 per cent confidence
interval for ¢ is (0.105, 0.252), while for n; = 60, r = 120, n = 200, and = = 40,
the interval for ¢ is (0.919, 2.64).

One could also consider constructing a confidence interval for ¢ by using the
asymptotic distribution of #. If confidence intervals for ¢ are constructed following
this procedure, one obtains the interval ({1 — ZuH}, I{1 4 ZoH}). However,
the first procedure for constructing approximate (1 — «) confidence intervals for
¢ [leading to (21)] seems to give better results than this second method. This is
probably due to the fact that the rate of convergence to the normal distribution
of the distribution of H(X — n,P;) is “faster” than that of ({ — ¢)/o;.

Finally, we observe that a confidence interval for Yule’s measure of association,
Q = (1 —t)/(1 + t), is readily obtained using (21).
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