PAIRWISE STATISTICAL INDEPENDENCE

By H. O. LANCASTER
Unaiversity of Sydney

1. Introduction. It has long been known that pairwise stochastic independence
is not sufficient for stochastic independence of sets of more than two random
variables. In Section 2, the well known example from Bernstein’s text-book is
generalized by giving a solution, for every n greater than three, to the problem
of how to define a measure on n points in such a way as to yield a set of (n — 1)
pairwise stochastically independent, random variables. The examples yield,
furthermore, because of the symmetries of the measure, readily computable
generalized coefficients of correlation in the sense of Lancaster (1960). The
problem, specialized by prescribing equal measures to the n points, has a solution
only for those values of n for which a Hadamard matrix of elements 4-1 exists.

As a further generalization of the results of Section 2, it is shown that on any
atom-free measure space, a constant function and a set of pairwise independent
random variables can be found, which together form a complete orthonormal set
of functions on the measure space, and the members of which are products of a
set of completely independent random variables taken 1, 2, - - - at a time.

2. Pairwise independence on n points. Not more than log: n mutually inde-
pendent random variables can be defined on n points, for the condition for com-
plete independence of k¥ random variables requires the product measure to be
non-zero at not less than 2* points; this is evident from equation (3) of page 10
of Kolmogorov (1933) and occurs in the statement of Theorem 1 of Bell (1961).
It is now shown that on any space of more than three points, a probability
measure can be defined in such a way that there is a set of (n — 1) pairwise
independent random variables.

TrarEOREM 2.1. For any probability measure on a space of n distinct points, a set
of at most (n — 1) pairwise independent random variables can be defined. A maximal
set can be obtained only if each random variable takes precisely two distinct values
with positive measure. A mazximal set can be obtained for each value of n > 3. If the
measure, n_", is assigned to each point of the space the solution is equivalent to
determining a Hadamard matriz of size n.

Proor. Since the space contains only a finite number of points, it can be
assumed that each of the random variables X; possesses finite moments of all
orders and hence that each X, is standardized to have zero mean and unit
variance. The values of the jth variable can be written as the elements of a
column vector x; so that on the 7th point of the space X; takes the value z;; .
It is convenient to write the constant vector as x, with each element z,, = 1.
The number of pairwise independent random variables is not greater than
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(n — 1); for the random variables and the constant function are mutually
orthogonal with respect to the measure, {pJ} say, (since if k& = &/,

(2.1) Z:Ll Zi Tiw ps = E (XoXv) = EXiy EXy = 0,

by the pairwise independence conditions) and there cannot be a set of more than
n mutually orthogonal functions on a measure space of n points. The problem is
now to determine the conditions under which a maximal set of (n — 1) pairwise
independent random variables is possible. Such a maximal set of (n — 1) random
variables cannot include any member which can assume more than two distinct
values, for in this case it would be possible to define a second non-constant
function, £ say, on the range of the random variable, taken without loss of
generality to be X, . For example, X, itself is the first orthogonal polynomial and
£ could be taken to be the second orthogonal polynomial. Now ¢ is orthogonal
to X; and to the constant function by definition. £ is also orthogonal to
X,, X;, -+, X, by the independence condition. This would then constitute a
contradiction since a function orthogonal to » mutually orthogonal functions on
a space of n points is zero.

From the mutual orthogonality of the variables on the measure space, it
follows that the matrix PX is orthogonal, where P is the diagonal matrix with
diagonal elements, pi}. Consequently

(2.2) (h 42k - + 2.0+ 1)p: = 1, for each <.

Multiplication by z; on both sides and summation with respect to the index ¢
yields ]

(2.3) EXy + 237 EXiXi' + EXy = sA + (n — s)q,

where X, takes the value A, s times and the value a, (n — s) times. But only
the first of the expressions on the left is possibly non-zero. The second and third

expressions vanish because they contain terms of the form EX,EX,’ and EX;,
respectively. Therefore

(2.4) us® = s4 + (n — s)a, where us® = EX;.

