OPTIMUM DESIGNS FOR POLYNOMIAL EXTRAPOLATION!

By Paur G. HoErL
University of California, Los Angeles

1. Summary. A solution is given to the problem of where to choose £ + 1
points and what weights to assign them in order to obtain the minimum vari-
ance of what may be called an interior extrapolated value of a polynomial of
degree k. It is assumed that observations can be taken in the interval [—1, 1],
except for a subinterval (a, 8) located in its interior and within which the extrap-
olation occurs. This one dimensional solution is then used to solve the corre-
sponding two dimensional problem, for a certain class of polynomials, in which
it is desired to extrapolate inside a rectangular region that lies inside a larger
rectangular region and within which observations can be taken, exclusive of
the interior region. In addition, the two dimensional exterior extrapolation
problem is solved for the same class of polynomials as those used for interior
extrapolation. '

2. Introduction. The problem of optimum spacing and weighting for poly-
nomial prediction has been solved for the case of uncorrelated observational
values when the prediction consists of minimax interpolation [3], [6], and when it
consists of extrapolation beyond the interval of observations [4]. The present
paper extends those results by determining the optimum spacing and weighting
for predicting a polynomial value inside an interval (a, 8), where —1 < a <
B < 1, when observations are restricted to be taken inside [—1, 1], but outside
(a, B). This type of extrapolation will be called interior extrapolation to dis-
tinguish it from tke more common external extrapolation.

The notation employed in [4] will be used here also. Thus, z will denote any
fixed point inside the interval («, 8) where it is desired to estimate the poly-
nomial regression value.

Ely(z)] = Bo+ Bz + -+ + kak.

The total number of observations to be taken, which is denoted by nand as-
sumed fixed in advance, is to be distributed among k + 1 distinet points inside
the two subintervals [—1, «] and [8, 1]. The problem is to determine how to
choose those points and how to find the best set of proportions of observations to
assign the points. The best proportions ordinarily will not yield integer values for
the number of observations to be taken at the various points; therefore the re-
sulting design may be optimum only in an approximate sense. In this paper an
optimum design will be understood to be a choice of k£ -+ 1 observation points
29,%1, -+, 4, and weights wo , wy , - - -, wy satisfying Z w; = n which minimizes
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the variance of 9(z), where §(z) denotes the estimated value of E[y(z)] based
on the traditional best unbiased linear estimates of the f’s.

Since the fitted polynomial is a weighted least squares polynomial of degree k
and there are but k¥ + 1 observation points, it will pass through the points
(zi,¥s),7= 0,1, ---, k, where y; denotes the observed value of y at x = z; with
weight w; . The equation of this polynomial can be written in the form

g(z) = 2o Lu()y:

where L;(z) denotes the sth Lagrange interpolation polynomial of degree k, and
which possesses the property that L;(z,) = 8;; . In the usual applications, y; will
be the mean of several observational values at the point = z; and the weight
w; will be given by w; = np,, where p; is the proportion of observations to be
taken at z = z; . The least squares polynomial must, of course, pass through such
mean points.

Under the assumption of uncorrelated observational values, the variance of
#(z) may be written in the form

Vo)) = (o°/n) 250 [Li(2)/pil.

This assumes that the variance of the variable y; is of the form ¢”/w; , which can
be written as ¢’/np; whether or not np; is an integer. Now it is readily shown by
using Lagrange multiplier techniques that the minimization of V[§(x)] requires
p: to be chosen proportional to |L;(z)|. In studying the problem of how to space
the points it therefore suffices to consider the expression

VIg(z)] = (¢"/n){ 2o [Li(2) [}
This in turn shows that it suffices to choose the points to minimize
G(z) = i |Li(2)]-

3. Optimum spacing. This section is concerned with characterizing those z’s
that minimize G(z). First, consider the restricted problem of choosing a set of
2’s that will satisfy the inequalities

(1) =g << < <tm=a<f=Cp << <=1

and that will minimize G (). Here r is any fixed integer satisfyingl = r < k — 3.
For ease of discussion it will be assumed that & is an odd integer and sufficiently
large to permit the existence of such an r; however the same method of proof will
apply when k is even. It will be shown later that an otimum design for this re-
stricted set of 2’s is also optimum for a certain larger class of problems when the
equality signs are permitted to become inequality signs also. The optimum spac-
ing will be obtained by means of a lemma and two theorems.
- Lemma. G(z) > 1fora <z <B.

