SEQUENTIAL COMPOUND ESTIMATORS
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1. Summary. This paper deals with the sequential compound decision problem,
when the component problem is an estimation problem. The aim is to find
sequential compound rules which have Property (A) or (B), as described in
Section 2. That is, one seeks rules the compound risk or loss of which do not
exceed the value of the Bayes envelope functional at the ‘“‘empirical distribution”
of the parameters, by more than ¢, for n sufficiently large. In Section 4 some
general results for the estimation problem are obtained, which are applied in
Sections 5 and 6 to several discrete and continuous distributions to obtain rules
with Property (A)-or (B). In Section 3 some results are obtained which hold for
the sequential compound decision problem with any general component problem.
These are applied for the estimation problem in the later sections.

2. Introduction. Consider a decision problem with its usual components: The
space of states of nature @ with elements 6; the action space @ with elements A;
the real valued loss function L(A, 6) = 0 defined over @ x ; and the observable
random variable X with distribution Ps when the state of nature is 8. We assume
that for each 6 Py is known. A (randomized) decision function ¢ is for each z (in
the space ¥ of values of X) a distribution over (@, o4) (where o5 denotes a
properly defined o-field of subsets of B) which is measurable in z. We denote by
R(¢, 6) the risk function of ¢, i.e. the expected loss incurred by the use of ¢, as a
function of 6 £ Q. Let G be a (prior) distribution over (9, ¢q). R(¢, G) denotes
the Bayes risk of ¢, i.e.

(1) R(¢,G) = [a R(¢,6) dG(6).

Any ¢ minimizing (1) is called a Bayes rule with respect to G and will be denoted
¢¢ . The Bayes envelope functional is denoted R(G) and for fixed G is the infimum
value with respect to ¢, of (1).

A compound decision problem arises when the same decision problem, called
the component problem, occurs not only once, but 7 times. One thus has an (un-
known) vector 8, = (61, ---, 6,), 6; €2, and a corresponding vector of random
variables X, = (Xi, ---, X,) where the X/’s are independent, and X; has dis-
tribution P,, . If the problems occur sequentially, one may let the ¢th decision
depend upon the observed value x; = (&1, ---, x;) of X; = (X,, -+, Xu),
rather than on z; alone, ¢ = 1, - - -, n. This may seem irrational, since the X,’s
are independent, and no relationship between the 6.s is assumed. We shall
see, however, that considering such rules may be worth while. We call
o = (¢1, ¢z, - - -) astrongly sequential compound decision rule if ¢, is a measurable
function of x, , which for each x; is a distribution over (@, ¢,) by means of which
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the 7th action is chosen. If the number n of components of the compound prob-
lem is unknown in advance, one may want to use such a rule ¢. We shall denote
the initial n-vector of ¢ by ¢, . Let @" denote the set of all 8, , with 6; £ Q, and let
Q% denote the set of all infinite sequences 8 = (6, , 6, - --) with 8, ¢ Q. For the
compound rule ¢, we shall let

R((I)n I} 0") = n-l Z;;I R(¢i, ol)

denote the compound risk of ¢, as a function of 8, £ @". Here R(¢:, 0;) denotes
the expected loss on the 7th decision, and this will usually be a function of the
initial 7-vector 0; of 8, , and not of 6, alone. For every vector 8, we let G, = G,(0,)
denote its empirical distribution. G, is the distribution over (2, oo) which assigns
probability k/n to 6 if ; = 6 for k among the n valuesof 4,z = 1, --- , n. A
strongly sequential rule ¢ is said to have Property (A), if for every 6 £ Q° and
every ¢ > 0 there exist N (0, ¢) such that for alln > N (6, ¢)

(A) R(¢n, 0.) — RB(Gn) < ¢

where 0, is the initial n-vector of 0, and @, is its empirical distribution. ¢ has
uniform Property (A) if N(0, ¢) = N(e¢), i.e. if for every 8 ¢ @° (A) holds pro-
vided n > N(e).

The (nonsequential) compound decision problem, where all observations are
at hand before the individual decisions must be made, was introduced by Robbins,
[7]. The sequential compound decision problem, has, to the best of the present
authors knowledge, earlier been considered in detail only for the case where the
component problem is that of testing a simple hypothesis against a simple alterna-
tive. See [9]. The rules exhibited there have uniform Property (A) for the prob-
lem considered. Hannan, in an abstract [2], considers the multiple decision
problem where there are m possible distributions. Johns has recently announced,
in an abstract [3], asymptotically optimal sequential compound decision rules for
several parametric and nonparametric component problems, involving a finite
number of actions. Our aim in the present paper is to exhibit, for several para-
metric families, rules ¢ which have Property (A) when the component problem
is an estimation problem, and the loss function is the customary squared error.

