ON THE EXTRAPOLATION OF A SPECIAL CLASS
OF STATIONARY TIME SERIES -

By WiLiam F. TrENcH

Drexel Institute of Technology

~ In this paper, we consider a problem previously solved by P. A. Kozuljaev [1].
Let y(t){t = 0, 1, £2, - - -} be a discrete stationary (in the wide sense) time
series, with zero mean, unit variance, and independent samples. Thus,

Ely()} =0, E{ly®)} =1, Ely@)yt+ 1)} =0, 7=0.
For an arbitrary but fixed m > 1, form the new random variable
(1) a(t,m) = m™ 2Tyt + ).
Then E{z(t, m)} = 0, and E{z(¢, m)x(t + 7, m)} = R(r, m), where
(2) R(r,m) =1 — |7|/m, r=0,=%1, £2,---, +(m — 1)
= 0, T

The problem considered by Kozuljaev is that of extrapolating the stationary
sequence (1). That is, for each fixed pair of positive integers p and n, he has solved
the problem of determining coefficients a1 , a2, - - - , a, such that the variance

(3) w(ar, a2, +,an;m,p) = E{(z(t+ p,m) — D tax(t+1 —i,m))}
is minimized. If @1, a2, - - - , a, are chosen to minimize (3), then
Et+p,m) = D iax(t+1—1im)

is the minimum variance (linear) estimate of z(¢ + p, m), based on z(¢, m),
z(t—1,m), - - ,z(t — n + 1, m), and (3) is the variance of the estimate. For
each m, n, and p Kozuljaev has determined the unique set of coefficients which
minimizes (3), and has computed the minimum variance. He shows that the co-
efficients satisfy a certain linear algebraic system, given below, and solves this
system by Cramer’s rule. However, the evaluation of the determinants which
arise in this method involves a large amount of labor, with the result that Kozul-
jaev’s paper contains a series of some forty-four theorems, all of which are di-
rected at solving this linear system, and calculating the resulting minimum
variance.

In this paper, we give a different method of deriving Kozuljaev’s results, based
on considering the coefficients to be part of a sequence which is the solution of a
certain difference equation. This viewpoint leads to a method of solution of the
extrapolation problem, for this special case, which is considerably less involved
than Xozuljaev’s method.
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Throughout this paper, we consider m, n, and p to be fixed positive integers. It
is understood that a; , @z, - - - , @, and p depend on these integers. However, we
will not make this dependence explicit by the introduction of appropriate sub-
scripts and superseripts, since the resulting complexity of notation would be
quite burdensome. In the interests of simplicity, we replace (2) by

(4) Vi=1-=ljl/m, Jjl=m-—1,
=0, lil 2 m.
The following lemma is proved in [1].
LeEmMA 1. The coefficients a1, az, -+ , @, which minimize (3) are the unique
solution of
(5) Z;;l Vicia; = Vigpa, 15175 n.

This lemma holds in general for any non-deterministic process. The process
studied here is non-deterministic, since it is a finite moving average of a stationary
process with independent samples.

LemMa 2. Ifp = m,thenay = az = --+ = a, = 0.

Proor. If p = m, it follows from (4) that the system (5) is homogeneous, and
the conclusion follows from Lemma 1.

It is straightforward to verify the following lemma.

Lemma 3. Letl < p<m— l,and a1, az, - - - , a, be the solution of (5). Define
(6) (a) a4 = —0 pp, -m+2=j=0,
(b) a; = 0, n+1=<j=<n+m-—1
Then {a.,}, (—m + 2 < r £ n + m — 1) is the unique solution of
@ = Vigjrs = 0, 1<i=<n,

which satisfies (6).

This lemma reduces the extrapolation problem to that of solving the difference
equation (7), subject to Conditions (6). It is easy to see that it holds for any
process which is a finite moving average of a stationary process with independent
samples:

z(t) = 2 Kyt + 1),

K,,K;, ---, K, being arbitrary complex numbers, (with K; # 0 and K, # 0),
and

V, = mo KK 1l

fiA

m — 1,
=0, lil =z m.

For {V;} as given by (4), we have the following theorem. (As was noted by
the referee, one can also handle (7) by means of a summation by parts; this would
exploit the fact that V; is piecewise linear.)
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TuroreM 1. The solution of (6) and (7) can be written in the form

(8) aj=b;+j,, —m+2=r=n+m-—1
where

(9) bj =b:,¢ = ¢, if. j = i(mod m),

(10) b — (m — j)ej = —dp1,m, 2=j=m,
(11) bori + (G + n)ewyi = 0, 1sj=m—1,
(12) bi+b+ -+ bn=0,

(13) a+et - +em=0.