ProoF. Since Yo Li(z) is a polynomial of degree k, it follows from the
property Li(z;) = 8; that this polynomial must assume the value 1 at the &k + 1
points zo, 21, - - - , @ ; consequently 3" Li(x) = 1. If a set of real numbers has
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the sum 1, then the sum of the absolute values of those numbers must exceed 1
unless all the numbers are nonnegative. In order to prove that G(z) > 1 it there-
fore suffices to show that at least two of the L;(x) possess opposite signs. Con-
sider

(x — x0) -+ (& — &) (@ — Zp11) -+ (T — @)
(% — mo) + - (@ — Tr1) (@ — Tpyr) -+ (T — k)

If L.(x) is compared with L,.1(x) it will be observed that the two numerators
will possess the same sign for 2,13 < £ < %42 but that the denominators are of
opposite signs because L.(z) will contain one more negative factor, namely
(z, — Zr41), than L.1(z). Since the assumptions concerning r assure that both
these terms occur in G(z), this proves the lemma.

For e < x < B1it is seen that G(z) can be written in the form

G(z) = T (=)™ Lie) + D (—1)7Lu(2).

This is a polynomial of degree %k, which by the preceding lemma exceeds 1
throughout a < z < 8, and which assumes alternating values of =1 at the points
Zo, &1, -, Trpa and at the points z,,s, - - - , 7 , with the value of 1 at x,,, and
Z,+2 . The problem of determining what set of «’s will minimize the variance of
9(z) is now reduced to the problem of determining what set of 2’s will minimize
this polynomial at the point « inside the interval («, 8). The solution to the latter
problem is given by the following theorem which assumes the existence and
uniqueness of a polynomial possessing the properties attributed to it. A proof of
the existence and uniqueness of such a polynomial will be given in a later section.

TrEOREM 1. G(z) will be minimized for a set of x’s satisfying (1) if they are
chosen to satisfy the equations

(2) @ (z5) = 0, i=1,-,r,r+3 -, k—1.

Proor. Consider the graphs of two polynomials, Gi(z) and Gs(z), possessing
the properties of G(x) but with Gi(z) also satisfying Equations (2). In the ac-
companying sketch the graph of Gi(z) is drawn with a solid line, whereas a
broken line is used for Gy(x). Here r is chosen to be an odd integer, namely 3, and
k is chosen to be 7.

Any polynomial such as Gz(z) that is required to pass through the r 4+ 2 points
(=1,1), (2, —-1), (w2, 1), -+, (2, —1), (@, 1), where the 2’s are any num-
bers satisfying —1 < 2; < -+ < 2, < a, will intersect G1(z) at least r — 1 times
inside the interval (—1, ), if tangency is counted as two intersections. There
will, however, be at least r such intersections if the graph of G»(x) lies above the
graph of Gi(z) immediately to the left of # = «. Similarly, Gz(x) will intersect
Gi(z) at least k — r — 4 times, or at least k¥ — r — 3 times, inside the interval
(8, 1), depending upon whether the graph of G»(z) lies below, or above, the graph
of G1(z) immediately to the right of z = 3.

If Go(z) > Gi(x) both immediately to the left of # = « and to the right of
x = B, a contradiction will be obtained, because Gz(z) and G1(z) have four fixed
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—

points in common and the minimum additional intersections occurring in (—1, &)
and (8, 1) will produce a total of k + 1 points in common, counting multiplicities,
thereby making G(z) identical to Gy(x).

If Go(z) > Gy(z) in only one of the two preceding neighborhoods, say the one
to the left of = «, then G(x) must intersect G1(x) inside the interval (e, 8), or
be tangent to G1(x) at x = B. The total number of intersections, counting multi-
plicities, will then also be at least k + 1.