It is easily seen that if G, is known in advance, and one uses the simple rule
which decides on 8; by the use of z; and some version ¢4, of the Bayes rule for the
component problem, ¢ = 1, ---, n, one incurs a risk R(G,) at every point
0, ¢ Q" which has @, as its empirical distribution. Clearly in that case the risk is of
interest only for such 0, . When @, is not known in advance, one cannot use this
rule. It seems that (A) would then be a goal worth aiming at. It is shown in [13]
that no simple rule, using z; only, to decide on 6, , achieves (A).

It may be of interest to consider the (random) loss

L(¢ﬂ ) 0n) = n_‘l ZZ;I L(¢z ’ 07)

rather than its expected value R(¢, , 0,). It should be noticed that L(é., 6.) isa
function of the random variable X, , and when ¢; is randomized, it is a function
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also of the random variable required to carry out randomization. For every fixed
0 £ 0° we shall let P and P, denote the product measures generated by Py, ,
t=1,2,---,and i = 1, --- | n, respectively, and we let E(., and E, denote
expectations with respect to the corresponding distributions. For a strongly
sequential rule ¢ we let P, (¢) denote the measure generated by 6 and the
auxiliary random variables involved in ¢. Corresponding to (A) we say that ¢
has Property (B) almost everywhere P (¢) if for every 8 ¢ Q°

(B) im Supnsw [L(¢n , 8,) — R(Ga)] S 0 ae. Puy(d).
¢ is said to have Property (B) in probability if for every ¢ > 0

(B) limpw P[L(¢n, 0.) — R(Ga) < ¢ = 1.

It should be noticed that whenever

(2) SUPgeq SUP4eg L(A,0) = C < o

Property (B) implies Property (A). In [11] it is shown that the rules considered
in [9] for the hypothesis testing problem, have Property (B). In the present
paper we shall establish Property (B) for sequential compound estimators for
some discrete families of underlying distributions.

In the next section we obtain some results which are of interest for the general
sequential compound decision problem. In Section 4 we derive some results for
the general estimation problem, which are then applied in Sections 5 and 6 for
several discrete and continuous families of distributions.

3. General results. The following lemima is true for any decision problem. A
particular version of it was used in [9], (see Lemma 2 there). It gives some
insight how (A) may possibly be achieved.

Lemma 1. Let 8, = (6., -- -, 6,) be any fixed vector in Q", and let G; denote the
empurical distribution of its initial i-vector, i = 1, --- ,n. Let ¢g, , i =1, -+, n
denote any versions of the Bayes rules with respect to G; . Then
(3) n~t 2 R(de, , 0:) < R(G,).

(The lemma states that if at the ith stage one plays a simple rule which is Bayes
against the empirical distribution of the ¢ first choices of Nature, 7 = 1, --- , n,

one incurs a compound risk which at the specified point 6, does not exceed the
value of the Bayes envelope functional at G, .)
Proor. For any ¢ of the component problem, one has by definition

R(¢,G)) = 7' 251 R(, ;).
Hence
iR(¢, Gr) = 2= R($, 0)),
and thus iR(¢, G;) — (i — 1)R(¢, Gi1) = R(¢,8,) fori = 1, --- , n. Therefore
4) 2n R(de; ,0:) = Dt [iR(¢¢; , Gi) — (¢ — 1)R(¢¢, , Gi1)]
= 25 iR (¢ , G:) — R(de,,,, G:)] + nR(da,, Ga).
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The first term in the right hand side of (4) is nonpositive by the definition of a
Bayes rule, and the second term is nR(G,). Thus (3) follows.

It is shown in [11] that the inequality (3) can be strict, and actually that the
difference between the right and left hand sides of (3) may tend to a positive
limit,.

From Lemma 1 we have the following

THEOREM 1. Let ¢ be a strongly sequential rule which for every 6 £ @ satisfies

(5) lims.e [R(¢:, 0:) — R(da; , 0:)] = 0

where ¢g, s some Bayes rule with respect to the empirical distribution G; of the initial
t-vector 0; of 8. Then & has Property (A). If (5) holds uniformly in 6 £ @, and (2)
holds, then & has uniform Property (A).