Proor. The characteristic equation of (7) is
Sty Vil = m™2 A — 2)7(1 — ") =0,

which has each of the mth roots of unity, except z = 1, as a double root. Hence,
the general solution of (7) is of the form

a; = 03 (B, + ;) exp (2minj/m),

where B, and C, are suitable constants. Setting b; = > ! B, exp (2mwirj/m),
and ¢; = =i C, exp (2wirj/m), we obtain (8), (9), (12), and (13). From
(6a) and (8), b; + je; = —8_pu;, —m + 2 = j = 0. Replace j by —j to ob-
tain b_; — je_j = —0,1,,0 = j < m — 2. From (9), we can write this as
bmej — JCmi = —8p1,;,0 < j = m — 2, and replace j by m — j to obtain (10).
Equation (11) follows from (6b) and (8).

Equations (10) through (13) constitute a set of 2m linear equations in the

2m unknowns by, ba, -++ , bpand ¢1, ¢z, + -+, ¢n . The form of the solution de-
pends on the residue class of n modulo m, as will be seen in the following theorems.
TuEOREM 2. Let by, ba, ++* ,bm,C1,Cy =+, Cn be the solution of (10) through

(13), where 1 < p < m — 1. Then b, = ¢, = 0 unless r meets at least one of the
Sollowing conditions:
(i)r=1,
@) r=m—p-+1,
(iii) r = n(mod m).
Proor. Suppose r does not satisfy any of these conditions. Then, from (10),
b, — (m — r)e, = 0,
and, from (11)
b+ (4 + n)e, = 0,
where j is chosen so that n 4+ j = r(mod m). (Since r # n(mod m),1 =5 =
m — 1, and there is an equation of the form (11) which involves b; .) These two
equations have only the trivial solution, which proves the theorem.
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TraEoREM 3. If1 = p = m — 1, and n = 1(mod m), then

(14) b= ~bnpun=(n+m-—p)/(n+m-—1),
and
(15) 66 = —Cmpp1 = —1/(n +m — 1).

Proor. From (10)
bnyprr — (P — 1)Cn-pr1 = —1.
Since n = 1(mod m), setting j = m — pin (11) and using (9) yields
bn—pir + (0 + m — D)Cm—pyr = 0.

These equations have the unique solution given by (14) and (15). From Theorem
2, and from (12) and (13), the first equalities of (14) and (15) follow.
TueoreM 4. If 1 S p = m — 1,andn = m — p + 1(mod m), then

(16) bi = —bnypu = (n+p)/(n+2p—1)
(17) = —Cnp1 = —1/(n+ 2p — 1).
Proor. n + p = 1(mod m). In (11) take j = p, and use (9) to obtain
by + (n + p)a = 0.
From (10)
bnpts — (P — 1)Cnypt1 = —1,
and from (12), (13), and Theorem 2,
b1+ bupn = 0,
¢ + cmpi1 = 0.

These four equations have the unique solution given by (16) and (17).
TaEOREM 5. If 1 £ p = m — 2, and n = k(mod m), where2 < k < m — p,

then
e =—(n+2m—2k—p+1)/(n +m — k)(2m — 2k + n + 1)]
by = —(n+m—k+ 1)e,
& = —p/[2m — 2k +n+ 1)(n +m — k)],
b = (m — k)cx,
Cnpt1 = 1/(n + m — k),
bupyr = —(n+m—p—k+1)tnpn.
Proor. From (10)
(18) by — (m — k)a = 0,



1430 ' WILLIAM F. TRENCH

(19) bnptn1 — (P — 1)Cmpi1 = —1.