Finally, if G2(z) < Gi(z) in both neighborhoods, as is the situation shown in
the sketch, it is necessary that Go(z) > Gi(z) for all z inside (a, B), unless ad-
ditional intersections occur inside (a, 8) or tangency occurs at either x = « or
z = B. If tangency does not occur and there are additional intersections, there
must be at least two intersections inside («, 8). If tangency occurs at one point,
there must be at least one intersection inside («, 8). Tangency at both points
counts as two additional intersections. In every case, therefore, at least two ad-
ditional intersections, counting multiplicities, will be obtained to yield a total
of at least k + 1 intersections and therefore making Ga(z) = Gi(z). Thus, it
must be true that Go(z) > Gy(z) inside (e, 8) and hence that G(x) is minimized
by those ’s that satisfy Equations (2). Although the proof was given for k and »
both assumed to be odd integers, the same method of proof applies in general.

TuroreM 2. There exists a unique polynomial of the type G(x) that satisfies
Equations (2).
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Proor. Assuming the existence of such a polynomial, consider its uniqueness.
Suppose there were two such polynomials. Then the polynomial which has the
lower graph inside (e, 8) will necessarily intersect the other one in k¥ + 1 points
for the same reasons that Gz(z) intersected Gi(z) in k + 1 points when it was
assumed that Go(z) < Gi(z) inside (e, 8). It obviously cannot intersect the other
polynomial inside (e, 8) without being identical to it.

The proof of the existence of the desired polynomial can be patterned after the
proof [2] of the existence of a closely related polynomial. For this purpose, let
P(z) be a polynomial of degree k whose graph passes through the points (—1, 1),
(a, 1), (8, 1) and for which P’(x) possesses r real zeros, counting multiplicities,
in the interval (—1, «) and k — r — 3 real zeros in the interval (8, 1). As before,
it is assumed that & and r are odd integers. Such polynomials obviously exist. Let
&, , & denote the zeros in (—1, &) and &43, - -+, &1 those in (8, 1). Also
let & = —1, &1 = @, 40 = B, & = 1. It is assumed that the £’s are ordered so
that & = & £ -+ £ & . Next, define

(3) oi = (=1)'[P(&) — P(&i1)), i=1 -7
(=D)™MP(&) — P(tia)l, =143,k

Since the graph of P(x) must pass through the point (—1, 1), P(z) may be
written in the form

(4) P(z) = A [Zi(a+bx+2")m (& —x)de + 1

where the product = extendsoverj =1, ---,r,r+ 3, -+, k — 1, where 4 isan
arbitrary constant and where the constants @ and b are determined by the re-
quirement that P(a) = P(B) = 1.

If ¢; = 2 for all ¢ the polynomial P(z) will possess the properties of the
minimizing polynomial of Theorem 1. Therefore to prove the existence of such a
polynomial, it will suffice to show that to every set of ¢; > 0 values there exists a
set of valuesof &, - -+, &, &Eq3, - -+, &_1, and A that will satisfy (3). The Rela-
tions (3) may be treated as the equations of a transformation from the s and A
to the ¢’s; therefore the problem is to show that the transformation possesses the
property that to every point of E*~* for which the ¢’s > 0, there corresponds a
point of B *forwhich —1 S &4 S - S S a<fStu S - S &ha S
and —o < 4 < .

Since a and b are functions of the &’s and A, it follows from (4) that for any
interior point of the domain of the &’s and A

aP(£) /05 = A [Bin(y — o)(p@)/(& — ) + a + balde
where a, = 9a/d¢;, b, = 9b/dt;, and p(z) = a + bz + 2°. Similarly,
IP(£)/94 = A [Hin(s — @)[(p(2)/4) + a0 + bez] do

where ao and b, denote derivatives with respect to A. From (3), it then follows
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that
(5) dpi/ot; = (—1)'A [E_, x(& — 2)[(p(x)/(4 — 2)) + a; + bjz] da.

A similar formula holds for the derivative with respect to A.

Now it is readily shown by means of (4) and a and b are continuous functions
of the £s and A, and therefore that the ¢’s as given by (3) are continuous func-
tions of those variables. Furthermore, it is also easily seen that the partial deriva-
tives given by (5) are continuous functions of those same variables. Thus, the
transformation (3) is of class €. Next, it will be shown that the Jacobian of this
transformation does not vanish at any interior point of the domain.