Proor. The proof follows immediately upon taking limit of the Cesaro means.

We restate, without proof, a martingale theorem, which will be used to estab-
lish Property (B). For a proof see Lemma 2 of [11], or [5] p. 387 E.

LemMMA 2. Let {Y,.} be a martingale relative to {F,} (See [1] p. 294.) Define Y, =
and let ¢, = Var (Y, — Y,_1),n = 1. Let {b,} be a monotone sequence such that
limg . by = . If

(6) Z:=1 a'nz/b,,2 < ®

then Y,/b, — 0 a.e.
For any ¢; = ¢.(x;, ) we denote by

R(¢:, 0| Xiy) = R(¢:i, 0| Xiz1)

the conditional risk incurred on the ¢th decision when the previous random
variables X; 1, as well as the previous randomization variables, when required,
are given. The 7th randomization variable is assumed to be independent of the
previous randomization variables, when X; is given. To establish Property (B)
we use the following

Lemma 3. Let L(A, 0) satisfy (2). Then for any & and every 6 £ Q°, asn — o,

(1) [L(dn, 0.) — 7" 220 R(¢s, 0:]Xi)] — 0 ae. Puy(d).

Proor. Let &, be the o-field generated by X, and the first n randomization
variables, when required. Let ¥, = > 7= [L(¢:, 8;)) — R(4:, 6; [ X)) It
follows by the definition that {Y,} is a martingale relative to {F,}. Since
Var (Y, — Y,_1) = C% (6) holds with b, = n, and Lemma 2 implies (7).

4. The estimation problem. Here @ = @ is some interval of the real line. It is
well known (see e.g. [4] p. 4-3) that when L(A4, 6) is continuous and convex in
A for each 0 the class of nonrandomized rules is essentially complete. We shall
consider only nonrandomized estimators, and shall let ¢.(x;) denote the value in
@ which is selected on the 7th decision with probability one. We ccnsider only
L(A, 0) having the following property : For every ¢ > 0 there exist 6 = 6(¢) > 0
such that
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(8) |L(4,8) — L(A* 8)] <e forall 6eQ provided |4 — A% <.

(8) holds whenever @ = @ is compact and L(A4, 8) is continuous.

TrEOREM 2. Let L(A, 0) satisfy (2) and (8). Let ¢ be a strongly sequential
estimator where ¢;(X;) can be written as ¢:(X;, ) with x = x,. Suppose that for
every € > 0 there exists a set S, C X such that

(9) Po(S) >1 — ¢ for every 6 ¢Q,
and for every 6 > 0
(10) lim.e P [SUpzes, [¢:(Xs, ) — ¢a,(2)] < 8] = 1

for every 8 £ Q”, where G, denotes the empirical distribution of the initial i-vector of
0. Then & has Property (A).

Proor. By Theorem 1 it suffices to show that for given ¢ > 0 and for every
1> I, 0)

(11) |[R(¢:, 0:) — R(¢g, , 0:)] < e.

Let 8 > 0 be such that (8) holds for ¢/3. Let ¢* = ¢/3C and let I (e, 8) be such
that for all 7 > I(e, 0)

(12) P o[8Upges,» [¢:(Xs, ) — da,(2)| < 8] > 1 — ¢/3C.

Denote the event in the square bracket of (12) by B;, and denote by B; its
complement. Let

W: = |L(¢:«(X:), 6;) — L(g;(X:), 6:)|.
Then 0 = W, = C, and it follows by (8) and the definitions that
[R(¢i,8:) — R(¢a, ,0:)| < Ey[Wi] = Ey[W:| X: & 8en, BiP»[X: € Ses, Bil
+ Ew[W:| Xig8e, Bi]P[X: 2 Se , B
+ Ew[W:| BiP@w[Bi < ¢/3 + Ce* + C(¢/3C) = ¢,

which establishes (11).

Corresponding to the above Theorem we have

THEOREM 3. Let L(A, 0) satisfy (2) and (8). Let ¢ be a strongly sequential esti-
mator where ¢;(X;) can be written as ¢;(X;—1, x) with x = x,. Suppose (9) holds
for Q, and suppose that as ¢ — o«

(13) SUDzes, [¢i(Xi1, 2) — ¢, (2)] =0 ae. Py

for every 0 £ Q°, where G, denotes the empirical distribution of the initial i-vector of
0. Then ¢ has Property (B) a.e. Py . (Here Py = Py(d)).
Proor. In view of Lemmas 1 and 3 it suffices to show that

(14) limn.,w n—l Z;;] [R(dn y 01' ' Xi—l) - R(d’G; y oz)] =0 a.e. P(w) .