From (12), (13), and Theorem 2

(20) b1 + b + bupy = 0,

(21) &1+ ¢+ Cmpyn = 0,

and from (9), (11), and the conditions on n and ¥,

(22) b+ (n+m—Fk+ 1)ea=0,

bmptr+ (n+m—p—k+ 1)enp = 0.
This system has the unique solution given in the theorem.
THEOREM 6. If2 < p =m — 1,andn = k(mod m), wherem — p+2 < k <
m, then
a=—n+3m—2k—p+1)[n+2m—2k+ 1)(n + 2m — k)]
b = —(n+m—Fk+ 1)a,
¢ = (m—p)/l(n+2m — 2k + 1)(n + 2m — k)],
b = (m — ke,
Cm—pt1 = 1/(n + 2m — k),
bnpn = —(n+2m —k —p—+ 1)enpi1-

Proor. It is easy to verify that the six quantities in question must satisfy
(18) through (22). The sixth equation is obtained from (9) and (11), by noting
that, from the conditions on n and k,j = 2m — k — p + 1 is the number which
is congruent to m — p + 1(mod m), and at the same time satisfies 1 < j <

m — 1. Hence
bm_p+1 + (n + 2m — k — p + I)Cm_p+1 = 0.

The system consisting of (18) through (22), together with this equation, has
the unique solution given in the statement of the theorem.

The following theorem can be established in a straight-forward manner from
theorems and lemmas which precede it. It contains the same results as those
given by Kozuljaev, except for some minor discrepancies, which are presumably
caused by typographical errors in his paper.

THEOREM 7. For each triple of positive integers m, n, and p, there is a unique
set of coefficients a1, az, - , @, which minimaizes the variance (3). Every possi-
bility s contained in the following five cases:

Case 1. If p = m, a; = O for all j.

Case2. If1 = p=m— landn = 1(mod m), then

aj=(n+m—p—j)/(n+m-—1), if j= 1(mod m),
aj=—(n+m—p—j)/(n+m—1), i j=m—p+ 1(modm),
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a; = 0, . otherwise.

Case3. If1l <=p=<m— landn =m — p + 1(mod m), then

a5 = (n+p—4)/(n+2p = 1), if j = 1(mod m),
aj=—(m+p—7/(n+2p—1), i j=m—p+ 1(modm),
a; =0, otherwise

Case 4. If 1 < p < m — 2 and n = k(mod m), where 2 < k < m — p, then
ai=[n+2m—2k—p+1)(n+m—Fk—j+ 1)
[(n +m —k)(2m — 2k +n + 1)], if j = 1(mod m),
a; = —[p(m — k + 7))/[(n + m — k)(2m — 2k + n + 1)],
if 7 = k(mod m),
—(n+m—p—k—j+1)/(n+m—k),
ifj=m—p+ 1(modm),

a;

a; = 0, otherwzse.

Case 5. If2 < p < m — 1 and n = k(mod m), wherem — p + 2 = k= m,
then

ag,=[(n+3m—2k—p+(n+m-—~k—j+ 1)
[(n + 2m — 2k + 1)(n + 2m — k)], if 7 = 1(mod m),
[((m — p)(m — k + H))/[(n + 2m — 2k + 1)(n + 2m — k)],
if 7 = k (mod m),

a;

o= —n+2m—k—p—j+1)/(n+2m—k),
ifj=m — p+ 1(mod m),
a, =0, otherwise.

It remains only to calculate the resulting mean square error (3). We give a
method which is considerably shorter than Kozuljaev’s. From (3) and the
definition of V,

(23) p=1—23 000V + 2limaia Vi

By substituting into this expression from the results of Theorem 7, Kozuljaev
was able to evaluate u. However, the manipulations involved in this procedure
are exceedingly tedious, and, fortunately, unnecessary. From (5) and (23) it
follows that ' s

(24) p=1—271aVpa.
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Vprici = 0if § > m — p. Furthermore, in Cases 1, 2, 3, and 5, a; = 0if 2 < j
=< m — p. Hence, in these cases (24) can be written

B = 1— alV,, .
In Case 4, (24) can be written
B = 1— a],Vp —_ akVp.H-,_] .

The computation of u is now reduced to a triviality. The results, which agree
with- Kozuljaev’s are listed for reference.
Casel. p= 1.
Case 2. p=p(n+2m — p — 1)/[m(n +m — 1)].
CasE3. p=p(n+p+m—1)/[m(n 4+ 2p — 1)].
CasE4. p=[p(n +2m — 2k — p + 1)(n + 2m — k)]/
[m(n 4+ m — k)(n + 2m — 2k + 1)].
Case 5. p=[p(n+m—k)(n+4m — 2k —p+ 1) + m’(m — k + 1))/
[m(n 4+ 2m — 2k + 1)(n + 2m — k)].

Acknowledgment. The author thanks the referee for his suggestions on the
presentation of Lemmas 1 and 2 and Theorem 1.
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