Suppose the Jacobian d(e)/0(¢, A) did vanish. Then there would exist a set
of constants ¢;, not all zero, such that the relation

(6) 2o irrirrea ¢i(30i/08;) + cu(Bpi/0A) = 0
would hold independent of 7. Consider the function
F(z) = (=1)'An(t — 2){ 25 6l(p(@)/(& — z)) + a5 + byl
' + al(p(z)/A) + a0 + be]}.
From (6) and (5), it follows that

(7 ¥ F(x)de=0 i=1,---,7,7+3, -,k
Since & = —1, this yields '
(8) IE‘IF(x)dIE:O 7 = 1’-..’7-_

But from the relation P(a) = 1, it follows that
[2 (a + bz + 2")w(¢; — z) dx = 0.
Differentiation with respect to £; gives
Jar(E — 2)(p(2)/ (& — 2)) + a; + bzl dz = 0.
A corresponding result holds with « replaced by 8. As a consequence,
% F(z)dz = [% F(z) dx = 0.
These results when combined with (7) then show that (8) also holds for 7 =
r+4+3, -,k

Next, let -
G(z) = [2, F(¢) dt.

The general result (8) shows that G(z) = 0forz = —1, &, -+, &, a, B,
£r3, +*+ , & . But since G(x) is a polynomial of degree k and vanishes at & + 1
points, it must be identically zero; consequently F(x) = 0. From the definition
of F(z), this implies that

2icl(p@)/(5 — x)) + a; + bl + al(p(z)/A) + ao + ber] = 0.
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But it can be shown that the functions in brackets are not linearly dependent;
therefore the assumption made in (6) that there exists a set of constants, not
all zero, satisfying (6) is false. This implies that the Jacobian does not vanish at
any interior point.

One can now appeal to a theorem of analysis [1] which states that a transforma-
tion of class C’ possessing a non-vanishing Jacobian maps open sets into open
sets to show that there cannot exist points of the space E*~* determined by the
conditionsp; > 0,2 =1, --- ,r,r 4 3, - - - , k for which there are no correspond-
ing points in the domain of the &£’s and A. This can be done by assuming that the
contrary is true and then considering the non-empty boundary between the
points of E*~* for which the ¢; > 0 and the points of E** obtained under the
transformation. Then by choosing a sequence of points in the transformed space
that converges to a boundary point one can show that there exists a correspond-
ing sequence in the original space possessing an interior limit point, because of
the properties of the transformation, in that space which maps into the chosen
boundary point. But since open sets map into open sets, this yields a contradic-
tion.

Although the author of [2], did not explain his 'reasoning in arriving at his
conclusion from the properties of his transformation, whatever it was it applies
equally well to the present problem. Just as for his problem, interior points
map into interior points and boundary points into boundary points, and the
same properties of his transformations hold.

Thus, by choosing the ¢’s to be equal to 2, this proves that there must exist
a polynomial of the type desired, namely one that passes through the four points
(—=1,1), (e, 1), (8, 1), (1, 1) and which possesses r extrema of alternating values
+1 in the interval (—1, @) and k¥ — r — 3 extrema of alternating values =+1
in the interval (B, 1), with the last extremum in the first interval and the first
extremum in the second interval possessing the value —1.

It remains to be shown that the optimum design obtained under the restric-
tion that the z values —1, @, 8, and 1 are always chosen as observation points
is also optimum without this restriction for a useful class of problems.

Consider a class of problems for which it is known that at least two points
must be chosen in each of the two intervals [—1, o] and [, 1]. For such problems
the preceding restricted design with the four fixed points is optimum in general.
This fact is verified by the same type of arguments as those used to prove
Theorems 1 and 2. Thus, suppose a set of values a2y, -- -, x; has been selected
and that, say, « was not selected for the value of x,,;, in which case z.; < a.
Now the arguments of Theorem 1 will show that whatever the choice of x
values, they must satisfy Conditions (2) if they are to yield an optimum design.
Let Gi(z) denote the G(x) that satisfies Conditions (2) for the selected values
of Ty, Trt1, Tri2, and xx , and construct Gz(x), also satisfying (2), based on the
same values of g, Z,42, and z; but passing through the point (e, 1) instead of
through (2,41, 1). It is now easily verified by the usual argument that Gs(x)
< Gy(z) inside (e, B8), otherwise G(z) = G1(z). The same reasoning requires
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the selection of z..» = B, and the same type of reasoning will show that it is
necessary to choose o = —1 and =, = 1.