(14) follows if we show that for every given ¢ > 0 there exists (e, 8) such that
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(15) Pwl|R(¢s, 0. | Xis1) — R(e, ,0:)] < € forall 7> I(e0)]>1— e

Let 8 > 0 be such that (8) holds for ¢/2 and let ¢* = ¢/2C. Let I(e, 8) be such
that

(16)  Py[SUpacs,s [9i(Xi1, ) — o, (x)] <86  forall > I(e0)]>1— e

Denote by B. the event in the square bracket of (16). We shall show that for
every X such that B. occurs, and 7 > I(e, 0)

(17) |R(¢:, 0] Xisy) — R(¢q, , 0:)] < €
with, conditional on B., probability one. Thus also the countable union over

7 > I(e, 0) of (17) holds with conditional probability one, and (15) follows from
(16). Let '

IVl = 'L(¢1(Xi~-l ) X)a Bi) - L<¢G1(X)7 01)]

where X is distributed according to P, and is independent of X, ;. Then
0 = W, = C and the left hand side of (17) does not exceed Fy,[W, | X,_{], i.e. the
random variable obtained from W; when integrating with respect to X dis-
tributed according to Py, . But if X,_; is the initial vector of X satisfying B. , and
1> I(e, 0) then by (16), (8) and (9)

Eo (Wi | Xia] = B [Wi| Xy, X € S]Pn[X € Ser | Xoi]
+ Eo,[W, | Xia, X e SalPy[X £ 8 | Xi] < ¢/2 + C* = e

Thus (17) follows, and the proof is complete.

We shall also have occasion to use a variant Theorem 3, which is proved
similarly.

CorOLLARY 1. Let L(A, 0) satisfy (2) and (8) and let ¢ be a strongly sequential
estimator, where ¢;(x;) can be writlen as ¢;(X;_1, x) with x depending on x, only.
Suppose

sup; |¢:(Xics, ) — ¥o, ()] > 0 ae. Py,

for every 0 ¢ Q) where ¢, is an estimator defined for each G, , and satisfying, for
every n and 0, & Q"
nt D R(Ye, , 0:) < RY(G).
Then
Pyllim supn.e (L($n, 6,) — R*(G,)) < 0] = 1.

5. Sequential compound estimators for some discrete distributions. In this
and the next section we apply the results obtained in the previous section. We
consider the conventional loss function L(A, ) = k(A — 6)*, k > 0, and for

convenience we let k£ = 1. For this loss function (2) and (8) hold provided only
Q = @ is bounded. Here

(18) do(x) = Ee(0]2),
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i.e., the conditional expectation of 6, under @, given X = z. Consider the family
of nonnegative, integer valued random variables with distributions

(19) PIX = z] = pe(x) = 6°h(0)g(x) for z=0,1,---,

where 6 ranges in some subinterval of (0, ). Special cases of (19) are the
Poisson, geometric and negative binomial distributions. Consider the function

(20)  f(v,w) = cv/w defined for 0 S v < o, 0<a=w< o,

where ¢ is some constant. Since it is uniformly continuous in its range of definition,
it, follows that if {»;’} and {w,"’}, 7 = 1, 2, are sequences of random variables,
which with probability one are in the range of definition of f, and if [0,") — v,”| —0

and |w;"” — w,%| — 0 with probability one or in probability, then

(21) (0, 0 = [0, w,*)] -0

with probability one or in probability, respectively.
Whenever necessary we shall curtail the range of 6 to be a closed interval
Q = {6: « = 60 = B}, and define infog po(x) = m(z). Assume m(z) > 0 for

x=20,1, ---. Let 0 £Q” be fixed, and forx = 0,1, ---, let Y;(z) be 1 or 0
according as X; = zor X; # x,5 = 1,2, ---. Let
(22) pa(z) = i Diam,(2),  pil(x) = 2 Vi)

and let p.(z) equal m(z) or p.*(z) according as p.*(z) is less than m(z), or is
greater or equal to m(x), respectively. It then follows by the strong law of large
numbers that for z = 0, 1, ---, |pi(x) — pe(z)] — 0a.e. P,y . Since
|po;_ () — pe;(x)| = 1/7 it follows that also |p.i(x) — pe,(z)] — 0 ae.
P and hence also

(23) Pllpia(z) — pe;(x)] =0 and |p;a(z 4+ 1) — pe(x 4 1) - 0] = 1.
For (19) (18) becomes ¢¢;(z) = [g(x)/g(z + D)llpe,(x + 1)/ps;(x)]. Let
¢:(Xi1, ) = [g(x)/g(x + Dllpia(z + 1)/pica(2)].