Let P{X, = A} be p and P{X; = a} be q; p + ¢ = 1. Then a simple calculation
gives

(2.5) 4 =(g/p), a=-1/4; w”=(qa-p)/(pa)},
and so from (2.4) and (2.5),
(2.6) p=(s—1)/(n—2).

For n > 3, there always exists a solution in which the required measure and
random variables are given, forl <7 <nand1 =j=<n — 1, by

pi=n—=3)(n—2)" (G=n—-1), p.=(n-2)"
(27) zi;=m -3} if =5 or i=n,
z;=—(m—38)"1 if i=; and i=n,

Tin = 1.
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The final statement of the theorem follows after substituting p; = n™": Summing
as before, one obtains ws® = 0 since the right hand side of (2.3) is now nEX; and
hence equal to zero. But since X takes only two distinct values, (2.5) ensures
that p = % and X, takes values, =1.- A comparison of this proposition with the
orthogonality of PX shows that X is a matrix with elements, £-1. X is thus of the
required Hadamard form.

COROLLARY. An orthogonal matriz, PX, with rational elements can be determined
if (n — 3) is a perfect square.

ExaMpLES.
(i) n = 4 is the example of Bernstein (1945).
(i)

4 -1 -1 -1 -1 -1
-1 4 -1 -1 -1 -1
-1 -1 4 -1 -1 -1
5PX =| -1 -1 -1 4 -1 -1
-1 -1 -1 -1 4 -1
-1 -1 -1 -1 -1 4

2 2 2 2 2 2 1

, when n = 7.

NN NNN

(iii) Generalized coefficients of correlation have been defined in Lancaster
(1960) as the expectations of the product of functions, orthonormal on the
marginal distributions. In the multivariate distribution of X;, X,, -+, X1,
constructed in Theorem 2, these coefficients are relatively easy to compute
because of the symmetry. The only possible coefficients are of the form,

pr = E(X,X3) =0
(2.8) s = BE(X1X.X;) = (n — 3)%
oz = BE(X:XoX:X4) = (0 — 5)/(n —3), .

These coefficients may be thought of as being of the first, second, third order.
The coefficient of the (n — 2)th order is given by

(2.9) pitn = {(n — 3P £ (=1)"(n — 1)(n — 3) " V}(n — 2)7".

When n = 4, this coefficient is unity and when n = 7, it is 2.5, an example of
the generalized coefficients exceeding unity.

(iv) Let Xy, X2, -+ - , Xa, bea set of n random variables, each rectangularly
distributed in the unit interval, whose joint density function is given by

(210) 1 + zi,jai,- Sln 27rxi Sln 27ra:j “[“ Zi,j,kai,-k Sln 27I'x,‘ Sln 27!'1?,' Sll’l 27rxk- Ty

for 0 < z; < 1 and 2 |a| < 1 where all summations are over distinct indices.
By appropriate choice of the a:;, @ij , @i, -+ any required combination of
interactions in the sense of Lancaster (1960) can be obtained. For example,
a;; = 0, yields pairwise independent random variables.

(v) Let the rows, columns and letters of the latin alphabet of a latin square
be numbered 0, 1, 2, ---, (n — 1). If the (2 + 1)th letter occurs at the inter-
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section of the (z 4+ 1)th row and (y + 1)th column, we say that {z, y, 2} occurs
in the description of the latin square. The latin square can be described by 7’
such triplets. A three dimensional distribution in variables, X, Y and Z, can
now be defined by setting P{X = z, Y = y, Z = 2} equal to n™7, if the {z, y, 2}
occurs in the description of the latin square and equal to zero otherwise. Since
each pair {z, y} occurs precisely once with non-zero probability it is easily verified
that the variables are independent in pairs. Obviously, they are not independent
in a set of three, for the values of Z are completely determined by the values
taken by X and Y; alternatively, with independence and the same marginal
distributions, P({X = z, Y = y, Z = 2}) = n™" for all permissible values of
z, y and z. This example can be generalized further by considering product
measures of the same form as that given for {X, Y, Z}. In other words, the
vector sets {X,, Y;, Z;} are to be mutually independent. Linear forms, Uy, V,
and W, in {X}, {Y} and {Z}},