If only one point is to be chosen in one of the two subintervals, say in [, 1],
then it must be chosen at £ = @, otherwise a G(z) with z,43 = 8 can be con-
structed that will be superior to one based on a different point in [3, 1].

4. Choice of r. In the preceding section it was assumed that » could be speci-
fied in advance. Now consider the problem of how r should be chosen.

The choice of r will obviously depend upon the value of & and upon the loca-
tion of the subinterval (e, 8) inside (—1, 1). If, for example, « is fixed and B
is allowed to approach 1, it is easily shown that the variance will become in-
finite if two or more points are chosen in the interval 3, 1]. Thus, as 8 approaches
1, there can be but one point chosen in that interval, and therefore from the
results at the end of the preceding section it must be chosen at z = .

If the subinterval (o, 8) is not located symmetrically inside (—1, 1), that is if
a # —p, and if neither end point is close to the boundary of (—1, 1), the num-
ber of points to be chosen in each subinterval will depend upon the location of
(e, B). The larger of the two subintervals would be expected to contain the larger
number of points if an unequal choice is made; however the decision as to whether
an equal or unequal choice should be made (when % is odd) will again depend
upon the size and location of (a, 8).

If the subinterval (a, 8) is located symmetrically and if k is odd, there will
be an equal number of points in the two subintervals [—1, «] and [8, 1], which will
be symmetrically located. The polynomial G(x) then degenerates into a poly-
nomial of degree k — 1. If k is even there will necessarily be an unequal number
of points in the two subintervals and the optimum. allocation will then depend
upon where x was chosen in the interval (a, 8).

6. Illustration. Consider the following numerical example of the preceding
theory. Let « = 0, 8 = 3, and z = %, and assume that k¥ = 5. First, choose one
point in each of the subintervals (—1, 0) and (3, 1). The values that minimized
G(%) were found to be 2; = —.44 and z, = .82. Next, consider the possibility
of choosing only one point in [, 1], which must then be at %, and three points in
(=1, 0). The three points that minimized G'(z) were found to be z; = —.88,
2, = —.56, and r; = —.19. The values of G(}) for the two cases being considered
were 1.9 and 8, respectively; therefore the first choice is better, which of course
was to be expected. Choosing three points in the right interval will also ob-
viously lead to a larger value of G(%); therefore the first case considered and its
solution is the optimum design for this problem.

The iterative method proposed in [5] for a closely related problem was used
here to arrive at these numerical answers. It consists of first choosing the re-
quired number of points of the form (z;, =1), in which the y values alternate
in sign in the two subintervals (—1, &) and (8, 1), and then forming the poly-
nomial of degree k that passes through those points and through the four fixed
points. A uniform spacing of the initial z; values in the two subintervals will
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usually lead to rapid covergence of the iterative process. Next, the zeros of the
derivative of this polynomial inside the two subintervals, except possibly for
one near —1 or 1 if a total of Kk — 2 zeros is obtained inside these subintervals,
are chosen to yield a new set of points (z;’, =1); and the process is repeated until
sufficient accuracy is attained.

6. Two dimensional interior extrapolation. The preceding theory will now be
used to obtain optimum designs for the corresponding two-dimensional problem
but restricted to polynomials in two variables of the type given by the formula

(9) El2(z, y)] = 2 em0 250 Capt"Y.