Then ¢¢,(z) = f(ps,(x + 1), pe;(2)) and ¢s(X,1, 2) = f(pia(z + 1), pia(x))
with f(», w) defined in (20) with ¢ = g(z)/g(x 4+ 1) and @ = m(z). Thus it
follows from (23) and (21) that for every z = 0,1, - - -

(24:) I¢,(Xl_1 y ’L‘) — (]501((13)] — 0 a.e. P(w) .

We want to apply Theorem 3. Notice that by the definition (19), h(6) is de-
creasing. Let e > 0 be given, and let N (¢) be an integer such that

2ine Bg(x) < e/h(a).
(Such an integer exists, since Zfzo B°g(x) = 1/h(B).) Then for every 6¢Q
Downio Po(2) < Dovnio Ma)Bg(z) < e
Let 8c = {0, 1, ---, N(e) — 1}. Then S, is a finite set satisfying (9), and from
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(24) it follows that (13) holds. Thus all assumptions of Theorem 3 hold and we
have proved

THEOREM 4. For estimating 6 € {0: o < 0 = B} for a family (19) with loss
function (A — 0)°, the strongly sequential rule ¢ with

(25) $i(x:) = [9(x:)/g(xs + D][pica(z: + 1)/pia(24)]

has Property (B) a.e. P, (and hence also has Property (A)).

REmARKS. (1) ¢:(x;) defined in (25) may take values outside @, and hence
may not be a permissible estimator for the problem considered. Since ¢4, always
takes values in @, and because of (24), we may, however, curtail ¢;(x;) of (25)
to make it belong to @ with probability one, and the theorem remains unchanged.

(2) It may seem more natural to define a rule corresponding to (25), but with
pi—1 replaced by p;, which is at hand at the 7th stage. It is easily seen that the
rule obtained in this way satisfies the conditions of Theorem 2, and thus has
Property (A). This rule is considered by Robbins in [8] for the empirical Bayes
problem for the geometric and Poisson distributions. The author believes that
this rule also has Property (B) but a proof is not quite straightforward.

In connection with the above, it is of interest to note that quite similarly to
the proof of Lemma 1 one may show that for the general decision problem and
every 0, ¢ Q"

n—l ?=1 R(¢Gi“1 ) 01) g R(Gn)'

(Compare (20) of [11]). Hence Theorem 4 may be somewhat surprising.
For the binomial distribution

P(X =z) = po(z) = (2)6°(1 — 60)",

z =0, -+, 7, norule has Property (B). Still, if » > 1 something can be achieved.
Let @ = {0:0 < a £ 0 < B < 1}. Let pe, .(2), pi.(z) and p;.(z) be defined
corresponding to (22). Then (18) implies

de;.(2) = [(x + 1)/(r + DIpe; ra1(x + 1)/pg; »(2)].

Consider X; as the number of successes in 7 independent Bernoulli trials,
with probability 8; of success, and assume that the number of successes in the
(r — 1) first trials, X;“ 7, is known. Denote its observed value by z," . Define
pr,—1(z) and p; ,_1(x) by means of X;" 7,5 = 1,2, ---, corresponding to (22):
Then

COROLLARY 2. For estimating 0 e {6: 0 < a < 0 < 8 < 1} for the family of
binomial distributions with parameter r and loss function (A — 0)°, the strongly
sequential rule o with

(26)  $u(x:) = [(&" + 1)/t (2.7 + 1)/piia(257)]

satisfies Poy[lim sup,.. [L(dn, 6,) — R,1(G,)] £ 0] = 1, where R,_, denotes
the Bayes envelope functional for the binomial distribution with parameter r — 1.
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Proor. This follows from Corollary 1 since
MaXz =0, -1 [ps(Xi1, ) — g, r1(z)| > 0 ace. Py,
where ¢,(X;_1, ) is defined corresponding to (26).