(2.11) r=n X1+ 01Xy + - + 07X,

and similarly V; and W, are then defined and it is easily shown that Uy, V;
and W, are pairwise independent but not independent as a triple. If £ — o,
then Uy —, U, Vi —1 V and W, —; W, where U, V and W are rectangular
variables, which are pairwise independent but not independent as a triple.

3. Products of random variables as complete sets. Walsh (1923) defined a set
of orthonormal functions on the unit interval, which have been applied by
Kaczmarz (1929) and others to number theory and probability. The Walsh
functions can be exhibited as products of Rademacher functions as follows. Let
any integer 7 be expanded in the binary system by means of the equation

(3.1) 2% =21 42 4 L2 < < g,

Then the Walsh function of order 7 may be written as a product of the Rade-
macher functions of orders 7, %2, - - - , %, . The Rademacher functions are defined
on the unit interval as

(3.2) r(t) = 41, if the kth digit of the binary expansion of ¢ is zero,

and
= —1, if the kth digit is unity.

Otherwise, 7x(t) can be defined as sign (Sin 2*rt). Kac (1959) and Alexits
(1961) may be consulted for the many interesting properties of the Rademacher
and Walsh functions. The following theorem characterizes the two sets of func-
tions by pairwise independence of random variables on a non-atomic probability
measure space.

TaEOREM 3.2. If a set of pairwise stochastically independent random variables,
{X.}, together with the constant function, forms a complete orthonormal set on a
measurable space, Q, on which s defined a non-atomic probability measure, then
each X; takes only two distinct values with non-zero probability. If further the set
{X .} can be represented, perhaps after renumbering, in the form



PAIRWISE STATISTICAL INDEPENDENCE 1317

(3.3) X; = Y.Y,---Y,,, where 20 = 2% + 2% + ... 4 2%,

with s < @ < - < 4, , and where { Y} is a set of mutually independent random
variables, then the X ; are the Walsh functions and the Y ; are the Rademacher func-
tions, defined on the same measure space, on which

(3.4) Y = 21— Y)/2*

is a random variable rectangularly distributed on the unit interval.

Proor. As in the proof of Theorem 2.1, each X; can take no more than, and
hence precisely, two distinct values with positive probability. For otherwise, if
X, , say, took more than two values we could define £, a function of X; orthogonal
to X, the constant function and every other member of a complete set of
orthonormal functions, which would be a contradiction. X; furthermore would
be degenerate if it did not take two distinct values. Each X; can be therefore
considered to be in standardized form with zero mean and unit variance. Each
Y, also is an X . Now it is given that some X is of the form Y1Y:, where Y,
and Y, are independent random variables. Suppose that Y takes its two values
on complementary sets, 4 and A’, and that Y, takes its two values on comple-
mentary sets, B and B'. Then X; assumes a constant value on each of the four
sets, AB, AB’, A'B and A’B’ but only two of these values are distinct. So that
X, is constant on AB u A’B’ and on AB" u A’B. This is only possible if the
two values of ¥; and Y, are 4-1. The reasoning is general and so every Y ; takes
only two distinct values, namely 1. Since each X; has been standardized, so
is each Y; and so Y; takes each of its two values with probability, 3. It then
follows from the mutual independence of any finite subset of & variables of { Y},
that the values =+1, assigned to each, partition the space into 2° sets, each
corresponding to a probability measure, 27*. The proof is complete.

A similar theorem can be proved for measures positive at each of n points,
where 7 is a power of 2, but is of little interest. The procedure used in the theorem
is only possible if the measure is non-atomic, since it would not have been
possible to find k independent random variables if the measure of the largest
atom was greater than 27,
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