Assume that observations can be taken inside the rectangle {0 < z < X,
0 < y = Y}, exclusive of therectangle {a < £ < b,¢ < y < d} which lies inside
it. Let (z:,9),2=1,---,l4+1,75=1,--- ,m + 1denote (I + 1)(m + 1)
points that have been selected in the permissible domain and let wy; = np;
denote the corresponding weight assigned to (z;, y;). Since the regression
polynomial (9) contains (I + 1)(m + 1) unknown coefficients and that same
number of points has been selected, the least squares estimated polynomial
may be written in the form

2z, y) = D1 2 L) Li(y)zs -

Here z;; denotes the observed value of z at the point (., y;) with weight w;, .
The variance of this estimate for a point (x, ) chosen inside the interior rec-
tangle. is therefore given by

(10) Vig(z, v)] = (o"/n) 235 275 Li(@) L, (y)/pis
where it is assumed that the z; are uncorrelated and that z;; possesses the
variance o¢’/wi; = o’ /npi; . If n;; observations are taken at (z;, y;) and all

observations possess the same variance ¢°, then z,; denotes the mean of those
observations and np;; is an integer. As in the case of the one-dimensional theory,
the optimizing weights may not turn out to be integers; therefore only approxi-
mate optimality may be attained here.

Since the choice of p;; in (10) is independent of the dimensionality of the
problem, it follows from the one-dimensional result that the minimization of
V{2(z, y)] requires that

(11) Py = [Li(2)Li(y)l/ 22 20 L) Li(y)]-
As a result, (10) reduces to
(12) Viz(z, v)] = (¢*/n)[220 22 |L(=)Li(y)II°

(&*/)[ 22 ILo() |12 |Li(y)|TF-

From the one-dimensional result it now follows that V[Z(z, y)] will be mini-
mized if, and only if, the z; and the y; are selected to satisfy Theorem 1. The
determination of the number of points to be chosen in each of the z and ¥ sub-
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intervals depends upon the location and size of the extrapolation subregion just
as in the one-dimensional problem.

It should be noted that the polynomial (9) is not the traditional polynomia.
of total degree I + m because not all possible terms of this degree are present

7. Two-dimensional exterior extrapolation. The technique employed in the
preceding section will also yield a solution to the problem of optimum two-
dimensional exterior extrapolation for polynomials of the type given by ).

Assume that observations can be taken inside the rectangle {a = z = b,
¢ £ y < d} and that (I + 1)(m + 1) points are to be selected in that domain.
The problem of optimum spacing and weighting is, as before, reduced to the
problem of choosing a set of 2’s and a set of y’s to minimize (12) and choosing
weights to satisfy (11). These choices will depend upon the location of the ex-
terior extrapolation point, which will be denoted by (2o, Yo)- _

If neither of the inequalities a < < b, ¢ < y < d is satisfied by 2o, %,
the z; and the y; should be selected as the Chebychev points for each variable
as given in [4] because the problem is reduced to two one-dimensional exterior
extrapolation problems. :

If one of the inequalities a < z < b, ¢ <y < d is satisfied by z, Yo, say
¢ < yo < d, thex; should be selected as the Chebychev points but the y; should
all be selected at y, . This last fact can be demonstrated as follows.

It follows from (12) that the y; must be chosen to minimize > |Li(yo) |-
But if yo is any value other thany,,j = 1, - -, m + 1 inside the interval (c, d)
it follows from the lemma of Section 3 that Y |L;(yo)| > 1, whereas > Li(y)|
= 1fori =1, ---,m + 1. Hence, at least one of the y, values must be chosen
as o . It remains to be shown that all the y; values must be chosen in this manner.
Suppose they were not. Then V[£(xo, %)] as given by (10) would reduce to

(13) Va(zo, 4o)] = (°/n) 211 [Li(20)/pal
where pi is the value of p;; assigned to the point (z:, %), because Li(y:) = 8.
Whatever the relative values of the pi, ¢ = 1, --+, I + 1, may be, it is clear

that (13) will be minimized only if these values are made as large as possible.
Hence, a minimum will be attained if, and only if, > ipio = 1. But this requires
that p;; = 0 for j > 0, which implies that all points must have the y coordinate
Yo -

The preceding methods can obviously be extended to solve the problems of
optimum interior and exterior extrapolation for generalized polynomials of the
type (9) in any number of dimensions, provided the regions are rectangular
with sides parallel to the coordinate planes.
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