6. Sequential compound estimators for some continuous distributions. In this
section we assume that P, satisfies (9) and has density f;(z) with respect to
Lebesgue measure. Further assume that for every ¢ > 0, fy(z), 6 €, are uni-
formly equicontinuous in S, i.e. for every 5 > 0 there exists § > 0 such that
[fs(x) — fo(x + k)| < 7 for every 6 ¢Q, if x ¢ S and |h| < 5. Theorem 5, which
follows, is based on Lemma 4, which also is of some independent interest. They
are stated without proofs, as their proofs are quite similar to the proofs of
Theorem 1A and 3A of Parzen [6]. Related detailed proofs can be found in
[12], p. 49-53.

Lemma 4. Suppose fi(z),j = 1,2, - -, are uniformly bounded and uniformly
equicontinuous functions in the domain S. . Let Ja(2) = 0720 fi(z). Suppose

further that forj = 1,2, - -+ [Z4|fi(z)| dv < ¢ < . Let K(y) be a Borel function
satisfying

(27) SUP_cy<wo [K(y)| <

(28) JZ K@)l dy <

(29) limy..., [yK(y)| = 0.

Let h(n) be a sequence of positive constants such that

(30) limpa h(n) = 0.

Define

Ff (@) = [1/nh(m)] 25w [Zu K (y/h(n))fs(x — y) dy.
Then
Bty oo SUDges, ¥ () — fony (2) [Z0 K (y) dy| = 0.
Let 0 & 2% be given, and let fo (z) = n D11 fo ;(). In Theorem 5 we apply
Lemma 4 with f; = f;, . Let
(31) Jo(Xa s 2) = [1/nh(n)] 2 7= Kl(z — X;)/h(n)].
Then Ewyfo(X,, ) = fo*(z). We have
THEOREM 5. Suppose fy(x), 0 £ Q, are uniformly bounded and uniformly equi-
continuous functions in the domain S, and let (X, , x) be defined by (31) where
K(y) is an even function satusfying (27), (28), (29) and ffw K(y)dy = 1,
und has a Fourier transform [Z., ¢ ™“K(y) dy which is absolutely integrable. Let
h(n) satisfy (30) and lim,.. nh’(n) = . Then for every ¢ > 0
limy e Py [SUPzes, [fo(Xn , ) — fo,(2)] < ¢ = 1.

Examples of functions K(y) satisfying all the imposed conditions are given
in Table 1 (except the first line) of [6]. Lemma 4 and Theorem 5 are of particular
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interest when the functions are uniformly equicontinuous over the whole real
line.
Corresponding to (19) we shall consider densities of the form

(32) Jo(x)

It

6°h(6)g(x) fora <z < o
=0 otherwise,

where a is some constant (possibly — « ) and A and ¢ are continuous functions.
When curtailing the parameter space, (32) satisfy (9) and are uniformly equi-
continuous in S, for every € > 0. Though (32) seems a quite particular family of
densities, it is shown in Section 6 of [10] that many families of distributions,
including the exponential, normal and gamma families, can by simple transforma-
tions be given the form (32). Let L(A, §) = (A — 6)°. Then from (18)

be,(z) = l9(2)/9(z + Dllfe,(z + 1)/fs,(x)] forz>a

(and need not be defined for z < a). Suppose the distributions are such that (9)
holds, and

(33) SUpaes, [g(x)/g(x +1)] = D. < o
and
(34) inf,.s, info fo(z) > 0.

Suppose Q@ = @ is compact and for x > a let
(35) on(Xn, @) = [g9(2)/9(xz + DIlfa(Xn, z + 1)/fu(Xn, 2)]

if the right hand side of (35) is in @, and let ¢,(X,, ) equal the nearest value
in @, otherwise. Then by Theorem 5 and arguments similar to those of Section
5 it follows that (10) holds for every 6 > 0.

From Theorem 2 we therefore have

THEOREM 6. For estimating 6 ¢ {6: « < 60 = B} for a family with density (32),
satisfying (9), (33) and (34) with loss function (A — 6)°, the strongly sequential
rule & with

¢n(%n) = [g(20)/9(xn + DIfa(Xn, 0 + 1)/fa(Xn , 2a)]

when the right hand side 1s between a and 3, and ¢,(X,) s equal o« or B according as
the right hand side 1s closer to a or B, otherwise, has Property (A).

Notice that application of the theory usually requires curtailing the natural
parameter space of the family P, of distributions, to obtain @ compact, with
uniformly equicontinuous fs(z). A more detailed application for the case where
Pyis N (8, o) is given in [12].
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